1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
\renewcommand{\arraystretch}{2.0}
\section{Tensorial and index notations}
In a fixed reference frame $ \left( \vect{e}_1 , \, \vect{e}_2 , \, \vect{e}_3 \right)$, taking the Einstein convention on indices into account:
%
\begin{description}
\item[$0^{th}$ order tensor: ] scalar $T$
\item[$1^{st}$ order tensor: ] vector $\vect{u} = u_i \, \vect{e}_i $
\item[$2^{nd}$ order tensor: ] matrix $\tens{ \sigma} = \sigma_{ij} \,\vect{e}_i \otimes \vect{e}_j$
\item[$3^{rd}$ order tensor: ] $\vect{\tens{a}} = a_{ijk} \, \vect{e}_i \otimes \vect{e}_j \otimes \vect{e}_k$
\item[\textcolor{white}{$3^{rd}$ order } $ \vdots $]
\item[$ n^{th} $ order tensor: ]$a^{(n)} = a_{i_1 i_2 \cdots i_n} \, \vect{e}_{i_1} \otimes \vect{e}_{i_2} \otimes \cdots \otimes \vect{e}_{i_n}$
\end{description}
\begin{table}[!hptb]
\centering
\begin{tabular}{l| c| r@{ \,}c@{\,}l @{\,}c@{\,}l @{\,}l }
Operators & Symbols & Formulae \\
\hline
tensorial product & $\otimes$ & $\vect{u} $ & $ \otimes $ & $\vect{u}$ & $= $& $u_i u_j $& $ \vect{e}_i \otimes \vect{e}_j $ \\
& & $a^{(n)}$ & $ \otimes $ & $b^{(m)} $& $= $& $a_{i_1 \cdots i_n} b_{j_1 \cdots j_m}$ & $\vect{e}_{i_1} \otimes \cdots \otimes \vect{e}_{i_n} \otimes \vect{e}_{j_1} \otimes \cdots \otimes \vect{e}_{j_m} $ \\
\hline
dot product&$.$ & $\vect{u} $&$ . $&$\vect{u} $&$ = $&$ u_i u_i $ \\
& &$ a^{(n)} $&$ . $&$ b^{(m)} $&$ = $&$ a_{i_1 \cdots i_{n-1}k} b_{k j_2 \cdots j_m} $&$ \vect{e}_{i_1} \otimes \cdots \otimes \vect{e}_{i_{n-1}} \otimes \vect{e}_{j_2} \otimes \cdots \otimes \vect{e}_{j_m} $ \\
\hline
double dot &$ : $&$ \tens{\sigma} $&$ : $&$ \tens{\sigma} $&$ = $&$ \sigma_{ij} \sigma_{ij} $ \\
product& &$ a^{(n)} $&$ : $&$ b^{(m)} $&$ = $&$ a_{i_1 \cdots i_{n-2}kl} b_{k l j_3 \cdots j_m} $&$ \vect{e}_{i_1} \otimes \cdots \otimes \vect{e}_{i_{n-2}} \otimes \vect{e}_{j_3} \otimes \cdots \otimes \vect{e}_{j_m} $ \\
\hline
vectorial product &
$
\begin{array}{c}
\times \\
\textrm{ \emph{or} } \\
\wedge
\end{array}
$
&$ \vect{u} $&$ \times $&$ \vect{v} $&$ = $&
$ \left( \begin{array}{c}
u_1\\
u_2 \\
u_3
\end{array} \right) \times
\left( \begin{array}{c}
v_1\\
v_2 \\
v_3
\end{array} \right) $
&$ =
\left( \begin{array}{c}
u_2 v_3 - u_3 v_2\\
u_3 v_1 - u_1 v_3 \\
u_1 v_2 - u_2 v_1
\end{array} \right)
$
\end{tabular}
\caption{Tensorial operators.}
\end{table}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Differential operators and standard relationships}
\begin{equation*}
\begin{array}{c}
%
\begin{array}{r c l @{\hspace{3cm}} r c l }
\dive \left( \rot \, \vect{u}\right) &=&0 &
\rot \left( \gradv \, T\right) &=&0 \\
\dive \left( \alpha \vect{u} \right) &=& \alpha \dive \, \vect{u} + \gradv \, \alpha . \vect{u} &
\rot \left( \alpha \vect{u} \right) &=& \alpha \rot \, \vect{u} + \gradv \, \alpha \times \vect{u} \\
\dive \left( \vect{u} \times \vect{v} \right) &=& \vect{v}. \rot \, \vect{u} - \vect{u} . \rot \, \vect{v} &
\rot \left( \rot \, \vect{u} \right) & = & \grad \left( \dive \, \vect{u} \right) - \vect{\Delta } \, \vect{u}
\end{array}
\\
\grad \left( \vect{u}. \vect{v} \right) = \left( \ggrad \vect{u} \right) . \vect{v} \, + \, \left( \ggrad \vect{v} \right) . \vect{u} \, + \, \vect{u} \times \rot \, \vect{v}
\, + \, \vect{v} \times \rot \, \vect{u} \\
\end{array}
\end{equation*}
%
%
%
\newpage
\begin{table}[!htb]
\centering
\begin{tabular}{l | c | l | l @{}l@{\,} l }
Operators & Symbols & Definitions & Cartesian formulae \\
\hline
gradient & $\nabla $ & $\nabla^{(n+1)} \left[ a^{(n)} \right] \, . \, \vect{ \mathrm{d}x} = \left. \mathrm{d} a^{(n)} \right|_{ \vect{ \mathrm{d}x}}$ & $\vect{\nabla} \,T = \dfrac{\partial T}{ \partial x_i} \vect{e}_i$ \\
&\emph{or}&& $\tens{\nabla} \, \vect{u} = \dfrac{\partial \vect{u}}{ \partial x_j} \otimes \vect{e}_j $&$ = $&$ \dfrac{\partial u_i }{ \partial x_j} \vect{e}_i \otimes \vect{e}_j $ \\
& $\grad$ && $\nabla^{(n+1)} \left[ a^{(n)} \right] $&$ = $&$ \dfrac{\partial a^{(n)} }{ \partial x_{i_{n+1}} } \otimes \vect{e}_{i_{n+1}} $ \\
\hline
divergence & $\nabla .$ & $\nabla^{(n-1)}. \left[ a^{(n)} \right] = \nabla^{(n+1)} \left[ a^{(n)} \right] : \tens{1} $ &
$ \divv \, \vect{u} = \dfrac{\partial u_i}{ \partial x_i}$ \\
& \emph{or} && $ \divt \, \tens{\sigma} = \dfrac{\partial \sigma_{ij}}{ \partial x_j} \vect{e}_i$ \\
& $\divv$ && $ \divv^{(n-1)} \left[ a^{(n)} \right] $&$ = $&$ \dfrac{\partial a_{i_1 \cdots i_n} }{ \partial x_{i_n}} \vect{e}_{i_1} \otimes \cdots \otimes \vect{e}_{i_{n-1}} $ \\
\hline
Laplacian & $\Delta$ & $ \Delta a^{(n)} = \divv^{(n)} \left\{ \nabla^{(n+1)} \left[ a^{(n)} \right] \right\}$ & $ \Delta \,T = \dfrac{ \partial^2 T}{\partial x_i \partial x_i}$ \\
&\emph{or} && $ \vect{ \Delta} \, \vect{u} = \dfrac{ \partial^2 \vect{u}}{\partial x_j \partial x_j} $&$ = $&$ \dfrac{ \partial^2 u_i}{\partial x_j \partial x_j} \vect{e}_i$ \\
& $\nabla^2$ && $ \Delta^{(n)} a^{(n)} $&$ = $&$ \dfrac{ \partial^2 a^{(n)}}{\partial x_{i_{n+1}} \partial x_{i_{n+1}}} $\\
&&&&$ = $&$ \dfrac{ \partial^2 a_{i_1 \cdots i_n}}{ \partial x_{i_{n+1}} \partial x_{i_{n+1}}} \vect{e}_{i_1} \otimes \cdots \otimes \vect{e}_{i_{n}} $ \\
\hline
rotational &
$
\begin{array}{c}
\vect{\nabla} \times\\
\textrm{ \emph{or} } \\
\rot
\end{array} $
& & $\rot \, \vect{u} =
\left( \begin{array}{c}
\frac{\partial }{\partial x_1}\\
\frac{\partial }{\partial x_2}\\
\frac{\partial }{\partial x_3}
\end{array} \right)
$&$ \times $&$
\left( \begin{array}{c}
u_1\\
u_2 \\
u_3
\end{array} \right)
=
\left( \begin{array}{c}
\frac{\partial u_3}{\partial x_2} - \frac{\partial u_2}{\partial x_3}\\
\frac{\partial u_1}{\partial x_3} - \frac{\partial u_3}{\partial x_1} \\
\frac{\partial u_2}{\partial x_1} -\frac{\partial u_1}{\partial x_2}
\end{array} \right)
$
\end{tabular}
\caption{Differential operators.}
\end{table}
%
%
\paragraph{Stokes Theorem}
%
\begin{equation*}
\int_{ \mathcal{S}} \rot \, \vect{u} \, . \, \vect{ \mathrm{d}S} = \int_{\partial \mathcal{S} } \vect{u} \, . \, \vect{\mathrm{d}l }
\end{equation*}
where $ \vect{ \mathrm{d}S }$ is the outward surface element.
\paragraph{Divergence theorem [Green-Ostrogradski]}
%
\begin{equation*}
\int_{ \Omega } \divv^{(n-1)} \left[ a^{(n)} \right] \, \mathrm{d}\Omega= \int_{\partial \Omega } a^{(n)} \, . \, \vect{ \mathrm{d}S }
\end{equation*}
\paragraph{Rotational theorem}
%
\begin{equation*}
\int_{ \Omega } \rot \, \vect{u} \, \mathrm{d}\Omega= \int_{\partial \Omega } \vect{u} \, \times \, \vect{ \mathrm{d}S }
\end{equation*}
\paragraph{Leibnitz theorem}
%
\begin{equation*}
\dfrac{ \mathrm{d} }{ \mathrm{d}t }\int_{ \Omega } a^{(n)} \, \mathrm{d}\Omega =
\int_{ \Omega } \dfrac{\partial a^{(n)} }{ \partial t} \, \mathrm{d}\Omega
+ \int_{\partial \Omega } a^{(n)} \vect{v} \, . \, \vect{ \mathrm{d}S }
\end{equation*}
where $\vect{v}$ is control volume $ \Omega$ velocity.
|