1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
|
%-------------------------------------------------------------------------------
% This file is part of Code_Saturne, a general-purpose CFD tool.
%
% Copyright (C) 1998-2018 EDF S.A.
%
% This program is free software; you can redistribute it and/or modify it under
% the terms of the GNU General Public License as published by the Free Software
% Foundation; either version 2 of the License, or (at your option) any later
% version.
%
% This program is distributed in the hope that it will be useful, but WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
% FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
% details.
%
% You should have received a copy of the GNU General Public License along with
% this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
% Street, Fifth Floor, Boston, MA 02110-1301, USA.
%-------------------------------------------------------------------------------
\programme{clsyvt}
\hypertarget{clsyvt}{}
\vspace{1cm}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Function}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The aim of this subroutine is to fill the arrays of boundary conditions
(\var{COEFA} and \var{COEFB}) of the velocity and of the Reynolds stress tensor,
for the symmetry boundary faces.
These conditions are express relatively naturally in the local coordinate system
of the boundary face. The function of \fort{clsyvt} is then to transform these
natural boundary conditions (expressed in the local coordinate sytem) in the
general coordinate sytem, and then to possibly partly implicit them.
It should be noted that the part of the subroutine \fort{clptur} (for the wall
boundary conditions) relative to the writing in the local coordinate system and to
the rotation is totally identical.
See the \doxygenfile{clsyvt_8f90.html}{programmers reference of the dedicated subroutine}
for further details.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Discretisation}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Figure \ref{Base_Clsyvt_fig_facesym} presents the notations used at the face.
The local coordinate system is defined from the normal at the face and
the velocity at $I'$ :\\
$\bullet\ \displaystyle\vect{t}
=\frac{1}{|\vect{u}_{I',\tau}|}\vect{u}_{I',\tau}$ is the first
vector of the local coordinate system.\\
$\bullet\ \vect{\tilde{n}}=-\vect{n}$ is the second
vector of the local coordinate system.\\
$\bullet\ \vect{b}=\vect{t}\wedge\vect{\tilde{n}}=\vect{n}\wedge\vect{t}$
is the third
vector of the local coordinate system.\\
\begin{figure}[h]
\centerline{\includegraphics[width=8cm]{facesym}}
\caption{\label{Base_Clsyvt_fig_facesym}Definition of the vectors forming the local coordinate system.}
\end{figure}
Here, $\vect{n}$ is the normalized normal vector to the boundary face
in the sense of \CS ({\em i.e.}
directed towards the outside of the computational domain)
and $\vect{u}_{I',\tau}$ is the projection of the velocity at $I'$
in the plane of the face :
$\vect{u}_{I',\tau}=\vect{u}_{I'}-(\vect{u}_{I'}.\vect{n})\vect{n}$.\\
If $\vect{u}_{I',\tau}=\vect{0}$, the direction of $\vect{t}$ in the plane
normal to $\vect{n}$ is irrelevant. thus it is defined as :
$\displaystyle\vect{t}=\frac{1}{\sqrt{n_y^2+n_z^2}}(n_z\vect{e}_y-n_y\vect{e}_z)$
where
$\displaystyle\vect{t}=\frac{1}{\sqrt{n_x^2+n_z^2}}(n_z\vect{e}_x-n_x\vect{e}_z)$
along the non-zero components of $\vect{n}$ (components in the global
coordinate system $(\vect{e}_x,\vect{e}_y,\vect{e}_z)$).
For sake of clarity, the following notations will be used :\\
$\bullet\ $The general coordinate system will write
$\mathcal{R}=(\vect{e}_x,\vect{e}_y,\vect{e}_z)$.\\
$\bullet\ $The local coordinate system will write
$\hat{\mathcal{R}}=(\vect{t},-\vect{n},\vect{b})=(\vect{t},\vect{\tilde{n}},\vect{b})$.\\
$\bullet\ $The matrices of the components of a vector $\vect{u}$
in the coordinate systems
$\mathcal{R}$ and $\hat{\mathcal{R}}$ will write
$\mat{U}$ and $\hat{\mat{U}}$, respectively.\\
$\bullet\ $The matrices of the components of a tensor $\tens{R}$ (2$^{nd}$ order)
in the coordinate systems $\mathcal{R}$ and $\hat{\mathcal{R}}$ will write
$\matt{R}$ and $\hat{\matt{R}}$, respectively.\\
$\bullet\ $ $\matt{P}$ refers to the (orthogonal) matrix transforming
$\mathcal{R}$ into $\hat{\mathcal{R}}$.
\begin{equation}
\matt{P}=\left[
\begin{array}{ccc}
t_x & -n_x & b_x\\
t_y & -n_y & b_y\\
t_z & -n_z & b_z
\end{array}\right]
\end{equation}
($\matt{P}$ being orthogonal, $\matt{P}^{-1}=\,^t\matt{P}$).
In particular, we have for any vector $\vect{u}$
and for any second order tensor $\tens{R}$ :\\
\begin{equation}
\left\{\begin{array}{l}
\mat{U} = \matt{P}\,.\,\hat{\mat{U}}\\
\matt{R}= \matt{P}\,.\,\hat{\matt{R}}\,.\,^t\matt{P}
\end{array}\right.
\end{equation}
\minititre{Treatment of the velocity}
In the local coordinate system, the boundary conditions for $\vect{u}$
naturally write :\\
\begin{equation}
\left\{\begin{array}{lcl}
u_{F,t} & = & u_{I',t}\\
u_{F,\tilde{n}} & = & 0\\
u_{F,b} & = & u_{I',b}
\end{array}\right.
\end{equation}
or
\begin{equation}
\mat{U}_F = \matt{P}\,.\,\hat{\mat{U}}_F
= \matt{P}\,.\,\left[
\begin{array}{ccc}
1 & 0 & 0\\
0 & 0 & 0\\
0 & 0 & 1
\end{array}
\right]\,.\,\hat{\mat{U}}_{I'}
=\matt{P}\,.\,\left[
\begin{array}{ccc}
1 & 0 & 0\\
0 & 0 & 0\\
0 & 0 & 1
\end{array}
\right]\,.\,^t\matt{P}\,.\,\mat{U}_{I'}
\end{equation}
Let's take
$\matt{A}=\matt{P}\,.\,\left[
\begin{array}{ccc}
1 & 0 & 0\\
0 & 0 & 0\\
0 & 0 & 1
\end{array}
\right]\,.\,^t\matt{P}\qquad$ (matrix in the coordinate system $\mathcal{R}$
of the projector orthogonal to the face).
The boundary conditions for $\vect{u}$ thus write :
\begin{equation}
\mat{U}_F = \matt{A}\,.\,\mat{U}_{I'}
\end{equation}
Since the matrix $\matt{P}$ is orthogonal, it can be shown that
\begin{equation}
\matt{A}=\left[
\begin{array}{ccc}
1-\tilde{n}_x^2 & -\tilde{n}_x\tilde{n}_y & -\tilde{n}_x\tilde{n}_z\\
-\tilde{n}_x\tilde{n}_y & 1-\tilde{n}_y^2 & -\tilde{n}_y\tilde{n}_z\\
-\tilde{n}_x\tilde{n}_z & -\tilde{n}_y\tilde{n}_z & 1-\tilde{n}_z^2
\end{array}\right]
\end{equation}
The boundary conditions can then be partially implicited:
\begin{equation}
\label{Base_Clsyvt_eq_clU}
u_{F,x}^{(n+1)} = \underbrace{1-\tilde{n}_x^2}_{\var{COEFB}}u_{I',x}^{(n+1)}
\underbrace{-\tilde{n}_x\tilde{n}_y u_{I',y}^{(n)}
-\tilde{n}_x\tilde{n}_z u_{I',z}^{(n)}}_{\var{COEFA}}
\end{equation}
The other components have a similar treatment. Since only the coordinates
of $\vect{n}$ are useful, we do not need (for $\vect{u}$) to define
explicitly the vectors $\vect{t}$ and $\vect{b}$.
\vspace{1cm}
\minititre{Treatment of the Reynolds stress tensor}
We saw that we have the following relation:
\begin{equation}
\label{Base_Clsyvt_eq_chgtrepR}
\matt{R}= \matt{P}\,.\,\hat{\matt{R}}\,.\,^t\matt{P}
\end{equation}
The boundary conditions we want to write are relations of the type:
\begin{equation}
\comp{R}_{F,ij}=\sum_{k,l}\alpha_{ijkl}\comp{R}_{I',kl}
\end{equation}
We are then naturally brought to introduce the column matrices of the
components of $\tens{R}$ in the different coordinate systems.
We write
\begin{equation}
\mat{S}=\,^t[\comp{R}_{11},\comp{R}_{12},\comp{R}_{13},
\comp{R}_{21},\comp{R}_{22},\comp{R}_{23},
\comp{R}_{31},\comp{R}_{32},\comp{R}_{33}]
\end{equation}
and
\begin{equation}
\hat{\mat{S}}=\,^t[\hat{\comp{R}}_{11},\hat{\comp{R}}_{12},\hat{\comp{R}}_{13},
\hat{\comp{R}}_{21},\hat{\comp{R}}_{22},\hat{\comp{R}}_{23},
\hat{\comp{R}}_{31},\hat{\comp{R}}_{32},\hat{\comp{R}}_{33}]
\end{equation}
Two functions $q$ and $r$ from $\{1,2,3,4,5,6,7,8,9\}$ to
$\{1,2,3\}$ are defined. Their values are given in the following table :
\begin{center}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline
$i$&1&2&3&4&5&6&7&8&9\\
\hline
$q(i)$&1&1&1&2&2&2&3&3&3\\
\hline
$r(i)$&1&2&3&1&2&3&1&2&3\\
\hline
\end{tabular}
\end{center}
$i\longmapsto (q(i),r(i))$ is then a bijection from $\{1,2,3,4,5,6,7,8,9\}$
to $\{1,2,3\}^2$, and we have :
\begin{equation}
\left\{\begin{array}{l}
\comp{R}_{ij}=\comp{S}_{3(i-1)+j}\\
\comp{S}_i=\comp{R}_{q(i)r(i)}
\end{array}\right.
\end{equation}
Using equation \ref{Base_Clsyvt_eq_chgtrepR}, we thus have :
\begin{eqnarray}
\comp{S}_{F,i} & = & \comp{R}_{F,q(i)r(i)} =
\sum_{(m,n)\in\{1,2,3\}^2}\comp{P}_{q(i)m}\hat{\comp{R}}_{F,mn}\comp{P}_{r(i)n}\nonumber\\
&=&\sum_{j=1}^9\comp{P}_{q(i)q(j)}\hat{\comp{R}}_{F,q(j)r(j)}\comp{P}_{r(i)r(j)}
\quad\text{(d'apr\`es la bijectivit\'e de $(q,r)$)}\nonumber\\
&=&\sum_{j=1}^9\comp{P}_{q(i)q(j)}\comp{P}_{r(i)r(j)}\hat{\comp{S}}_{F,j}
\end{eqnarray}
Or
\begin{equation}
\mat{S}_{F}=\matt{A}\,.\,\hat{\mat{S}}_F\quad\text{avec }
\comp{A}_{ij}=\comp{P}_{q(i)q(j)}\comp{P}_{r(i)r(j)}
\end{equation}
It can be shown that $\matt{A}$ is an orthogonal matrix (see Annexe A).
In the local coordinate system, the boundary conditions of $\tens{R}$
write naturally\footnote{cf. Davroux A., Archambeau F., {\em Le
$R_{ij}-\varepsilon$ dans \CS (version $\beta$)}, HI-83/00/030/A}.
\begin{equation}
\label{Base_Clsyvt_eq_clRij}%
\left\{\begin{array}{lll}
\hat{\comp{R}}_{F,11}=\hat{\comp{R}}_{I',11} \qquad\qquad&
\hat{\comp{R}}_{F,21}=0 \qquad\qquad&
\hat{\comp{R}}_{F,31}=B\hat{\comp{R}}_{I',31} \\
\hat{\comp{R}}_{F,12}=0 \qquad\qquad&
\hat{\comp{R}}_{F,22}=\hat{\comp{R}}_{I',22} \qquad\qquad&
\hat{\comp{R}}_{F,32}=0 \\
\hat{\comp{R}}_{F,13}=B\hat{\comp{R}}_{I',13} \qquad\qquad&
\hat{\comp{R}}_{F,23}=0 \qquad\qquad&
\hat{\comp{R}}_{F,33}=\hat{\comp{R}}_{I',33}
\end{array}\right.
\end{equation}
or
\renewcommand{\arraystretch}{0.5}
\begin{equation}
\hat{\mat{S}}_F=\matt{B}\,.\,\hat{\mat{S}}_{I'}
\qquad\text{avec }\matt{B}=
\left[\begin{array}{ccccccccc}
1&0&\cdots&\cdots&\cdots&\cdots&\cdots&\cdots&0\\
0&0&\ddots&&&&&&\vdots\\
\vdots&\ddots&B&\ddots&&&&&\vdots\\
\vdots&&\ddots&0&\ddots&&&&\vdots\\
\vdots&&&\ddots&1&\ddots&&&\vdots\\
\vdots&&&&\ddots&0&\ddots&&\vdots\\
\vdots&&&&&\ddots&B&\ddots&\vdots\\
\vdots&&&&&&\ddots&0&0\\
0&\cdots&\cdots&\cdots&\cdots&\cdots&\cdots&0&1
\end{array}\right]
\end{equation}
\renewcommand{\arraystretch}{1.}
For the symmetry faces which are treated by \fort{clsyvt}, the
coefficient $B$ is 1. However a similar treatment is applied in
\fort{clptur} for the wall faces, and in this $B$ is zero. This
parameter has to be specified when \fort{clca66} is called
(see \S\ref{Base_Clsyvt_prg_meo}).
Back in the global coordinate system, the following formulae is
finally obtained~:
\begin{equation}
\label{Base_Clsyvt_eq_clsurS}
\mat{S}_F=\matt{C}\,.\,\mat{S}_{I'}\qquad
\text{avec }\matt{C}=\matt{A}\,.\,\matt{B}\,.\,^t\matt{A}
\end{equation}
It can be shown that the components of the matrix $\matt{C}$ are :
\begin{equation}
\comp{C}_{ij}=\sum_{k=1}^9
\comp{P}_{q(i)q(k)}\comp{P}_{r(i)r(k)}\comp{P}_{q(j)q(k)}\comp{P}_{r(j)r(k)}
(\delta_{k1}+B\delta_{k3}+\delta_{k5}+B\delta_{k7}+\delta_{k9})
\end{equation}
To conclude, it can be noted that, due to the symmetries of the tensor $\tens{R}$,
the matrix $\mat{S}$.
Thus only the simplified matrices
$\mat{S}^\prime$ and $\hat{\mat{S}}^\prime$ will be used:
\begin{equation}
\mat{S}^\prime=\,^t[\comp{R}_{11},\comp{R}_{22},\comp{R}_{33},
\comp{R}_{12},\comp{R}_{13},\comp{R}_{23}]
\end{equation}
\begin{equation}
\hat{\mat{S}}^\prime=\,^t[\hat{\comp{R}}_{11},\hat{\comp{R}}_{22},\hat{\comp{R}}_{33},
\hat{\comp{R}}_{12},\hat{\comp{R}}_{13},\hat{\comp{R}}_{23}]
\end{equation}
By gathering different lines of matrix $\matt{C}$, equation
\ref{Base_Clsyvt_eq_clsurS} is transformed into the final equation~:
\begin{equation}
\mat{S}_F^\prime=\matt{D}\,.\,\mat{S}_{I'}^\prime
\end{equation}
The computation of the matrix $\matt{D}$ is performed in the subroutine
\fort{clca66}. The methodology is described in annexe B.
From $\matt{D}$, the coefficients of the boundary conditions can be
partially implicited ($\var{ICLSYR}=1$) or totally explicited
($\var{ICLSYR}=0$).
$\bullet\ ${\sc Partial implicitation}\\
\begin{equation}
\label{Base_Clsyvt_eq_clRimp}
{\comp{S}_{F,i}^\prime}^{(n+1)} =
\underbrace{\comp{D}_{ii}}_{\var{COEFB}}{\comp{S}_{I',i}^\prime}^{(n+1)}
+\underbrace{\sum_{j\ne i}\comp{D}_{ij}{\comp{S}_{I',j}^\prime}^{(n)}}_{\var{COEFA}}
\end{equation}
$\bullet\ ${\sc Total explicitation}\\
\begin{equation}
\label{Base_Clsyvt_eq_clRexp}
{\comp{S}_{F,i}^\prime}^{(n+1)} =
\underbrace{\sum_j\comp{D}_{ij}{\comp{S}_{I',j}^\prime}^{(n)}}_{\var{COEFA}}
\qquad(\var{COEFB}=0)
\end{equation}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Implementation}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{Base_Clsyvt_prg_meo}%
\etape{Beginning of the loop}
Beginnning of the loop on all the boundary faces \var{IFAC} with
symmetry conditions.
A face is considered as a symmetry face if
\var{ICODCL(IFAC,IU)} is 4. The tests in \fort{vericl} are designed
for \var{ICODCL} to be equal to 4 for \var{IU} if and only if it is equal
to 4 for the other components of the velocity and for the components of $\tens{R}$
(if necessary)\\.
The value 0 is given to \var{ISYMPA}, which identifies the face as a
wall or symmetry face (a face where the mass flux will be set to zero as
explained in \fort{inimas}).
\etape{Calculation of the basis vectors}
The normal vector $\vect{n}$ is stored in \var{(RNX,RNY,RNZ)}.\\
$\vect{u}_{I'}$ is calculated in \fort{CONDLI}, passed {\em via} \var{COEFU},
and stored in \var{(UPX,UPY,UPZ)}.
\etape{Case with $R_{ij}-\varepsilon$}
With the $R_{ij}-\varepsilon$ model (\var{ITURB}=30 or 31), the vectors
$\vect{t}$ and $\vect{b}$ must be calculated explicitly
(we use $\matt{P}$, not simply $\matt{A}$).
They are stored in \var{(TX,TY,TZ)} and
\var{(T2X,T2Y,T2Z)}, respectively.\\
The transform matrix $\matt{P}$ is then calculated and stored in the array \var{ELOGLO}.\\
The subroutine \fort{clca66} is then called to calculate the reduced
matrix $\matt{D}$. It is stored in \var{ALPHA}. \fort{clca66} is called
with a parameter \var{CLSYME} which is 1, and which corresponds to the parameter
$\omega$ of equation \ref{Base_Clsyvt_eq_clRij}.
\etape{Filling the arrays \var{COEFA} and \var{COEFB}}
The arrays \var{COEFA} and \var{COEFB} are filled following directly
equations \ref{Base_Clsyvt_eq_clU}, \ref{Base_Clsyvt_eq_clRimp} and \ref{Base_Clsyvt_eq_clRexp}.\\
\var{RIJIPB(IFAC,.)} corresponds to the vector $\mat{S}_{I'}^\prime$, computed in
\fort{condli}, and passed as an argument to \var{clsyvt}.
\etape{Filling the arrays \var{COEFAF} and \var{COEFBF}}
If they are defined, the arrays \var{COEFAF} and \var{COEFBF}
are filled. They contain the same values as \var{COEFA} and
\var{COEFB}, respectively.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Annexe A}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\minititre{Proof of the orthogonality of matrix $\matt{A}$}
All the notations used in paragraphe 2 are kept. We have :
\begin{eqnarray}
(^t\matt{A}\,.\,\matt{A})_{ij}
& = & \sum_{k=1}^9\comp{A}_{ki}\comp{A}_{kj}\nonumber\\
& = & \sum_{k=1}^9
\comp{P}_{q(k)q(i)}\comp{P}_{r(k)r(i)}\comp{P}_{q(k)q(j)}\comp{P}_{r(k)r(j)}
\end{eqnarray}
When $k$ varies from 1 to 3, $q(k)$ remains equal to 1 and $r(k)$ varies from 1
to 3. We thus have :
\begin{eqnarray}
\sum_{k=1}^3
\comp{P}_{q(k)q(i)}\comp{P}_{r(k)r(i)}\comp{P}_{q(k)q(j)}\comp{P}_{r(k)r(j)}
&=&\comp{P}_{1q(i)}\comp{P}_{1q(j)}\sum_{k=1}^3
\comp{P}_{r(k)r(i)}\comp{P}_{r(k)r(j)}\nonumber\\
&=&\comp{P}_{1q(i)}\comp{P}_{1q(j)}\sum_{k=1}^3
\comp{P}_{kr(i)}\comp{P}_{kr(j)}\\
&=&\comp{P}_{1q(i)}\comp{P}_{1q(j)}\delta_{r(i)r(j)}\qquad\text{(by
orthogonality of $\matt{P}$)}\nonumber
\end{eqnarray}
Likewise for $k$ varying from 4 to 6 or from 7 to 9, $q(k)$ being 2 or 3, respectively,
we obtain :
\begin{eqnarray}
(^t\matt{A}\,.\,\matt{A})_{ij}
&=&
\sum_{k=1}^9
\comp{P}_{q(k)q(i)}\comp{P}_{r(k)r(i)}\comp{P}_{q(k)q(j)}\comp{P}_{r(k)r(j)}
\nonumber\\
&=&
\sum_{k=1}^3\comp{P}_{kq(i)}\comp{P}_{kq(j)}\delta_{r(i)r(j)}\\
&=&\delta_{q(i)q(j)}\delta_{r(i)r(j)}\nonumber\\
&=&\delta_{ij}\qquad
\text{(by the bijectivity of $(q,r)$)}\nonumber
\end{eqnarray}
Thus $^t\matt{A}\,.\,\matt{A}=\matt{Id}$. Similarly, it can be shown that
$\matt{A}\,.\,^t\matt{A}=\matt{Id}$. Thus $\matt{A}$ is an orthogonal matrix.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Annexe B}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\minititre{Calculation of the matrix $\matt{D}$}
The relation between the matrices of dimension $9\times1$
of the components of $\tens{R}$ in the coordinate system $\mathcal{R}$ at $F$ and at $I'$
(matrices $\mat{S}_F$ and $\mat{S}_{I'}$) :
\begin{equation}
\mat{S}_F=\matt{C}\,.\,\mat{S}_{I'}
\end{equation}
with
\begin{equation}
\comp{C}_{ij}=\sum_{k=1}^9
\comp{P}_{q(i)q(k)}\comp{P}_{r(i)r(k)}\comp{P}_{q(j)q(k)}\comp{P}_{r(j)r(k)}
(\delta_{k1}+\omega\delta_{k3}+\delta_{k5}+\omega\delta_{k7}+\delta_{k9})
\end{equation}
To transform $\mat{S}$ into the matrix $6\times 1$ $\mat{S}^\prime$,
the function $s$ from $\{1,2,3,4,5,6,7,8,9\}$ to
$\{1,2,3,4,5,6\}$ is defined. It takes the following values :
\begin{center}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline
$i$&1&2&3&4&5&6&7&8&9\\
\hline
$s(i)$&1&4&5&4&2&6&5&6&3\\
\hline
\end{tabular}
\end{center}
By construction, we have $\comp{S}_i=\comp{S}^\prime_{s(i)}$ for all $i$ between 1
and 9.
To compute $\comp{D}_{ij}$, we can choose a value of $m$ to satisfy
$s(m)=i$ and sum all the $\comp{C}_{mn}$ to have $s(n)=j$. The choice of $m$
is irrelevent. We can also compute the sum over all $m$ so that $s(m)=i$ and then
divide by the number of such values of $m$. We will use this method.
We define $N(i)$ the number of integers between 1 and 9 so that $s(m)=i$.
According to the preceeding, we thus have
\begin{eqnarray}
\comp{D}_{ij}&=&\frac{1}{N(i)}\sum_{s(m)=i \atop s(n)=j}\comp{C}_{mn}\nonumber\\
&=&\frac{1}{N(i)}\sum_{{s(m)=i \atop s(n)=j}\atop 1\leqslant k\leqslant 9}
\comp{P}_{q(m)q(k)}\comp{P}_{r(m)r(k)}\comp{P}_{q(n)q(k)}\comp{P}_{r(n)r(k)}
(\delta_{k1}+\omega\delta_{k3}+\delta_{k5}+\omega\delta_{k7}+\delta_{k9})
\end{eqnarray}
\vspace{1cm}
$\bullet\ ${\sc First case} : $i\leqslant 3$ and $j\leqslant 3$\\
In this case, we have $N(i)=N(j)=1$. Additionally, if $s(m)=i$ and $s(n)=j$,
then $q(m)=r(m)=i$ and $q(n)=r(n)=j$. Thus \\
\begin{equation}
\comp{D}_{ij}=\sum_{k=1}^9
\comp{P}_{iq(k)}\comp{P}_{ir(k)}\comp{P}_{jq(k)}\comp{P}_{jr(k)}
(\delta_{k1}+\omega\delta_{k3}+\delta_{k5}+\omega\delta_{k7}+\delta_{k9})
\end{equation}
When $k$ belongs to $\{1,5,9\}$, $q(k)=r(k)$ belongs to $\{1,2,3\}$. And for $k=3$ or
$k=7$, $q(k)=1$ and $r(k)=3$, or the inverse (and for $k$ even the
the sum of Kronecker symbol is zero). Finally we have :
\begin{equation}
\comp{D}_{ij}=\sum_{k=1}^3\comp{P}_{ik}^2\comp{P}_{jk}^2
+2\omega\comp{P}_{j1}\comp{P}_{i3}\comp{P}_{i1}\comp{P}_{j3}
\end{equation}
\vspace{1cm}
$\bullet\ ${\sc Second case} : $i\leqslant 3$ and $j\geqslant 4$\\
Again we have $N(i)=1$, and if $s(m)=i$ then $q(m)=r(m)=i$.\\
On the contrary, we have $N(j)=2$, the two possibilities being $m_1$ and $m_2$.\\
\begin{itemize}
\item[-] if $j=4$, then $m_1=2$ and $m_2=4$,
$q(m_1)=r(m_2)=1$ and $r(m_1)=q(m_2)=2$. We then have
$m=1$ and $n=2$.
\item[-] if $j=5$, then $m_1=3$ and $m_2=7$,
$q(m_1)=r(m_2)=1$ and $r(m_1)=q(m_2)=3$. We then have
$m=1$ and $n=3$.
\item[-] if $j=6$, then $m_1=6$ and $m_2=8$,
$q(m_1)=r(m_2)=2$ and $r(m_1)=q(m_2)=3$. We then have
$m=2$ and $n=3$.
\end{itemize}
And we have :
\begin{equation}
\comp{D}_{ij}=\sum_{k=1}^9
\comp{P}_{iq(k)}\comp{P}_{ir(k)}\left[
\comp{P}_{mq(k)}\comp{P}_{nr(k)}+\comp{P}_{nq(k)}\comp{P}_{mr(k)}\right]
(\delta_{k1}+\omega\delta_{k3}+\delta_{k5}+\omega\delta_{k7}+\delta_{k9})
\end{equation}
But when $k$ is in $\{1,5,9\}$, $q(k)=r(k)$ is in $\{1,2,3\}$. Thus :
\begin{equation}
\comp{D}_{ij}=2\sum_{k=1}^3
\comp{P}_{ik}^2\comp{P}_{mk}\comp{P}_{nk}
+\omega\sum_{k=1}^9
\comp{P}_{iq(k)}\comp{P}_{ir(k)}\left[
\comp{P}_{mq(k)}\comp{P}_{nr(k)}+\comp{P}_{nq(k)}\comp{P}_{mr(k)}\right]
(\delta_{k3}+\delta_{k7})
\end{equation}
And for $k=3$ or $k=7$, $q(k)=1$ and $r(k)=3$, or the opposite. We finally have :
\begin{equation}
\comp{D}_{ij}=2\left[\sum_{k=1}^3
\comp{P}_{ik}^2\comp{P}_{mk}\comp{P}_{nk}
+\omega\comp{P}_{i1}\comp{P}_{i3}\left(
\comp{P}_{m1}\comp{P}_{n3}+\comp{P}_{n1}\comp{P}_{m3}\right)
\right]
\end{equation}
with $(m,n)=(1,2)$ if $j=4$, $(m,n)=(1,3)$ if $j=5$ and $(m,n)=(2,3)$ if
$j=6$.
\vspace{1cm}
$\bullet\ ${\sc Third case} : $i\geqslant 4$ and $j\leqslant 3$\\
By symmetry of $\matt{C}$, we obtain a result which is the symmetric of
the second case, except that $N(i)$ is now 2. Thus :
\begin{equation}
\comp{D}_{ij}=\sum_{k=1}^3
\comp{P}_{jk}^2\comp{P}_{mk}\comp{P}_{nk}
+\omega\comp{P}_{j1}\comp{P}_{j3}\left(
\comp{P}_{m1}\comp{P}_{n3}+\comp{P}_{n1}\comp{P}_{m3}\right)
\end{equation}
with $(m,n)=(1,2)$ if $i=4$, $(m,n)=(1,3)$ if $i=5$ and $(m,n)=(2,3)$ if
$i=6$.
\vspace{1cm}
$\bullet\ ${\sc Fourth case} : $i\geqslant 4$ and $j\geqslant 4$\\
Then $N(i)=N(j)=2$.\\
We have $(m,n)=(1,2)$ if $i=4$, $(m,n)=(1,3)$ if $i=5$ and
$(m,n)=(2,3)$ if $i=6$. Likewise we define $m^\prime$ and
$n^\prime$ as a function of $j$. We then obtain :
\begin{eqnarray}
\comp{D}_{ij}&=&\frac{1}{2}\sum_{k=1}^9
\left(\comp{P}_{mq(k)}\comp{P}_{nr(k)}+\comp{P}_{nq(k)}\comp{P}_{mr(k)}\right)
\left(\comp{P}_{m^\prime q(k)}\comp{P}_{n^\prime r(k)}
+\comp{P}_{n^\prime q(k)}\comp{P}_{m^\prime r(k)}\right)\nonumber\\
&&\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\times
(\delta_{k1}+\omega\delta_{k3}+\delta_{k5}+\omega\delta_{k7}+\delta_{k9})\nonumber\\
&=&\frac{1}{2}\left[
\sum_{k=1}^3 4\comp{P}_{mk}\comp{P}_{nk}
\comp{P}_{m^\prime k}\comp{P}_{n^\prime k}
+2\omega\left(\comp{P}_{m1}\comp{P}_{n3}+\comp{P}_{n1}\comp{P}_{m3}\right)
\left(\comp{P}_{m^\prime 1}\comp{P}_{n^\prime 3}
+\comp{P}_{n^\prime 1}\comp{P}_{m^\prime 3}\right)\right]
\end{eqnarray}
and finally :
\begin{equation}
\comp{D}_{ij}=
2\sum_{k=1}^3 \comp{P}_{mk}\comp{P}_{nk}
\comp{P}_{m^\prime k}\comp{P}_{n^\prime k}
+\omega\left(\comp{P}_{m1}\comp{P}_{n3}+\comp{P}_{n1}\comp{P}_{m3}\right)
\left(\comp{P}_{m^\prime 1}\comp{P}_{n^\prime 3}
+\comp{P}_{n^\prime 1}\comp{P}_{m^\prime 3}\right)
\end{equation}
with $(m,n)=(1,2)$ if $i=4$, $(m,n)=(1,3)$ if $i=5$ and $(m,n)=(2,3)$ if
$i=6$\\
and $(m^\prime ,n^\prime )=(1,2)$ if $j=4$, $(m^\prime ,n^\prime )=(1,3)$
if $j=5$ and $(m^\prime ,n^\prime )=(2,3)$ if $j=6$.
|