File: bndcnd.tex

package info (click to toggle)
code-saturne 5.3.2%2Brepack-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 76,868 kB
  • sloc: ansic: 338,582; f90: 118,487; python: 65,227; makefile: 4,429; cpp: 3,826; xml: 3,078; sh: 1,205; lex: 170; yacc: 100
file content (1088 lines) | stat: -rw-r--r-- 55,104 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
%-------------------------------------------------------------------------------

% This file is part of Code_Saturne, a general-purpose CFD tool.
%
% Copyright (C) 1998-2018 EDF S.A.
%
% This program is free software; you can redistribute it and/or modify it under
% the terms of the GNU General Public License as published by the Free Software
% Foundation; either version 2 of the License, or (at your option) any later
% version.
%
% This program is distributed in the hope that it will be useful, but WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
% FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
% details.
%
% You should have received a copy of the GNU General Public License along with
% this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
% Street, Fifth Floor, Boston, MA 02110-1301, USA.
%-------------------------------------------------------------------------------

%-------------------------------------------------------------------------------
\section{Introduction}

\hypertarget{boundary}{}

Boundary conditions are required in at least three main cases:

\begin{itemize}
\item calculation of the convection terms (first order derivative in space) at
the boundary: the code uses a mass flux at the boundary and requires the
value of the convected variable when the flow is entering into
the domain (or more general wave relations in the sense of the characteristic curves of the system entering the domain);
\item calculation of the diffusion terms (second order derivative
in space): the code needs
a method to determine the value of the first order spatial derivatives
at the boundary, these define \emph{e.g.} the stresses or the thermal fluxes at the wall;
\item calculation of the cell  gradients: the variables at the boundary faces
 allow the code to define the gradient inside the cell connected to the boundary (\emph{e.g.} the pressure gradient or
the transpose gradient terms in the stress-strain relation).
\end{itemize}

These considerations only concern the computational field variables
(velocity, pressure, Reynolds tensor,
scalars solution of a advection-diffusion equations \emph{etc.}). For these variables
\footnote{
The other variables
(the physical properties for instance) have a different treatment which will
not be detailed here (for instance, for the density, the user defines
directly the values at the boundary. This information is then stored; one
is referred to \fort{cs\_user\_physical\_properties} (see the \doxygenfile{cs__user__physical__properties_8f90.html}{programmers reference of the dedicated subroutine})
 or \fort{phyvar} for more information).
},
the user has to define the boundary conditions at every boundary face.

The boundary conditions could be of Neumann type (when the flux is imposed)
or Dirichlet type (when the value of the field variable is prescribed), or mixed type, also
called Robin type (when a combination linking the field variable to its derivative flux
is imposed).

The code (see the \doxygenfile{condli_8f90.html}{programmers reference of the dedicated subroutine})
 transforms the boundary conditions provided by the user
 into two internal formats of representation of the boundary
 conditions.

 A particular treatment is performed on walls:
 wall functions are used to model the boundary layer flow in the vicinity of the wall when the mesh is too coarse to correctly capture the sharp variations of the fields with a linear profile in the near wall cell.
 This will be detailed in the next sections.

A particular treatment on symmetry boundaries is also performed for vectors and tensors
whereas a symmetry boundary is equivalent to an homogeneous Neumann condition (zero normal gradient) for scalar fields.

The physics model that the user wishes to apply needs to be translated into pairs of coefficients
entering the linear system of equations that the code will solve. For any variable $\varia$ for every boundary faces $\fib$ these coefficients are:

\begin{itemize}
\item $\left( A^g_\fib , \, B^g_\fib\right)$ used by the gradient operator and by the advection operator.
The value at the boundary face $\fib$ of the variable $\varia$ is
then defined as:
\begin{equation}\label{eq:bndcnd:coef_g_def}
\varia_\fib \equiv A^g_\fib + B^g_\fib \varia_\centip.
\end{equation}
%
\item $\left( A^f_\ib , \, B^f_\ib\right)$ used by the diffusion operator.
The value at the boundary face $\fib$ of the diffusive flux $q_\ib$ of the variable $\varia$
is then defined as (see Equation \eqref{eq:spadis:boundary_flux}):
\begin{equation}\label{eq:bndcnd:coef_f_def}
q_\ib \equiv \dfrac{D_\ib \left( K_\fib , \, \varia \right)}{\norm{\vect{S}}_\fib} = -\left(A^f_\ib + B^f_\ib  \varia_\centip\right).
\end{equation}
Note that the diffusive boundary coefficients are oriented, which means that they are such that if $D_\ib \left( K_\fib , \, \varia \right) $ is positive,
this flux is gained by $\varia_\celli$.
 %
\end{itemize}
The definitions are recalled on \figurename~\ref{fig:bndcnd:boundary_flux}.

\begin{figure}[!htpb]
\centering
\includegraphics[width=0.8\textwidth]{fluxbord}
\caption{Boundary cell.\label{fig:bndcnd:boundary_flux}}
\end{figure}

\begin{example}\label{sec:bndcnd:intro}
The heat flux $q_w$ from a solid wall to a laminar flow is defined and discretised as
\begin{equation}
q_w = \lambda \grad T \cdot n_\ib = - \lambda \dfrac{T_\centip -T_\centf}{ \overline{\centip \centf}} = -h_{int} \left(T_\centip - T_\centf \right),
\end{equation}
where $h_{int} / \overline{\centip \centf}$ is the exchange coefficient between the wall and the fluid point $\centip$.

\begin{itemize}
\item If the wall temperature $T_w$ is known, $T_\centf =T_w$ is set as Dirichlet condition, $q_w$
will be a result of the simulation, and the gradient and diffusive flux coefficients
are as follows:
\begin{equation}
\begin{array}{r c l}
\left\lbrace
\begin{array}{r c l}
A^g_\fib & = & T_w , \\
B^g_\fib & = & 0,
\end{array}
\right.
 & &
\left\lbrace
\begin{array}{r c l}
A^f_\ib & = & -h_{int} T_w, \\
B^f_\ib & = & h_{int}.
\end{array}
\right.
\end{array}
\end{equation}

\item If the wall heat flux $q_w$ is known, this is a Neumann condition and $T_\centf = T_w$
will be a result of the simulation and the gradient and diffusive flux coefficients
are as follows:
\begin{equation}
\begin{array}{r c l}
\left\lbrace
\begin{array}{r c l}
A^g_\fib & = & - \dfrac{q_w}{h_{int}} ,\\
B^g_\fib & = & 1,
\end{array}
\right.
& &
\left\lbrace
\begin{array}{r c l}
A^f_\ib & = & q_w ,\\
B^f_\ib & = & 0 .
\end{array}
\right.
\end{array}
\end{equation}

\end{itemize}
\end{example}

%-------------------------------------------------------------------------------
\section{Standard user boundary conditions}

The user generally gives standard boundary conditions, which are:

\begin{description}
\item[Inlet:] it corresponds to a Dirichlet boundary condition on all the transported variables
(and should therefore be given by the user)
and to a homogeneous Neumann on the pressure field.

\item[Outlet:] it correspond to a homogeneous Neumann boundary condition on all the transported variables.
For the pressure field, a Dirichlet boundary condition which is expected to mimic $\displaystyle\frac{\partial^2 P}{\partial n \partial \tau}=0$ for any vector  $\vect{\tau}$ parallel to the outlet face
(see \S \ref{sec:bndcnd:outlet_pressure} for more details).
This condition means that the pressure
profile does not vary in the normal direction of the outlet. Warning: if the outgoing mass-flux is negative,
\emph{i.e.} if the outlet becomes an inlet, then the mass-flux is clipped to zero. Moreover, since
 the pressure field is defined up to a constant, it is fixed to a reference pressure $P_0$
at an arbitrary chosen outlet boundary face.
The user can choose an other desired face where a Dirichlet on pressure is prescribed.

\item[Free inlet/outlet:] it corresponds to the standard outlet when the flow is outgoing (see \S \ref{sec:bndcnd:outlet_pressure}), but to a free inlet when the flow
is ingoing. The Bernoulli relationship is used to derive a boundary condition on the pressure increment to couple velocity and pressure at
these free inlet faces.
Note that no clipping on the velocity is imposed.
The same boundary conditions as for outlet on the other variables is imposed. For more details please refer to \S \ref{sec:bndcnd:inlet_bernoulli_pressure}.


\item[Walls:] This particular treatment will be detailed in the following sections.
For the velocity, the aim is to transform the Dirichlet boundary condition (the velocity at the wall
is equal to zero, or the velocity of a moving wall) into a Neumann boundary condition where the wall shear stress
is imposed function of the local flow velocity and the turbulence characteristics.
A similar treatment using wall functions is done on every transported variable if this variable is prescribed.
The boundary condition on the pressure field is a homogeneous Neumann by default, or alternatively an extrapolation of the gradient.

\item[Symmetries:] This condition corresponds to a homogeneous Neumann for the scalar fields
(\emph{e.g.} the pressure field or the temperature field). For vectors, such as the velocity, it corresponds
to impose a zero Dirichlet on the component normal to the boundary, and a homogeneous Neumann
on the tangential components. Thus, this condition couples the  vector components if the symmetry faces are not
aligned with the reference frame. The boundary condition for tensors, such as the Reynolds stresses, will be detailed in the following sections.
\end{description}

See the \doxygenfile{cs__user__boundary__conditions_8f90.html}{programmers reference of the dedicated subroutine} for further details.

%-------------------------------------------------------------------------------
\section{Internal coding of the boundary conditions -- Discretization}

As already mentioned, the boundary conditions set by the user for the variable $\varia$
are translated into two pairs of coefficients $\left( A^g_\fib , \, B^g_\fib\right)$ which are used by the gradient operator and by the advection operator, and $\left( A^f_\ib , \, B^f_\ib\right)$ for use by the diffusion operator, this for all the boundary faces $\fib$.

Let us first recall the general form of the transport equation of a variable $\varia$, which could be a scalar,
a vector or a tensor:
\begin{equation}\label{eq:bndcnd:gov_eqn_scalar}
\displaystyle C \rho \frac{\partial \varia}{\partial t} + C \grad \varia \cdot \left( \rho \vect{u} \right) = \dive \left(\displaystyle K \, \grad \varia \right) +ST_\varia .
\end{equation}

In the Equation (\ref{eq:bndcnd:gov_eqn_scalar})
$\rho$ is the density of the fluid, $\left( \rho \vect{u} \right)$ the convective mass flux of the variable $\varia$, $K$ its
conductivity or diffusivity and $S$ any additional source terms.
Note that $K$ is the sum of molecular and turbulent diffusivity in case of RANS modelling with an eddy viscosity model.
The dimension of $K$ for different variables is displayed in \tablename~\ref{tab:bdncnd:diffusivity}.
The value of $C$ is $1$ for all the variables except for the temperature where $C$ is the specific heat $C_p$.
If the variable $\varia$ is the variance of another scalar, then its diffusivity
is deduced from the scalar itself.

\begin{table}
{\scriptsize
\begin{center}
\begin{tabular}{||l|l|l||l|l|l||}
\hline
\multicolumn{3}{||c||}{$\varia$}&\multicolumn{3}{|c||}{$K$}\\
\hline
symbol                            & name                              & units                    &
symbol                            & name                              & units                  \\
\hline
$u_i$                             & velocity                          & $m.s^{-1}$                &
$\mu$ or $\mu+\mu_t$              & dynamic viscosity                 & $kg.m^{-1}.s^{-1}$     \\
$P$                               & pressure                          & $kg.m^{-1}.s^{-2}$       &
$\Delta t$                     & time step                         & $s$                      \\
$T$                               & temperature                       & $K$                        &
$\lambda$                    & thermal conductivity              & $kg.m.s^{-3}.K^{-1}$ \\
                                  &                                   &                            &
                                  &                                   & $=W.m^{-1}.K^{-1}$\\
$h$                               & enthalpy                          & $m^{2}.s^{-2}$&
$\lambda/C_p$              & thermal conductivity over specific heat  & $kg.m^{-1}.s^{-1}$     \\
                                  &                                   & $=J.kg^{-1}$&
                                  &                                   &                          \\
$\varia$                     & variable                          & unit of ($\varia$)               &
$K  $                          & conductivity or diffusivity       & $kg.m^{-1}.s^{-1}$     \\
\hline
\end{tabular}
\end{center}
}
\caption{Definitions and units of $K$ for the most common equations.}\label{tab:bdncnd:diffusivity}
\end{table}

%-------------------------------------------------------------------------------
\subsection{Basic Dirichlet boundary conditions}\label{sec:bndcnd:dirichlet_bc}

Imposing a basic Dirichlet condition $\varia^{imp}_\fib$ on a boundary face $\fib$ is translated into:

\begin{equation}
\begin{array}{r c l}
\left\lbrace
\begin{array}{r c l}
A^g_\fib & = &\varia^{imp}_\fib , \\
B^g_\fib & = & 0,
\end{array}
\right.
 & &
\left\lbrace
\begin{array}{r c l}
A^f_\ib & = & -h_{int} \varia^{imp}_\fib, \\
B^f_\ib & = & h_{int}.
\end{array}
\right.
\end{array}
\end{equation}

The term $h_{int}$ is a internal coding coefficient (automatically provided by the code) similar to an exchange coefficient. Its value for particular variables is
given in \tablename~\ref{tab:bndcnd:hint_phi_condli}.

\begin{remark}
$\varia^{imp}_\fib$ must be specified by the user. The boundary type code is $1$ (see \tablename~\ref{tab:ICODCLadm_condli}).
\end{remark}


%-------------------------------------------------------------------------------
\subsection{Neumann boundary conditions}

Imposing a Neumann condition $D^{imp}_\ib$ on a boundary face $\fib$
 is translated into

\begin{equation}
\begin{array}{r c l}
\left\lbrace
\begin{array}{r c l}
A^g_\fib & = & - \dfrac{D^{imp}_\ib}{h_{int}} ,\\
B^g_\fib & = & 1,
\end{array}
\right.
& &
\left\lbrace
\begin{array}{r c l}
A^f_\ib & = & D^{imp}_\ib ,\\
B^f_\ib & = & 0 .
\end{array}
\right.
\end{array}
\end{equation}

\begin{remark}
$D^{imp}_\ib$ must be specified by the user. The boundary type code is $3$ (see \tablename~\ref{tab:ICODCLadm_condli}).
\end{remark}

%-------------------------------------------------------------------------------
\subsection{Mixed or Robin boundary conditions}
As explained in the introduction \ref{sec:bndcnd:intro}, the simple case of a heat flux $q_w$ from a solid wall reads: $q_w = \lambda \grad T \cdot \vect{n}_\ib = - \lambda \dfrac{T_\centip - T_\centf}{\overline{\centip \centf}} = -h_{int} \left( T_\centip - T_\centf \right)$ where $h_{int} = \dfrac{\lambda}{\overline{\centip \centf}}$ is displayed in \tablename~ \ref{tab:bndcnd:hint_phi_condli}.
As presented in \S~ \ref{sec:bndcnd:dirichlet_bc}, Dirichlet condition $T_\centf = T_w$ simply leads to $A^f = - h_{int} T_w$ and $B^f = h_{int}$.
In some cases, heat transfer outside the flow domain is described by a one-dimensional conduction equation $q = -h_{ext} \left(T_{REF} - T_w \right)$
in which some reference temperature $T_{REF}$ is given and the coefficient $h_{ext}$ is known from an analytical or experimental correlation.
Equaling this to the heat flux computed in the first fluid cell at the boundary gives $ h_{ext} \left(T_{REF} - T_w \right) = h_{int} \left( T_\centip - T_\centf \right)$. This relation between the variable and its gradient at the boundary is called a Robin or mixed boundary condition.

More generally, to impose an external Dirichlet $\varia^{imp, \, ext}$ at some distance outside the boundary face,
this is done by a user prescribed external coefficient $h_{ext}$
(see \figurename~\ref{fig:bndcnd:boundary_flux}), and the boundary condition coefficients then read:

\begin{equation}
\begin{array}{r c l}
\left\lbrace
\begin{array}{r c l}
A^g_\fib & = &\dfrac{h_{ext}}{h_{int}+h_{ext}} \varia^{imp, \, ext}, \\
B^g_\fib & = & \dfrac{h_{int}}{h_{int}+h_{ext}} ,
\end{array}
\right.
& &
\left\lbrace
\begin{array}{r c l}
A^f_\ib & = & -h_{eq} \varia^{imp, \, ext} , \\
B^f_\ib & = & h_{eq},
\end{array}
\right.
\end{array}
\end{equation}
where $h_{eq} $ is defined by $h_{eq}=\dfrac{h_{int} h_{ext}}{ h_{int} + h_{ext}}$.
The harmonic mean (as in \eqref{eq:spadis:harmonic_viscosity}) comes from summing of resistances instead of conductances.
Note that this case reduces to Dirichlet condition if $h_{ext}$ tends to the infinity.

\begin{remark}
Both $\varia^{imp, \, ext} $ and $ h_{ext} $ must be specified by the user. The boundary code is $1$ (see \tablename~\ref{tab:ICODCLadm_condli}). Take care that an outgoing flux is counted positively.
\end{remark}

%-------------------------------------------------------------------------------
\subsection{Convective outlet boundary conditions}\label{sec:bndcnd:convective_outlet}

If the user wishes to impose a convective outlet (also called radiative outlet) condition which reads:
\begin{equation}
\der{ \varia}{ t} + C \der{ \varia}{ n} = 0,
\end{equation}
where $C$ denotes the convective celerity, then the internal coding reads:

\begin{equation}
\begin{array}{r c l}
\left\lbrace
\begin{array}{r c l}
A^g_\fib & = & \dfrac{1}{1+ CFL} \varia^n_\fib ,\\
B^g_\fib & = & \dfrac{CFL}{1+ CFL},
\end{array}
\right.
& &
\left\lbrace
\begin{array}{r c l}
A^f_\ib & = &  -  \dfrac{h_{int}}{1+ CFL} \varia^n_\fib,\\
B^f_\ib & = &  \dfrac{h_{int}}{1+ CFL},
\end{array}
\right.
\end{array}
\end{equation}
where $CFL \equiv \dfrac{C \Delta t}{\overline{\centip \centf} }$.

\begin{remark}
Both $C$ and $\varia^n_\fib$ must be specified by the user, the boundary code is $2$ (see \tablename~\ref{tab:ICODCLadm_condli}).
\end{remark}

\begin{table}
%{\tiny
\begin{center}
\begin{tabular}{||l|l|l||l|l||}
\hline
\multicolumn{3}{||c||}{$\varia$} & \multicolumn{2}{c||}{$h_{int}$}     \\
\hline
symbol                        & name                        & units                    & homogeneous to                        & units           \\
\hline
$\vect{u}$                    & velocity                    & $m.s^{-1}$               &$\dfrac{\mu+\mu_t}{ \centip \centf}$   & $kg.m^{-2}.s^{-1}$       \\
$P$                           & pressure                    & $kg.m^{-1}.s^{-2}$       & $\dfrac{\Delta t}{ \centip \centf}$   & $s.m^{-1}$                \\
$T$                           & temperature                 & $K$                      &$\dfrac{\lambda+C_p\mu_t/\sigma_t}{ \centip \centf}$  &$kg.s^{-3}.K^{-1}$\\
                              &                             &                          &                                       & $W.m^{-2}.K^{-1}$\\
$h$                           & enthalpy                    & $m^{2}.s^{-2}$           &$\dfrac{\lambda+C_p\mu_t/\sigma_t}{ \centip \centf}$ &$kg.m^{-2}.s^{-1}$\\
                              &                             & $J.kg^{-1} $             &                                                            &                                  \\
$\varia$                      & scalar                      & unit of($\varia$)       &$\dfrac{K}{ \centip \centf}$      & $kg.m^{-2}.s^{-1}$       \\
\hline
\end{tabular}
\end{center}

\begin{center}
\begin{tabular}{||l|l|l||l|l||}
\hline
\multicolumn{3}{||c||}{$\varia$} & \multicolumn{2}{c||}{$D^{imp}$} \\
\hline
symbol     & name                & units         & homogeneous to             & units                                     \\
\hline
$\vect{u}$ & velocity            & $m.s^{-1}$         &$\left( (\mu+\mu_t)\,\gradv \vect{u} \right)\cdot \vect{n}$  & $kg.m^{-1}.s^{-2} $       \\
$p$        & pressure            & $kg.m^{-1}.s^{-2}$ &$\left( \Delta t \grad P \right) \cdot \vect{n}$             & $kg.m^{-2}.s^{-1}$                        \\
$T$        & temperature         & $K$                &$\left( (\lambda+C_p\mu_t/\sigma_t)\grad T\right) \cdot \vect{n} $ &$kg.s^{-3}$ \\
                 &                         &                                     &                                  &$W.m^{-2}$ \\
$h$          & enthalpy           & $m^{2}.s^{-2}$          &$\left( \lambda/C_p+\mu_t/\sigma_t) \grad H \right) \cdot \vect{n}$&$kg.s^{-3}$ \\
                 &                        & $J.kg^{-1}$               &                                                                                                               & $W.m^{-2}$  \\
$\varia$   & scalar               & unit of ($\varia$)       &$K \,\grad \varia \cdot \vect{n}$              & $kg.m^{-2}.s^{-1}.$ unit of ($\varia$)       \\
\hline
\end{tabular}
\end{center}
%}
\caption{Definitions and units of $h_{int}$ and $D^{imp}$ for the most common equations.}\label{tab:bndcnd:hint_phi_condli}
\end{table}


%-------------------------------------------------------------------------------
\section{Wall boundary conditions}\label{sec:clptur}

\hypertarget{wallboundary}{}

This section is dedicated to wall boundary conditions
 for the velocity, and any transported scalar (such as the temperature, the enthalpy, \emph{etc}.)
when a wall boundary value is prescribed and a wall function is set by the user. The dedicated boundary conditions of the turbulent variables ($k$, $\varepsilon$, $R_{ij}$) are detailed in \chaptername~ \ref{chapter:turbul}.
 Here is a link to the \doxygenfile{clptur_8f90.html}{programmers reference of the dedicated subroutine}.

Simplified balance analysis proves that the fluid velocity profile or the Temperature profile are
highly non-linear  for turbulent flows in the vicinity of walls.

The aim of wall functions is to model the vicinity of the wall by substituting the Dirichlet condition on the fluid velocity and on the scalars such as the temperature ($\vect{u}_\fib = \vect{v}_{wall}$, $T_\fib = T_{wall}$ where $\vect{v}_{wall}$ is the velocity of the wall and $T_{wall}$ is the temperature of the wall) by a Robin-type boundary condition linking the wall shear stress to the velocity of the fluid, and the
thermal wall flux to the temperature within the first cell.

%-------------------------------------------------------------------------------
\subsection{Velocity boundary condition for smooth walls and rough walls}
We assume it is projected onto the tangent plane to the wall (if it is not, then the code projects it).
The fluid velocity in the reference frame attached to the wall ("relative" velocity) projected to the wall writes
$\vect{u}^r _\centip \equiv \left(\tens{1} - \vect{n} \otimes \vect{n} \right)\cdot \left( \vect{u}_\centip - \vect{v}_{wall} \right)$.

The orthonormal coordinate system attached to the wall writes
$\hat {\mathcal R}=(\vect{t}, \, -\vect{n}, \, \vect{b})$:
%
\begin{itemize}
\item [$\bullet$] $\vect{t} = \displaystyle\frac{ \vect{u}^r_{\centip} }{ \norm{ \vect{u}^r_{\centip} }}$ is the unit vector parallel to the projection of the relative velocity at $\centip$, $\vect{u}^r_{\centip}$, in the plane tangent to the wall
 (\emph{i.e.} orthogonal to $\vect{n}$),
\item [$\bullet$] $-\vect{n}$ is the unit vector orthogonal to the wall and directed towards the interior of the computational domain,
\item[$\bullet$] $\vect{b}$ is the unit vector which completes the positively oriented coordinate system.
\end{itemize}
In this reference-frame the wall distance of the cell centre to the wall $\overline{\centip \centf}$ is denoted by $y$.

The objective of wall functions
is to increase the exchange coefficient
 to reflect the higher level of mixing effectively taking place in the near wall cell due to
turbulence and due to effectively much sharper gradients of the computed variable than the
linear profile assumed inside each cell by Finite Volumes discretisation. The end result (Cf \eqref{eq:bndcnd:boundary_condition_wall_function}) will
be to correct the laminar coefficient, $h_{int} = \lambda / y $, by a dimensionless analytical function (a
"wall function") $u^+$ that represents the realistic non-linear profile. The correction is moreover
proportional to the cell centre to wall dimensionless distance, $y^+$, over which a linear profile
assumption may or may not be appropriate.
These functions $u^+$ and $y^+$ that depends on the level of turbulent kinetic energy,
are made dimensionless by:
\begin{itemize}
\item either the wall shear stress $\tau_{wall}$ only (this is called "one scale friction velocity" wall function),
\item or by the wall shear stress $\tau_{wall}$ and the turbulent kinetic energy (this is called "two friction velocity scales").
\end{itemize}

When the mesh is made fine enough to capture the sharp variations of the variables near the
wall, wall functions are no longer needed, variables are simply given Dirichlet values at the
wall and the laminar exchange coefficient is correct. However the more basic versions of the
turbulence models ("high Reynolds" $k-\varepsilon$ or Reynolds stress transport) will not be able to
automatically "relaminarise" (\emph{i.e.} reduce the turbulent mixing effect to zero at the correct rate
of decay as y tends toward $0$) and erroneous predictions will result (generally too much friction
or heat transfer).
When using a refined near wall mesh, "down to the wall" or "low Reynolds" versions of the
turbulence models must be selected (\emph{e.g.} $v^2-f$ or elliptic blending models). However in this
case one must make sure the mesh is fine enough.

To allow use of standard high Reynolds models whatever the mesh density,
"scalable wall functions" can be activated. This consist in shifting slightly the
wall outside of the mesh if the first cell lies in the viscous sub-layer. "Scalable wall function"
only work with the "two friction velocity scales" version.

The wall functions are usually derived from Eddy Viscosity Models such as $k-\varepsilon$, thus the coming sections
assume that $\tens{R} = \dfrac{2}{3}k \tens{1} - 2\nu_T \deviator{\tens{S}}$.


%-------------------------------------------------------------------------------
\subsubsection{One friction velocity scale}\label{sec:bndcnd:1velocityscales}

The simplified momentum balance in the first boundary cell reads:
\begin{equation}\label{eq:bndcnd:simplified_momentum_evm}
\left( \mu + \mu_T \right) \dfrac{\partial u}{\partial y} = \tau_{wall}.
\end{equation}

Let $u^\star$ be the friction velocity defined by:
\begin{equation}\label{eq:bndcnd:ustar_1scale_def}
u^\star \equiv \sqrt{ \dfrac{\tau_{wall}}{\rho}},
\end{equation}
%
the equation \eqref{eq:bndcnd:simplified_momentum_evm} can be rewritten:
%
\begin{equation}\label{eq:bndcnd:simplified_momentum_evm_adim}
\left( 1 + \dfrac{\mu_T}{ \mu} \right) \dfrac{\partial u^+}{\partial y^+} = 1,
\end{equation}
where $u^+ \equiv \norm{ \vect{u}^r_{\centip} } / u^\star$ and $ y^+ \equiv y u^\star / \nu$.

The mixing length model states $\nu_T = L_m^2 S $, where the stain rate $S$ reduces to $ \frac{\partial u^r_{\centip} }{\partial y} $ in the wall vicinity.
The mixing length is proportional to the wall distance according to the Prandtl model
\begin{equation}\label{eq:bndcnd:prandtl_model}
L_m = \kappa y,
\end{equation}
where $\kappa = 0.42$ is the Karman constant.

Two areas are therefore defined, one where $ \mu_T/\mu  \ll 1$ called the viscous sub-layer where $\mu_T/\mu $ is neglected in \eqref{eq:bndcnd:simplified_momentum_evm_adim} the velocity profile is found to be linear:
%
\begin{equation}\label{eq:bndcnd:linear_profile}
u^+ = y^+,
\end{equation}
%
the other where $ \frac{\mu_T}{\mu}  \gg 1$ and the velocity profile becomes logarithmic:
\begin{equation}\label{eq:bndcnd:log_profile}
u^+ = \dfrac{1}{\kappa} \ln \left( y^+\right) + C_{log},
\end{equation}
where $C_{log}=5.2$.

\eqref{eq:bndcnd:linear_profile} is valid for $y^+<5$ and \eqref{eq:bndcnd:log_profile} for $y^+>30$ so there is a gap (corresponding to the so called buffer
layer) which more sophisticated models can cover, but they are not detailed here. Instead we
introduce a dimensionless
 limit distance which crudely separates the viscous sub-layer from the logarithmic region writes $y^+_{lim}$. Its value is $1/ \kappa$ in general (to ensure the continuity of the velocity gradient) and $10.88$ in LES (to ensure the continuity of the velocity).

The $u^\star$ is computed by iteratively solving\eqref{eq:bndcnd:linear_profile} or \eqref{eq:bndcnd:log_profile}:

\begin{equation}
\begin{array}{r c l c l}
u^\star &=& \sqrt{ \dfrac{\norm{ \vect{u}^r_{\centip} } \nu }{ y } } & \textrm{ if } & \dfrac{\norm{ y \, \vect{u}^r_{\centip} }}{\nu} < y^{+\, 2}_{lim}, \\
%
\left\lbrace
\begin{array}{r c l}
\left( u^\star \right)^{0} &=& \exp \left( - \kappa C_{log}\right) \dfrac{\nu}{y} \\
 \left( u^\star \right)^{q+1} &=& \dfrac{ \kappa \norm{ \vect{u}^r_{\centip} } + \left( u^\star \right) ^{q} }{ \ln \left( \dfrac{y \left( u^\star \right) ^{q} }{ \nu} \right) + \kappa C_{log} +1 }.
\end{array}
\right.
& \textrm{ otherwise}& \textrm{solve iteratively in $q$}
\end{array}
\end{equation}

Therefore, the value of $\frac{y^+}{u^+}$ in the two layers reads:
\begin{equation}\label{eq:bndcnd:ypup_1scale}
\left\lbrace
\begin{array}{r c l l}
\dfrac{y^+}{u^+} &=& 1 & \textrm{if } y^+ < y^+_{lim}, \\
\dfrac{y^+}{u^+} &=& \dfrac{y^+}{ \dfrac{1}{\kappa} \ln \left( y^+\right) + C_{log}} & \textrm{otherwise}.
\end{array}
\right.
\end{equation}

%-------------------------------------------------------------------------------
\subsubsection{Two friction velocity scales}\label{sec:bndcnd:2velocityscales}

The simplified momentum balance \eqref{eq:bndcnd:simplified_momentum_evm} still holds, but is non-dimensioned not only
by the wall shear stress but also the turbulent kinetic energy. More precisely, let $u_k = \sqrt{\sqrt{C_\mu} k }$ be the friction velocity based on
the turbulent kinetic energy in the first cell.

This definition is in fact valid only for high-$y^+$ values and a blending is performed in case of the intensity of turbulence is very low:
\begin{equation}\label{eq:def_uk}
u_k \equiv \sqrt{ g  \dfrac{\nu \norm{ \vect{u}^r_{\centip}}}{y} + \left(1-g\right)\sqrt{C_\mu}k },
\end{equation}
where $g$ is a blending factor defined by $g = \exp \left(- \dfrac{\sqrt{k} y}{11 \nu} \right)$ (see \cite{}).

The friction velocity $u^\star $ is now defined by:
\begin{equation}\label{eq:bndcnd:ustar_2scale2_def}
u^\star \equiv  \dfrac{\tau_{wall}}{\rho u_k}.
\end{equation}

Equation \eqref{eq:bndcnd:simplified_momentum_evm} can now be rewritten:
%
\begin{equation}\label{eq:bndcnd:simplified_momentum_evm_2scales}
\left( 1 + \dfrac{\mu_T}{ \mu} \right) \dfrac{\partial u^+}{\partial y^+_k} = 1,
\end{equation}
where $u^+ \equiv \frac{\norm{ \vect{u}^r_{\centip} }}{u^\star}$ but $ y^+_k \equiv \frac{y u_k}{ \nu}$.

Let us now remark that $\nu_T = C_\mu^{\frac{1}{4}}\sqrt{k}  C_\mu^{\frac{3}{4}} \dfrac{k^{\frac{3}{2}}}{\epsilon} = u_k L_m $ where
$L_m = C_\mu^{\frac{3}{4}} \dfrac{k^{\frac{3}{2}}}{\epsilon}$ is the integral length scale. Again using the Prandtl model \eqref{eq:bndcnd:prandtl_model},
the following equation is obtained:
%
\begin{equation}\label{eq:bndcnd:simplified_momentum_evm_adim_2scales}
\left( 1 + \kappa y_k^+ \right) \dfrac{\partial u^+}{\partial y^+_k} = 1.
\end{equation}

The two areas defined in the previous section \eqref{eq:bndcnd:ypup_1scale} that are the viscous sub-layer and the logarithmic layer still hold, but with $y^+_k$ instead of $y^+$:
%
\begin{equation}\label{eq:bndcnd:ypup_2scale}
\left\lbrace
\begin{array}{r c l l}
\dfrac{y^+_k}{u^+} &=& 1 & \textrm{if } y^+_k < y^+_{lim}, \\
\dfrac{y^+_k}{u^+} &=& \dfrac{y^+_k}{ \dfrac{1}{\kappa} \ln \left( y^+_k\right) + C_{log}} & \textrm{otherwise}.
\end{array}
\right.
\end{equation}

%-------------------------------------------------------------------------------
\subsubsection{Rough wall functions}\label{sec:bndcnd:2velocityscales}
When specifying a rough wall function with $z_0$ as roughness, the value of $\frac{y^+}{u^+}$ reads:
\begin{equation}\label{eq:bndcnd:ypup_rough}
\dfrac{y^+}{u^+} = \dfrac{y^+}{ \dfrac{1}{\kappa} \ln \left( \dfrac{y+z_0}{z_0}\right) + C_{log}}.
\end{equation}



%-------------------------------------------------------------------------------
\subsubsection{Wall shear stress with wall functions}
The previous sections can be summarized as follows:

\begin{equation}
\tens{\tau} \cdot \vect{n} = \dfrac{\mu}{\overline{\centip \centf} } \dfrac{y^+}{u^+} \left(\tens{1} - \vect{n} \otimes \vect{n} \right) \cdot \left(\vect{u}_\centip - \vect{u}_{wall} \right)
\end{equation}
%
where the rescaling factor $\frac{y^+}{u^+}$ depends on the wall function is given in \eqref{eq:bndcnd:ypup_1scale} or \eqref{eq:bndcnd:ypup_2scale}. Note that the wall shear stress is therefore parallel to the wall and fully implicit if the $\theta$-scheme on the velocity is implicit.

The internal pair of boundary condition coefficient for the diffusive term for the velocity are
\begin{equation}\label{eq:bndcnd:boundary_condition_wall_function}
\left\lbrace
\begin{array}{r c l}
\vect{A}^f_\ib & = & -h_{fluid}  \left(\tens{1} - \vect{n} \otimes \vect{n} \right) \cdot  \vect{u}_{wall}
 - h_{int} \left( \vect{n} \cdot \vect{u}_{wall}  \right) \vect{n}
, \\
\tens{B}^f_\ib & = & h_{fluid}  \left(\tens{1} - \vect{n} \otimes \vect{n} \right)
+ h_{int} \vect{n} \otimes \vect{n}
,
\end{array}
\right.
\end{equation}
where
\begin{equation}
h_{fluid} = \dfrac{\mu}{\overline{\centip \centf} } \dfrac{y^+}{u^+}.
\end{equation}

%-------------------------------------------------------------------------------
\subsubsection{Velocity gradient boundary condition with wall functions}
The gradient of the fluid velocity is of great importance for turbulence models
as it appears in the production term.
Moreover the profile of dissipation is even less linear than $u^+$ (it is
hyperbolic) and would also require a wall function. A common correction in open literature is
to directly modify these source term in the near wall cell volume integral. However this deeply
modifies the code structure and the linear system solver. In order to implement this while still
remaining within the standard boundary condition structure, ther current code version follows
the suggestion of \cite{BouckerMattei:2000} which consists in prescribing a slip velocity at the wall so
that the velocity gradient evaluated inside the cell by the
standard Finite Volumes linear profile is more consistent with wall
function.

A dedicated boundary condition for the velocity gradient is therefore derived
in presence of wall function to be consistent with the logarithmic law giving
the ideal tangential velocity profile.

On the first hand, the theoretical gradient is:

\begin{equation}\label{eq:bndcnd:vel_grad_wallf_theo}
\left( \dfrac{\partial u^r}{\partial y}\right)_{I'}^\textrm{theo} =\dfrac{u^\star}{\kappa \, y}
\end{equation}

On the other hand,
the normal finite volumes gradient of the tangential velocity reduces in the case
of a regular orthogonal mesh  (see notations in \figurename~
\ref{fig:bndcnd:boundary_cell_ortho_mesh}):
\begin{equation}\label{eq:bndcnd:vel_grad_wallf_calc}
\left( \dfrac{\partial u^r}{\partial y}\right)_{\centip}^\textrm{calc} = \dfrac{u_{G}^r - u_{F}^r}{2y} =
 \dfrac{\dfrac{u_{\centi}^r+u_{\centj}^r}{2} -  u_{\centf}^r}{2y}
\end{equation}

\begin{figure}[!htbp]
\centering
\includegraphics[width=0.7\textwidth]{bordortho}
\caption{\label{fig:bndcnd:boundary_cell_ortho_mesh}Boundary cell - Orthogonal mesh.}
\end{figure}

We then assume that $u_{\centj}^r$ can be obtained from $u_{\centi}^r$
and from the gradient of $u^r$ calculated in $G$
from the logarithmic law
$u_{\centj}^r = u_{\centi}^r +2y \displaystyle\dfrac{u^\star}{\kappa\, 2y}$ and we thus
obtain equalizing \eqref{eq:bndcnd:vel_grad_wallf_theo} and \eqref{eq:bndcnd:vel_grad_wallf_calc}
 (the formula is extended without any precaution to non-orthogonal meshes):
%
\begin{equation}
u_{\centf}^r = u_{\centip}^r -  \dfrac{3 u^\star}{2\kappa }
\end{equation}
The normal derivative at the wall is prescribed to zero.
If the value obtained for $y^+$ at the wall is lower than $y^+_{lim}$,
a no-slip condition is prescribed. Finally, one can also
make explicit the velocity of the wall in the final expression:
%
The internal pair of boundary condition coefficient for the diffusive term for the velocity are
\begin{equation}
\left\lbrace
\begin{array}{r c l}
\vect{A}^g_\ib & = & \left( 1-cofimp \right) \left(\tens{1} - \vect{n} \otimes \vect{n} \right) \cdot  \vect{u}_{wall} + \left(\vect{u}_{wall} \cdot \vect{n} \right) \vect{n}, \\
\tens{B}^g_\ib & = & cofimp \left(\tens{1} - \vect{n} \otimes \vect{n} \right) ,
\end{array}
\right.
\end{equation}
where $cofimp = 1 - \dfrac{3}{2 \kappa u^+}$ if $y^+ > y^+_{lim}$, and $cofimp = 0$ otherwise.

%-------------------------------------------------------------------------------
\subsection{Scalar boundary condition for smooth walls}

In this section, the wall functions applied to transported scalars $\varia$ (such as the temperature $T$ for instance)
are described.
The reference "Convection Heat Transfer",
Vedat S. Arpaci and Poul S. Larsen, Prentice-Hall, Inc was used.
The approach is really similar to what is performed on the fluid velocity:
\begin{itemize}
\item if the wall value $\varia_{wall}$ is imposed, the Dirichlet boundary condition is
substituted by a Robin-type one where the diffusive flux is function of the cell centre scalar value,
\item if a Neumann value is imposed (that is to say that the user has prescribed the flux of $\varia$), then the wall
function is used to evaluate the corresponding wall value $\varia_{wall}$ which is displayed by the code.
\end{itemize}

 Let us recall that $q_\ib \left( K_\fib , \, \varia \right) $ is the wall diffusive flux for the scalar $\varia$,
 and the simplified scalar balance reads:
\begin{equation}\label{eq:bndcnd:wall_diffuive_flux_balance}
q_\ib \left( K_\fib , \, \varia \right)  =
-\left(K_\fib + C\,\frac{\mu_T}{\sigma_T}\right)
                  \dfrac{\partial \varia}{\partial y}
\end{equation}

\begin{remark}
the flux is positive
if it enters the fluid domain, as shown by the orientation of the
$y$ axis
\end{remark}

The following considerations are presented using the general notations.
In particular, the Prandtl-Schmidt number writes
$\sigma=\displaystyle\dfrac{\mu \,C}{K}$.
When the considered scalar $\varia$ is the temperature $T$,
we have
\begin{itemize}
\item $C=C_p$ (specific heat capacity),
\item $K=\lambda$ (molecular conductivity),
\item hence, $\sigma = \displaystyle\frac{\mu \,C_p}{\lambda} = Pr$
       (Prandtl number),
\item $\sigma_T = Pr_T$ (turbulent Prandtl number),
\item $q_\ib = \dfrac{D_\ib \left( \lambda_\fib , \, T \right)}{\norm{\vect{S}}_\fib} =\left(\lambda+\displaystyle\frac{C_p \mu_T}{\sigma_T}\right)
        \displaystyle \dfrac{\partial T}{\partial y}$ (flux in $W.m^{-2}$).
\end{itemize}


In order to make \eqref{eq:bndcnd:wall_diffuive_flux_balance} dimensionless,
we introduce $\varia^\star$ defined using
the flux at the boundary  $q_\ib$:
\begin{equation}\label{eq:bndcnd:def_varia_star}
\varia^\star \equiv -\displaystyle \dfrac{q_\ib}{\rho\,C\,u_k}
\end{equation}
For the temperature, we thus have:
\begin{equation}\label{eq:bndcnd:def_T_star}
T^\star \equiv -\displaystyle\frac{q_\ib}{\rho\,C_p\,u_k}
\end{equation}

We then divide both sides of equation \eqref{eq:bndcnd:wall_diffuive_flux_balance}
by $q_\ib$ and after some algebrae it comes:
\begin{equation}\label{eq:bndcnd:scalar_flux_adim}
1 =  \left(\displaystyle\frac{1}{\sigma}+
              \displaystyle\frac{1}{\sigma_T}\dfrac{\nu_T}{\nu}\right)
                  \displaystyle\dfrac{\partial \varia^+}{\partial y^+}
\end{equation}
%
where
\begin{equation}
       \nu=\displaystyle \dfrac{\mu}{\rho}
\qquad \nu_T=\displaystyle\dfrac{\mu_T}{\rho}
\qquad y^+=\displaystyle\dfrac{y\,u_k}{\nu}
\qquad \varia^+=\displaystyle \dfrac{\varia-\varia_{wall}}{\varia^\star}
\end{equation}

%-------------------------------------------------------------------------------
\subsection{The three layers wall function of Arpaci and Larsen}

In order to compute the theoretical scalar profile, we integrate
equation \eqref{eq:bndcnd:scalar_flux_adim} to obtain
$\varia^+_{\centip}$.
The only difficulty then consists in prescribing a variation law of
$\mathcal{K}=\displaystyle\frac{1}{\sigma}+ \displaystyle\frac{1}{\sigma_T}\frac{\nu_T}{\nu}$.

In the fully developed turbulent region
(far enough from the wall, for $y^+\geqslant y^+_2$),
a mixing length hypothesis models the variations of
$\nu_T$:
\begin{equation}
\nu_T = \kappa \,y\,u_k
\end{equation}
Additionally, the molecular diffusion of $\varia$
(or the conduction when $\varia$ represents the temperature)
is negligible compared to its turbulent diffusion: therefore
we neglect
$\displaystyle\frac{1}{\sigma}$ compared to
$\displaystyle\frac{1}{\sigma_T}\frac{\nu_T}{\nu}$.
Finally we have:
\begin{equation}
\mathcal{K}= \displaystyle\frac{\kappa \,y^+}{\sigma_T}
\end{equation}

On the contrary, in the near-wall region (for $y^+ < y^+_1$)
the turbulent contribution becomes negligible
compared to the molecular contribution and we thus neglect
$\displaystyle\frac{1}{\sigma_T}\frac{\nu_T}{\nu}$ compared to
$\displaystyle\frac{1}{\sigma}$.

It would be possible to restrict ourselves to these
two regions, but Arpaci and Larsen suggest the model
can be improved by introducing an intermediate
region ($y^+_1 \leqslant y^+ < y^+_2$)
in which the following hypothesis is made:
\begin{equation}
\frac{\nu_T}{\nu} = a_1 \left( y^+ \right)^3
\end{equation}
where $a_1$ is a constant whose value is obtained from
experimental correlations:
\begin{equation}
a_1 =\displaystyle\frac{\sigma_T}{1000}
\end{equation}

Thus the following model is used for $\mathcal{K}$
(see a sketch
in \figurename~ \ref{fig:bndcnd:3layer_temperature_wall_function}):
\begin{equation}
\mathcal{K}=\left\{
\begin{array}{ll}
\displaystyle\frac{1}{\sigma}
             &\text{if } y^+ < y^+_1\\
\displaystyle\frac{1}{\sigma}
+\displaystyle\frac{a_1 (y^+)^3}{\sigma_T}
             &\text{if } y^+_1 \leqslant y^+ < y^+_2\\
\displaystyle\frac{\kappa \,y^+}{\sigma_T}
             &\text{if } y^+_2\leqslant y^+\\
\end{array}
\right.
\end{equation}

\begin{figure}[!htp]
\centering
\includegraphics[width=0.8\textwidth]{clthermique}
\caption{$\frac{1}{\sigma} + \frac{1}{\sigma_T}\frac{\nu_T}{\nu} $ as a function of $y^+$ obtained
 for $\sigma=1$ and $\sigma_T=1$. \label{fig:bndcnd:3layer_temperature_wall_function}}
\end{figure}

The values of $y^+_1$ and $y^+_2$ are obtained by calculating
the intersection points of the variations laws used
for $\mathcal{K}$.

The existence of an intermediate region depends upon the
values of $\sigma$.
Let's first consider the case where $\sigma$ cannot be neglected
compared to $1$. In practise we consider  $\sigma > 0,1$
(this is the common case when scalar $\varia$ represents
the air or the water temperature in normal temperature
and pressure conditions). It is assumed that
$\displaystyle\dfrac{1}{\sigma}$ can be neglected compared to
$\displaystyle\dfrac{a_1 (y^+)^3}{\sigma_T}$ in the
intermediate region.
We thus obtain:
\begin{equation}
  y^+_1 =\left(\displaystyle\frac{1000}{\sigma}\right)^\frac{1}{3} \qquad\qquad
  y^+_2 = \sqrt{\displaystyle\frac{1000\kappa}{\sigma_T}}
\end{equation}
The dimensionless equation \eqref{eq:bndcnd:scalar_flux_adim}
is integrated under the same hypothesis and we obtain the law of $\dfrac{y^+}{\varia^+}$:
\begin{equation}\label{eq:bndcnd:wallfunctions_t_3layers}
\left\{
\begin{array}{ll}
\dfrac{y^+}{\varia^+} = \dfrac{1}{\sigma} & \text{if } y^+ < y^+_1 \\
\dfrac{y^+}{\varia^+} = \dfrac{y^+}{a_2 -\displaystyle\frac{\sigma_T}{2\,a_1\,(y^+)^2}}& \text{if } y_1^+ \leqslant y^+ < y_2^+ \\
\dfrac{y^+}{\varia^+} = \dfrac{y^+}{\dfrac{\sigma_T}{\kappa}\,\ln \left(y^+ \right)+a_3} & \text{if } y^+_2 \leqslant y^+
\end{array}
\right.
\end{equation}
where $a_2$ and $a_3$ are integration constants,
which have been chosen to obtain
a continuous  profile of $\varia^+$:
\begin{equation}
a_2=15\sigma^{\frac{2}{3}}\qquad\qquad
a_3=15\sigma^{\frac{2}{3}}-\displaystyle\frac{\sigma_T}{2\kappa}
\left(1+
\ln \left(\displaystyle\frac{1000\kappa}{\sigma_T}\right)\right)
\end{equation}

Let's now study the case where  $\sigma$ is much smaller than $1$.
In practise it is assumed that $\sigma \leqslant 0.1$ (this is for
instance the case for liquid metals whose thermal conductivity is very
large, and who have Prandtl number of values of the order of $0.01$).
The intermediate region then disappears and the coordinate of the
interface between the law used in the near-wall region and the one
used away from the wall is given by:
\begin{equation}
y^+_0= \displaystyle\frac{\sigma_T}{\kappa\sigma}
\end{equation}

The dimensionless equation \eqref{eq:bndcnd:scalar_flux_adim}
is then integrated under the same hypothesis, and the law of
 $\varia^+$ is obtained:
\begin{equation}\label{eq:bndcnd:wallfunctions_t_2layers}
\left\{
\begin{array}{ll}
\dfrac{y^+}{\varia^+} = \dfrac{1}{\sigma} & \text{if } y^+ \leqslant y^+_0 \\
\dfrac{y^+}{\varia^+} = \dfrac{y^+}{\displaystyle\frac{\sigma_t}{\kappa}\,
        \ln\left(\displaystyle\frac{y^+}{y^+_0}\right)+\sigma \,y^+_0}
                   & \text{if } y^+_0 < y^+
\end{array}
\right.
\end{equation}

%-------------------------------------------------------------------------------
\subsubsection{Wall diffusive flux with wall functions}
The previous sections can be summarized as follows:

\begin{equation}
q_\ib = -\dfrac{C \mu}{\overline{\centip \centf} } \dfrac{y^+}{\varia^+} \left(\varia_\centip - \varia_{wall} \right)
\end{equation}
%
where the rescaling factor $\frac{y^+}{\varia^+}$ depends on the wall function is given in \eqref{eq:bndcnd:wallfunctions_t_3layers} if $\sigma >0.1$ or \eqref{eq:bndcnd:wallfunctions_t_2layers} if $\sigma \leq 0.1$.

The internal pair of boundary condition coefficient for the diffusive term for the variable $\varia $ are
\begin{equation}
\left\lbrace
\begin{array}{r c l}
A^f_\ib & = & -h_{fluid} \varia_{wall}, \\
B^f_\ib & = & h_{fluid},
\end{array}
\right.
\end{equation}
where $h_{fluid} = \dfrac{C \mu}{\overline{\centip \centf} } \dfrac{y^+}{\varia^+} $.

%-------------------------------------------------------------------------------
\subsection{Outlet boundary condition on the pressure}\label{sec:bndcnd:outlet_pressure}

In this section the boundary condition on the pressure at the outlet is detailed. Some
assumptions are made to derive this boundary condition which consists of a Dirichlet
(combined with a homogeneous Neumann on the velocity) based on the pressure field
at the previous time step.
On basic configurations such as a channel or a pipe where the outlet is orthogonal
to the flow, the shape of the pressure profile in a surface parallel to the outlet is
approximately the shape of the pressure profile at the outlet. This hypothesis
is valid for established flows, far from any perturbation. In this configuration
one can write:

\begin{equation*}
\displaystyle\frac{\partial^2 P}{\partial n \partial \tau } = 0,
\end{equation*}
where $\vect{n}$ is the outward normal vector and  $\vect{\tau}$ is any
vector in the boundary face.

Then remark that the value at the boundary face $\fib$ is linked
to the pressure value in $\centip$ by the relationship:
\begin{equation*}
P_\fib = P_{\centip} +  \grad_\celli P \cdot \vect{\centip\centf}.
\end{equation*}
If moreover we assume that the pressure gradient in the normal direction
is uniform, and that all the $\centip$ related to the outlet faces are on
a single plane parallel to the outlet, then the value of $ \grad_\celli P \cdot \vect{\centip\centf} $
is constant for all the faces and denoted $R$.

Furthermore, the pressure is defined up to a constant, so the code
chooses to fix the pressure at $P_0$ to a given outlet boundary face
$\fib^{imp}$. Therefore the pressure field is shifted  by the constant
$R_0=P_0- P_\fib^{imp} = P_0 - \left( P_{\centip}^{imp}+R \right)$.

All that together gives
\begin{equation}
\begin{array}{rcl}
P_\fib
   &=& P_{\centip}+R+R_0,\\
   &=& P_{\centip}+R+P_0- \left( P_{\centip}^{imp}+R \right),\\
   &=&P_{\centip} +\underbrace{P_0-P_{\centip}^{imp}}_{\text{constant denoted by $\widetilde{R}$}} ,\\
   &=&P_{\centip} + \widetilde{R}.
\end{array}
\end{equation}

To conclude, the outlet boundary condition on the pressure is a Dirichlet based on
the value in $\centip$ (at the previous time step) and shifted to impose
the value $P_0$ at a given face $\fib$.

%-------------------------------------------------------------------------------
\subsection{Free inlet/outlet boundary condition on the pressure increment}\label{sec:bndcnd:inlet_bernoulli_pressure}

In this section the boundary condition on the pressure increment at the free inlet is detailed.
For the other variables (even the pressure itself), the treatment is similar to \S \ref{sec:bndcnd:outlet_pressure}.

Let us start with the Bernoulli relationship between a boundary face $\face$ linked to a point on the same
stream line far away from the computational domain:
\begin{equation}\label{eq:bndcnd:benoulli_inlet}
P_\face - \rho_\face \vect{g} \cdot  \left( \vect{x}_\face - \vect{x}_0 \right) + \dfrac{1+K}{2}\rho_\face \vect{u}_\face \cdot \vect{u}_\face  = P_\infty - \rho_\infty \vect{g} \cdot \left(  \vect{x}_\infty
- \vect{x}_0 \right)
+ \dfrac{1}{2}\rho_\infty \vect{u}_\infty \cdot \vect{u}_\infty,
\end{equation}
where $K$ is a possible head loss of the fluid between the infinity and the boundary face entrance
(which the user may play with to model the non-computed domain).

Assuming that the stream line is horizontal, that the density is constant over the stream line and that the fluid velocity is zero
at the infinity, the Equation \eqref{eq:bndcnd:benoulli_inlet} becomes:
\begin{equation}\label{eq:bndcnd:benoulli_inlet_simple}
P_\face^\star =- \dfrac{1+K}{2} \rho_\face \vect{u}_\face \cdot \vect{u}_\face ,
\end{equation}
where we recall that $P^\star$ is the dynamic pressure.

For stability reasons, the Equation \eqref{eq:bndcnd:benoulli_inlet_simple} is implicit in time as follows:
\begin{equation}\label{eq:bndcnd:benoulli_inlet_time}
P_\face^{\star, n+1} =- \dfrac{1+K}{2} \rho_\face \vect{u}^{n}_\face \cdot \vect{u}^{n+1}_\face.
\end{equation}
This implicitation is crucial to make the calculations stable.

The prediction-correction velocity-pressure coupling algorithm requires boundary conditions on the pressure increment
(computed in the correction step), and therefore
relation \eqref{eq:bndcnd:benoulli_inlet_time} is derived to obtain boundary conditions on the pressure increment. Recall that the
correction step reads:
 \begin{equation}\label{eq:bndcnd:correction_step}
\dfrac{\left( \rho \vect{u} \right)^{n+1} - \left( \rho^n \widetilde{\vect{u}} \right)}{\Delta t} = - \grad \delta P,
\end{equation}
the pressure increment $ \delta P = P^{\star, n+1} - P^{\star, n}$ at the face is consequently given by:
 \begin{equation}\label{eq:bndcnd:pressure_increment}
\delta P_\face = -P^{\star, n}_\face - \dfrac{1+K}{2} \rho_\face \vect{u}^{n}_\face \cdot \left( \widetilde{\vect{u}} - \dfrac{\Delta t}{\rho} \grad \delta P \right)_\face.
\end{equation}


Neglecting the tangencial velocity component at the entering faces ($\left(\rho \vect{u} \right)^n_\face \simeq \left(\rho \vect{u} \right)^n_\face \cdot \vect{n} \, \vect{n} = \dfrac{ \dot{m}_\face }{\norm{S}_\face} \vect{n} $) and approximating $P^{\star, n}_\face$ with its cell-center value, Equation \ref{eq:bndcnd:pressure_increment} reads:
%
 \begin{equation}\label{eq:bndcnd:pressure_increment_simple}
\delta P_\face = -P^{\star, n}_\celli - \dfrac{1+K}{2} \dfrac{ \dot{m}_\face }{\norm{S}_\face}
\left( \widetilde{\vect{u}} \cdot \vect{n}
- \dfrac{\Delta t}{\rho} \der{\delta P }{n} \right)_\face.
\end{equation}
Noting that $  \left. \der{\delta P }{n} \right|_{\face} = \dfrac{\delta P_\face -  \delta P_\celli }{\overline{\centip \centf}}$,  \eqref{eq:bndcnd:pressure_increment_simple} is rewritten as:
\begin{equation}\label{eq:bndcnd:pressure_increment_coefs_bernoulli}
\delta P_\face = A^g_{\delta P} + B^g_{\delta P} \delta P_\celli,
\end{equation}
with:
\begin{equation}\label{eq:bndcnd:pressure_increment_coefs_bernoulli_A_B}
\begin{array}{r c l}
 A^g_{\delta P}  & = & \dfrac{1}{1 + CFL} \left( - P^{\star, n}_\celli - \dfrac{1+K}{2} \dfrac{ \dot{m}_\face }{\norm{S}_\face}
\widetilde{\vect{u}}_\face \cdot \vect{n}
  \right), \\
 B^g_{\delta P} & = & \dfrac{CFL}{1 + CFL} ,
\end{array}
\end{equation}
where the $CFL$ is defined as:
\begin{equation}\label{eq:bndcnd:pressure_increment_coefs_bernoulli_A_B}
CFL = - \dfrac{1+K}{2} \dfrac{\Delta t \dot{m}_\face }{ \rho_\face \norm{S}_\face}.
\end{equation}
%
\begin{remark}
$CFL$ is a positive quantity for ingoing flows, which ensures stability.
\end{remark}
\begin{remark}
The formulation \eqref{eq:bndcnd:pressure_increment_coefs_bernoulli_A_B} is nothing else but
a convective outlet on the pressure increment (see \S \ref{sec:bndcnd:convective_outlet}).
\end{remark}

%-------------------------------------------------------------------------------
\subsubsection{Checking step}

 Before computing the pairs of boundary condition coefficients, a step of checking is performed. Basically,
the code checks that the user has given a boundary condition to all boundary faces, and that
the setting between all the variables is compatible (see \tablename~\ref{tab:ICODCLadm_condli}).



\begin{table}
%{\tiny
\begin{center}
\begin{tabular}{||c|c||p{0,6cm}|p{0,6cm}|p{0,6cm}|p{0,6cm}|p{0,6cm}|p{0,6cm}|p{0,6cm}||}
\hline
\multicolumn{2}{||c||}{Variable}
        &\multicolumn{7}{c||}{Admissible Values}\\
\hline
Velocity                                & $\vect{u}$                                                                         &  1& 2& 3& 4& 5& 6& 9 \\
Pressure                                & $P$                                                                                   &  1& 2& 3&  &  & & \\
Scalar turbulent variables     & $k$, $\varepsilon$, $\varphi$, $\bar{f}$, $\omega$        &  1& 2& 3&  & 5& 6& \\
Reynolds stresses                & $R_{ij}$                                                                              &  1& 2& 3& 4& 5& 6& \\
$\varia$ (except variances)  &  $\varia$                                                                           &  1& 2& 3&  & 5& 6& \\
Variance of a variable $\varia$ &                                                                                      &  1& 2& 3&  &  & & \\
\hline
\end{tabular}
\end{center}
%}
\caption{Admissible values of boundary conditions for all variables.}\label{tab:ICODCLadm_condli}
\end{table}