File: operat.tex

package info (click to toggle)
code-saturne 6.0.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, sid
  • size: 63,340 kB
  • sloc: ansic: 354,724; f90: 119,812; python: 87,716; makefile: 4,653; cpp: 4,272; xml: 2,839; sh: 1,228; lex: 170; yacc: 100
file content (156 lines) | stat: -rw-r--r-- 6,922 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
\renewcommand{\arraystretch}{2.0}
\section{Tensorial and index notations}
In a fixed reference frame $ \left( \vect{e}_1 , \, \vect{e}_2 , \, \vect{e}_3  \right)$, taking the Einstein convention on indices into account:
%
\begin{description}
\item[$0^{th}$ order tensor: ] scalar $T$
\item[$1^{st}$ order tensor: ] vector $\vect{u} = u_i \, \vect{e}_i  $
\item[$2^{nd}$ order tensor: ] matrix $\tens{ \sigma} =  \sigma_{ij}  \,\vect{e}_i \otimes \vect{e}_j$
\item[$3^{rd}$ order tensor: ] $\vect{\tens{a}} = a_{ijk} \, \vect{e}_i \otimes \vect{e}_j  \otimes \vect{e}_k$
\item[\textcolor{white}{$3^{rd}$ order } $ \vdots $]
\item[$ n^{th} $ order tensor: ]$a^{(n)} = a_{i_1 i_2 \cdots i_n} \, \vect{e}_{i_1} \otimes \vect{e}_{i_2} \otimes \cdots  \otimes \vect{e}_{i_n}$
\end{description}

\begin{table}[!hptb]
\centering
\begin{tabular}{l| c| r@{ \,}c@{\,}l  @{\,}c@{\,}l @{\,}l }
Operators & Symbols & Formulae \\
\hline
tensorial product & $\otimes$ & $\vect{u} $ & $ \otimes $ & $\vect{u}$ & $= $& $u_i u_j $&  $ \vect{e}_i \otimes \vect{e}_j $ \\
                         &                  & $a^{(n)}$ & $ \otimes $ & $b^{(m)} $& $= $&  $a_{i_1  \cdots i_n} b_{j_1  \cdots j_m}$ & $\vect{e}_{i_1} \otimes \cdots \otimes \vect{e}_{i_n} \otimes \vect{e}_{j_1} \otimes \cdots \otimes \vect{e}_{j_m} $ \\
\hline
dot product&$.$ & $\vect{u} $&$ . $&$\vect{u} $&$ = $&$ u_i u_i  $ \\
                          & &$ a^{(n)} $&$ . $&$ b^{(m)} $&$ = $&$ a_{i_1  \cdots i_{n-1}k} b_{k j_2  \cdots j_m} $&$ \vect{e}_{i_1} \otimes \cdots \otimes \vect{e}_{i_{n-1}} \otimes \vect{e}_{j_2} \otimes \cdots \otimes \vect{e}_{j_m} $ \\
\hline
double dot &$ : $&$ \tens{\sigma} $&$ : $&$ \tens{\sigma} $&$ = $&$ \sigma_{ij} \sigma_{ij}    $ \\
       product& &$ a^{(n)} $&$ : $&$ b^{(m)} $&$ = $&$ a_{i_1  \cdots i_{n-2}kl} b_{k l j_3  \cdots j_m} $&$ \vect{e}_{i_1} \otimes \cdots \otimes \vect{e}_{i_{n-2}} \otimes \vect{e}_{j_3} \otimes \cdots \otimes \vect{e}_{j_m} $ \\
\hline
vectorial product &
$
\begin{array}{c}
 \times \\
\textrm{ \emph{or} } \\
\wedge
\end{array}
$
&$ \vect{u} $&$ \times $&$ \vect{v} $&$ = $&
$ \left( \begin{array}{c}
u_1\\
u_2 \\
u_3
\end{array} \right) \times
\left( \begin{array}{c}
v_1\\
v_2 \\
v_3
\end{array} \right)  $
&$ =
\left( \begin{array}{c}
u_2 v_3 - u_3 v_2\\
u_3 v_1 - u_1 v_3 \\
u_1 v_2 - u_2 v_1
\end{array} \right)
 $
\end{tabular}
\caption{Tensorial operators.}
\end{table}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Differential operators and standard relationships}
\begin{equation*}
\begin{array}{c}
%
\begin{array}{r c l @{\hspace{3cm}} r c l }
\dive \left(  \rot \, \vect{u}\right) &=&0  &
\rot  \left(  \gradv \, T\right)  &=&0 \\
\dive \left( \alpha  \vect{u} \right) &=& \alpha \dive \, \vect{u} + \gradv \, \alpha . \vect{u}  &
\rot \left( \alpha  \vect{u} \right) &=& \alpha \rot \, \vect{u} + \gradv \, \alpha  \times  \vect{u} \\
\dive \left(   \vect{u} \times \vect{v} \right) &=& \vect{v}. \rot \, \vect{u} - \vect{u} . \rot \, \vect{v} &
\rot \left( \rot \, \vect{u} \right) & = & \grad \left( \dive \, \vect{u} \right)  - \vect{\Delta } \, \vect{u}
\end{array}
\\
\grad \left( \vect{u}. \vect{v} \right) = \left( \ggrad  \vect{u} \right) . \vect{v}  \, + \,  \left( \ggrad  \vect{v} \right) . \vect{u} \, + \, \vect{u} \times \rot \, \vect{v}
\, + \,  \vect{v} \times \rot \, \vect{u} \\
\end{array}
\end{equation*}
%
%
%
\newpage
\begin{table}[!htb]
\centering
\begin{tabular}{l | c | l | l @{}l@{\,} l  }
Operators & Symbols & Definitions & Cartesian formulae \\
\hline
gradient & $\nabla $ & $\nabla^{(n+1)} \left[ a^{(n)} \right] \, . \, \vect{ \mathrm{d}x} = \left. \mathrm{d} a^{(n)} \right|_{ \vect{ \mathrm{d}x}}$  & $\vect{\nabla} \,T = \dfrac{\partial T}{ \partial x_i} \vect{e}_i$ \\
&\emph{or}&& $\tens{\nabla} \, \vect{u} = \dfrac{\partial \vect{u}}{ \partial x_j} \otimes \vect{e}_j $&$ = $&$ \dfrac{\partial u_i }{ \partial x_j}  \vect{e}_i \otimes \vect{e}_j $ \\
& $\grad$ && $\nabla^{(n+1)} \left[ a^{(n)} \right] $&$ = $&$ \dfrac{\partial a^{(n)} }{ \partial x_{i_{n+1}} } \otimes \vect{e}_{i_{n+1}} $ \\
\hline
divergence & $\nabla .$ & $\nabla^{(n-1)}. \left[ a^{(n)} \right] = \nabla^{(n+1)} \left[ a^{(n)} \right] : \tens{1} $  &
$ \divv \, \vect{u} = \dfrac{\partial u_i}{ \partial x_i}$ \\
& \emph{or} && $ \divt \, \tens{\sigma} = \dfrac{\partial  \sigma_{ij}}{ \partial x_j} \vect{e}_i$ \\
&  $\divv$  && $ \divv^{(n-1)} \left[ a^{(n)} \right] $&$ = $&$ \dfrac{\partial   a_{i_1  \cdots i_n} }{ \partial x_{i_n}} \vect{e}_{i_1} \otimes \cdots \otimes \vect{e}_{i_{n-1}} $ \\
\hline
Laplacian & $\Delta$  & $ \Delta a^{(n)} = \divv^{(n)} \left\{ \nabla^{(n+1)} \left[ a^{(n)} \right]  \right\}$ & $ \Delta  \,T = \dfrac{ \partial^2 T}{\partial x_i \partial x_i}$ \\
&\emph{or}  && $ \vect{ \Delta} \, \vect{u} =  \dfrac{ \partial^2 \vect{u}}{\partial x_j \partial x_j} $&$ = $&$ \dfrac{ \partial^2 u_i}{\partial x_j \partial x_j} \vect{e}_i$ \\
& $\nabla^2$ && $ \Delta^{(n)} a^{(n)}  $&$ = $&$ \dfrac{ \partial^2  a^{(n)}}{\partial x_{i_{n+1}} \partial x_{i_{n+1}}} $\\
&&&&$ = $&$ \dfrac{ \partial^2 a_{i_1  \cdots i_n}}{ \partial x_{i_{n+1}} \partial x_{i_{n+1}}} \vect{e}_{i_1} \otimes \cdots \otimes \vect{e}_{i_{n}} $ \\
\hline
rotational &
$
\begin{array}{c}
\vect{\nabla} \times\\
\textrm{ \emph{or} } \\
\rot
\end{array} $
&  & $\rot \, \vect{u}  =
 \left( \begin{array}{c}
\frac{\partial }{\partial x_1}\\
\frac{\partial }{\partial x_2}\\
\frac{\partial }{\partial x_3}
\end{array} \right)
$&$ \times $&$
\left( \begin{array}{c}
u_1\\
u_2 \\
u_3
\end{array} \right)
 =
\left( \begin{array}{c}
\frac{\partial u_3}{\partial x_2} - \frac{\partial u_2}{\partial x_3}\\
\frac{\partial u_1}{\partial x_3} - \frac{\partial u_3}{\partial x_1} \\
\frac{\partial u_2}{\partial x_1} -\frac{\partial u_1}{\partial x_2}
\end{array} \right)
$
\end{tabular}
\caption{Differential operators.}
\end{table}
%
%

\paragraph{Stokes Theorem}
%
\begin{equation*}
\int_{ \mathcal{S}} \rot \, \vect{u} \, . \, \vect{ \mathrm{d}S} = \int_{\partial \mathcal{S} } \vect{u} \, . \, \vect{\mathrm{d}l }
\end{equation*}
where $ \vect{ \mathrm{d}S }$ is the outward surface element.

\paragraph{Divergence theorem [Green-Ostrogradski]}
%
\begin{equation*}
\int_{ \Omega } \divv^{(n-1)}  \left[ a^{(n)} \right] \, \mathrm{d}\Omega= \int_{\partial \Omega } a^{(n)} \, . \, \vect{ \mathrm{d}S }
\end{equation*}
\paragraph{Rotational theorem}
%
\begin{equation*}
\int_{ \Omega } \rot \, \vect{u} \, \mathrm{d}\Omega= \int_{\partial \Omega } \vect{u} \, \times \, \vect{ \mathrm{d}S }
\end{equation*}

\paragraph{Leibnitz theorem}
%
\begin{equation*}
\dfrac{ \mathrm{d} }{ \mathrm{d}t }\int_{ \Omega } a^{(n)} \, \mathrm{d}\Omega =
\int_{ \Omega } \dfrac{\partial a^{(n)} }{ \partial t} \, \mathrm{d}\Omega
+ \int_{\partial \Omega } a^{(n)} \vect{v} \, . \, \vect{ \mathrm{d}S }
\end{equation*}
where $\vect{v}$ is control volume $ \Omega$ velocity.