File: cs_user_source_terms.h

package info (click to toggle)
code-saturne 5.3.2%2Brepack-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 76,868 kB
  • sloc: ansic: 338,582; f90: 118,487; python: 65,227; makefile: 4,429; cpp: 3,826; xml: 3,078; sh: 1,205; lex: 170; yacc: 100
file content (410 lines) | stat: -rw-r--r-- 15,611 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
/*============================================================================
 * Code_Saturne documentation page
 *============================================================================*/

/*
  This file is part of Code_Saturne, a general-purpose CFD tool.

  Copyright (C) 1998-2018 EDF S.A.

  This program is free software; you can redistribute it and/or modify it under
  the terms of the GNU General Public License as published by the Free Software
  Foundation; either version 2 of the License, or (at your option) any later
  version.

  This program is distributed in the hope that it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
  FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
  details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
  Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/

/*-----------------------------------------------------------------------------*/



/*!

  \page cs_user_source_terms Examples of data settings for source terms (cs_user_source_terms.f90)




  \brief Additional right-hand side source terms


   - \subpage subroutine_ustsnv
   - \subpage subroutine_ustssc
   - \subpage subroutine_cs_user_turbulence_source_terms
   - \subpage cs_user_source_terms-scalar_in_a_channel


*/
//________________________________________________________________________________________________
/*!

   \page subroutine_ustsnv For velocity components equation (Navier-Stokes): ustsnv subroutine

 \brief Additional right-hand side source terms for velocity components equation
 (Navier-Stokes)

  \section use_src1  Usage

  The additional source term is decomposed into an explicit part \f$(\vect{crvexp})\f$ and
  an implicit part \f$(\tens{crvimp})\f$ that must be provided here.
  The resulting equation solved by the code for a velocity is:
  \f[
  \rho \norm{\vol{\celli}} \DP{\vect{u}} + ....
   = \tens{crvimp}\cdot  \vect{u} + \vect{crvexp}
  \f]

  Note that \f$\vect{crvexp}\f$ and \f$\tens{crvimp}\f$ are defined after the Finite Volume integration
  over the cells, so they include the \f$\norm{\vol{\celli}}\f$ term. More precisely:
   - \f$\vect{crvexp}\f$ is expressed in \f$ kg\cdot ms^{-2} \f$
   - \f$\tens{crvimp}\f$ is expressed in \f$ kg\cdot s^{-1} \f$

  The \f$\vect{crvexp}\f$ and \f$\tens{crvimp}\f$ arrays are already initialized to 0
  before entering the
  the routine. It is not needed to do it in the routine (waste of CPU time).

  For stability reasons, \c Code_Saturne will not add \c -crvimp directly to the
  diagonal of the matrix, but \c Max(-crvimp,0). This way, the \f$ \tens{crvimp}\f$ term  is
  treated implicitely only if it strengthens the diagonal of the matrix.
  However, when using the second-order in time scheme, this limitation cannot
  be done anymore and \c -crvimp is added directly. The user should therefore test
  the negativity of \c crvimp by himself.

  When using the second-order in time scheme, one should supply:
   - \f$\vect{crvexp}\f$ at time n
   - \f$\tens{crvimp}\f$ at time n+1/2

  The selection of cells where to apply the source terms is based on a
  \ref getcel command. For more info on the syntax of the \ref getcel command,
  refer to the user manual or to the comments on the similar command
  \ref getfbr in the routine \ref cs_user_boundary_conditions.

   \section loc_var1 Local variables

   \snippet cs_user_source_terms.f90 loc_var_dec_1

   \section init_and_finit_1 Initialization and finalization

The following initialization block needs to be added for the following examples:
   \snippet cs_user_source_terms.f90 allocate_1

At the end of the subroutine, it is recommended to deallocate the work array:
   \snippet cs_user_source_terms.f90 deallocate_1

In theory Fortran 95 deallocates locally-allocated arrays automatically, but deallocating arrays in a symetric manner to their alloacation is good pratice, and avoids using a different logic C and Fortran.

   \section example_source_terms_1  Example
Example of arbitrary source term for component \f$\vect{u}\f$:

   \f$ \vect{S} = \tens{A} \cdot \vect{u} + \vect{B} \f$ appearing in the equation under the form:

   \f$ \rho \dfrac{d\vect{u}}{dt} = \vect{S} \: (+ \text{standard Navier-Stokes terms})\f$


In the following example:
  \f[  \tens{A} = -\rho \cdot \tens{CKP} \f]
  \f[  \vect{B} =  \vect{XMMT}  \f]

with:
 - <tt> CKP = 1.d0 </tt>(in \f$ s^{-1}\f$) (return term on velocity) \n
 - <tt> MMT = 100.d0 </tt>(in \f$kg \cdot m^{-2} \cdot s^{-2}\f$) (momentum production by volume and time unit)

which yields:
 - <tt>  crvimp(1, 1, iel) = volume(iel)* A = - volume(iel)*(rho*CKP )</tt> \n
 - <tt>  crvexp(1, iel) = volume(iel)* B = volume(iel)*(XMMT) </tt>

 \section body1 Body

   \snippet cs_user_source_terms.f90 remaining_1

   \section example_source_terms_2 Example of a boussinesq momentum source term
   Example to add Boussinesq source to the z component of \f$\vect{u}\f$:

 \section body2 Body

   \snippet cs_user_source_terms.f90 boussinesq_st

*/
//_________________________________________________________________________________________________
/*!
   \page subroutine_ustssc For transported scalar: ustssc subroutine


 \brief The routine is called for each scalar, user or specific physisc. It is
        therefore necessary to test the value of the scalar number iscal to separate
        the treatments of the different scalars <tt>(if (iscal.eq.p) then ....)</tt>.

        The additional source term is decomposed into an explicit part \f$ (crvexp) \f$ and
        an implicit part \f$ (crvimp) \f$ that must be provided here.
        The resulting equation solved by the code for a scalar \f$f\f$ is:

  \f[ \rho \norm{\vol{\celli}}\frac{df}{dt} + .... = crvimp \cdot f + crvexp  \f]


 \note that \f$ crvexp \f$ and \f$ crvimp\f$ are defined after the Finite Volume integration
 over the cells, so they include the \f$\norm{\vol{\celli}}\f$ term. More precisely:
   - \f$ crvexp\f$ is expressed in \f$ kg\cdot [scal] \cdot s^{-1} \f$ , where \f$ [scal] \f$ is the unit of the scalar
   - \f$ crvimp\f$ is expressed in \f$ kg \cdot s^{-1} \f$


 The \f$ crvexp \f$ and \f$ crvimp\f$ arrays are already initialized to 0 before entering the
 the routine. It is not needed to do it in the routine (waste of CPU time).

 For stability reasons, \c Code_Saturne will not add \c -crvimp directly to the
 diagonal of the matrix, but <tt> Max(-crvimp,0).</tt> This way, the \c crvimp term is
 treated implicitely only if it strengthens the diagonal of the matrix.
 However, when using the second-order in time scheme, this limitation cannot
 be done anymore and \c -crvimp is added directly. The user should therefore test
 the negativity of \c crvimp by himself.

 When using the second-order in time scheme, one should supply:
   - \c crvexp at time n
   - \c crvimp at time n+1/2


 The selection of cells where to apply the source terms is based on a \ref getcel
 command. For more info on the syntax of the \ref getcel command, refer to the
 user manual or to the comments on the similar command \ref getfbr in the routine
 \ref cs_user_boundary_conditions.

 \warning  If the scalar is the temperature, the resulting equation
          solved by the code is:

  \f[ \rho C_p \norm{\vol{\celli}} \frac{dT}{dt} + .... = crvimp \cdot T + crvexp \f]


 \note \f$crvexp\f$ and \f$ crvimp\f$ are defined after the Finite Volume integration
 over the cells, so they include the \f$\norm{\vol{\celli}}\f$ term. More precisely:
   - \f$crvexp\f$ is expressed in \f$ W \f$
   - \f$crvimp\f$ is expressed in \f$ W \cdot K^{-1} \f$


   \section steep Steep source terms

 In case of a complex, non-linear source term, say \f$ F(f) \f$, for scalar \f$ f \f$, the
 easiest method is to implement the source term explicitely.

   \f[ \frac{df}{dt} = .... + F(f^{(n)}) \f]
   where \f$ f^{(n)} \f$ is the value of \f$f\f$ at time \f$t^n\f$, the beginning of the time step.

 This yields :
  - <tt> crvexp = volume*F(f(n)) </tt>
  - <tt> crvimp = 0 </tt>

 However, if the source term is potentially steep, this fully explicit
 method will probably generate instabilities. It is therefore wiser to
 partially implicit the term by writing:

   \f[ \frac{df}{dt} = .... + \frac{dF}{df} f^{(n+1)} - \frac{dF}{df} f^{(n)} + F(f^{(n)}) \f]

 This yields:
   - <tt> crvexp = volume*( F(f(n)) - dF/df*f(n) ) </tt>
   - <tt> crvimp = volume*dF/df </tt>


   \section loc_var2 Local variables

   \snippet cs_user_source_terms.f90 loc_var_dec_2

   \subsection init_and_finit_2 Initialization and finalization

The following initialization block needs to be added for the following examples:
   \snippet cs_user_source_terms.f90 allocate_2

At the end of the subroutine, it is recommended to deallocate the work array:

  \snippet cs_user_source_terms.f90 deallocate_2

In theory Fortran 95 deallocates locally-allocated arrays automatically, but deallocating arrays in a symmetric manner to their alloacation is good pratice, and avoids using a different logic between C and Fortran.

  <b> Remaining initialization</b>

  Index number of the variable associated to scalar iscal

   \snippet cs_user_source_terms.f90 index_2

 Name of the variable associated to scalar iscal

   \snippet cs_user_source_terms.f90 name_2

 Indicator of variance scalars

 - If <tt> iscavr(iscal) = 0 </tt>:
   the scalar \c iscal is not a variance
 - If <tt> iscavr(iscal) > 0 </tt> and <tt> iscavr(iscal) < nscal + 1:</tt>
   the scalar \c iscal is the variance of the scalar \c iscavr(iscal)

\n

  \snippet cs_user_source_terms.f90 test_2

 Density

  \snippet cs_user_source_terms.f90 density_2

  \section examplesource_2_1 Example 1

Example of arbitrary source term for the scalar f, 2nd scalar in the calculation.

  \f$ S=A \cdot f+B \f$

appearing in the equation under the form

\f$ \rho \dfrac{df}{dt}=S \: \text{(+ regular other terms in the equation)} \f$
In the following example:

\f[A=-\frac{\rho}{\tau_f} \f]
\f[B=\rho \cdot prod_f \f]

with:
 - tauf = 10.d0 (in \f$ s \f$) (dissipation time for \f$f\f$)
 - prodf = 100.d0 (in \f$ [f]\cdot s^{-1} \f$) (production of \f$f\f$ by unit of time)

which yields:
 - <tt> crvimp(iel) = volume(iel)*A = -volume(iel)*rho/tauf </tt>
 - <tt> crvexp(iem) = volume(iel)*B= volume(iel)*rho*prod_f </tt>

 \subsection bodysource2 Body

 <b> Source term applied to second scalar</b>

  \snippet cs_user_source_terms.f90 src_term_applied

  \section examplesource2_2 Example 2

Example of arbitrary volumic heat term in the equation for enthalpy h.


 In the considered example, a uniform volumic source of heating is imposed
 in the cells with coordinate X in [0;1.2] and Y in [3.1;4].

 The global heating power if \c Pwatt (in \f$W\f$) and the total volume of the
 selected cells is \c volf (in \f$m^3\f$).

 This yields:
    - <tt> crvimp(iel) = 0 </tt>
    - <tt> crvexp(iel) = volume(iel)* pwatt/volf </tt>


  \subsection end2 Body

   \warning It is assumed here that the thermal scalar is an enthalpy. If the scalar is a  temperature. PWatt does not need to  be divided by \f$ C_p \f$ because \f$C_p\f$ is put outside thediffusion term and multiplied in the temperature equation as follows:
 \f[ \rho C_p \norm{\vol{\celli}} \frac{dT}{dt} + ... = \norm{\vol{\celli}(iel)} \frac{pwatt}{voltf} \f]

with  <tt> pwatt = 100.d0 </tt>

   \subsection cs_user_st_3_cal_volf Calculation of voltf

   \snippet cs_user_source_terms.f90 ex_3_compute_voltf

   \subsection cs_user_st_3_apply Apply source term

   \snippet cs_user_source_terms.f90 ex_3_apply

*/
//________________________________________________________________________________________________
/*!

   \page subroutine_cs_user_turbulence_source_terms For turbulence model: cs_user_turbulence_source_terms subroutine

   \brief Additional right_hand side source terms for turbulence models

   \section use_src3 Usage

 The additional source term is decomposed into an explicit part \f$(crvexp)\f$ and an implic it part \f$(crvimp)\f$ that must be provided here. The resulting equations solved by the code are:

\f[
  \rho \norm{\vol{\celli}} \DP{\varia} + ....
   = crvimp \cdot \varia + crvexp
 \f]
 where \f$ \varia \f$ is the turbulence field of index \f$ f_{id} \f$.

 \note \f$ crvexp \text{, } crvimp\f$ are defined after the Finite Volume
 integration over the cells, so they include the \f$\norm{\vol{\celli}}\f$ term. More precisely:
   - \f$crvexp\f$ is expressed in \f$ kg\cdot m^{-2} \cdot s^{-2} \f$
   - \f$crvimp\f$ is expressed in \f$ kg \cdot s^{-1} \f$

 The \f$crvexp\f$, \f$crvimp\f$ arrays are already initialized to 0 before
 entering the routine. It is not needed to do it in the routine (waste of CPU time).

 For stability reasons, \c Code_Saturne will not add \c -crvimp directly to the
 diagonal of the matrix, but \c Max(-crvimp,0). This way, the \c crvimp term is
 treated implicitely only if it strengthens the diagonal of the matrix.
 However, when using the second-order in time scheme, this limitation cannot
 be done anymore and \c -crvimp is added directly. The user should therefore test
 the negativity of \c crvimp by himself.

 When using the second-order in time scheme, one should supply:
   - \f$crvexp\f$ at time n
   - \f$crvimp\f$ at time n+1/2

 The selection of cells where to apply the source terms is based on a \ref getcel
 command. For more info on the syntax of the \ref getcel command, refer to the
 user manual or to the comments on the similar command \ref getfbr in the routine
 \ref cs_user_boundary_conditions.


   \section loc_var3 Local variables

   \snippet cs_user_source_terms.f90 loc_var_dec_3

   \section init_and_finit_3 Initialization and finalization

The following initialization block needs to be added for the following examples:
   \snippet cs_user_source_terms.f90 allocate_3

At the end of the subroutine, it is recommended to deallocate the work array:
   \snippet cs_user_source_terms.f90 deallocate_3

In theory Fortran 95 deallocates locally-allocated arrays automatically, but deallocating arrays in a symetric manner to their alloacation is good pratice, and avoids using a different logic C and Fortran.



 <b> Remaining initialization</b>

  Get the density array in \c cpro_rom

   \snippet cs_user_source_terms.f90 dens_array_3

 Get the array of the current turbulent variable and its name

   \snippet cs_user_source_terms.f90  current_turb_3


   \section example3_1 Example
Example of arbitrary additional source term for turbulence models (Source term on the TKE "k" here).


   Source term for \f$\varia:\f$
   \f[ \rho \norm{\vol{\celli}} \frac{d(\varia)}{dt} = ... - \rho \norm{\vol{\celli}} \cdot ff - \rho \frac{ \varia}{\tau}\f]
 with \f$ ff \f$ = <tt>  3.d0 </tt> an \f$ \tau \f$ = <tt> 4.d0 </tt>


  \section body3 Body

  \note The turbulence variable names are:
   - 'k' and 'epsilon' for the k-epsilon models
   - 'r11', 'r22', 'r33', 'r12', 'r13', 'r23' and 'epsilon' for the Rij-epsilon LRR and S SG
   - 'r11', 'r22', 'r33', 'r12', 'r13', 'r23', 'epsilon' and 'alpha' for the EBRSM
   - 'k', 'epsilon', 'phi' and 'f_bar' for the phi-model
   - 'k', 'epsilon', 'phi' and 'alpha' for the Bl-v2-k model
   - 'k' and 'omega' for the k-omega turbulence model
   - 'nu_tilda' for the Spalart Allmaras model


  \subsection cal_exp_imp3 Calculation of the explicit and implicit source terms

  \snippet cs_user_source_terms.f90 rem_code_3

  \subsection format3 Format

  \snippet cs_user_source_terms.f90 format_3

*/