File: turbul.tex

package info (click to toggle)
code-saturne 6.0.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, sid
  • size: 63,340 kB
  • sloc: ansic: 354,724; f90: 119,812; python: 87,716; makefile: 4,653; cpp: 4,272; xml: 2,839; sh: 1,228; lex: 170; yacc: 100
file content (756 lines) | stat: -rw-r--r-- 34,432 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
%-------------------------------------------------------------------------------
\section{Eddy viscosity Models (\emph{EVM})}
In this section eddy viscosity hypothesis is made which states that the Reynolds stress tensor
is aligned with the rate of strain $\tens{S}$:
%
\begin{equation}
\rho  \tens{R} = \dfrac{2}{3} \rho k \tens{1} - 2 \mu_T \deviator{\tens{S}}
\end{equation}

%-------------------------------------------------------------------------------
\subsection{Equations for the variables $k$ and $\varepsilon$ (standard $k-\varepsilon$ model)}

\hypertarget{keps}{}

\begin{equation}
\left\{
\begin{array}{r c l}
\displaystyle
\rho \der{k }{t} + \grad k \cdot \left( \rho \vect{u} \right)
- \divs \left[ \left( \mu +\frac{\mu _{t}}{\sigma _{k}} \right)\grad{k}\right]
&=&\displaystyle
\mathcal{P}+\mathcal{G}-\rho \varepsilon +\Gamma k^{in}+ST_{k}, \\
\displaystyle
\rho \der{ \varepsilon }{t} + \grad \varepsilon \cdot \left(\rho \vect{u} \right)
-\divs \left[ \left( \mu +\frac{\mu _{t}}{\sigma _{\varepsilon }} \right) \grad{\varepsilon}\right]
&=& \displaystyle
C_{\varepsilon _{1}}\frac{\varepsilon }{k}\left[
\mathcal{P}+(1-C_{\varepsilon _{3}})\mathcal{G}\right] -\rho C_{\varepsilon
_{2}}\frac{\varepsilon ^{2}}{k}+\Gamma \varepsilon ^{in}+ST_{\varepsilon },
\end{array}
\right.
\end{equation}
\nomenclature[rk]{$k$}{turbulent kinetic energy \nomunit{$m^{2}.s^{-2}$}}
\nomenclature[gepslion]{$ \varepsilon $}{turbulent kinetic energy dissipation \nomunit{$m^{2}.s^{-3}$}}
\nomenclature[rproduction]{$\mathcal{P}$}{turbulent kinetic energy production \nomunit{$kg.m^{-1}.s^{-3}$}}
where $\mathcal{P}$ is the production term created by mean shear:
%
\begin{equation}
\begin{array}{rcl}
\mathcal{P} & = & \displaystyle -\rho \tens{R} : \gradt \, \vect{u}
= -\left[-2 \mu_t \deviator{\tens{S}}
+ \frac{2}{3}\rho k \tens{1}\right] : \tens{S}, \\
& = & \displaystyle
2 \mu_t  \deviator{\tens{S}}: \deviator{\tens{S}}
-\dfrac{2}{3}
\rho k \trace \left( \gradt \,\vect{u} \right),
\end{array}
\end{equation}
\nomenclature[rbuoyancy]{$\mathcal{G}$}{turbulent kinetic energy buoyancy term \nomunit{$kg.m^{-1}.s^{-3}$}}
and
$\mathcal{G}$ is the production term created by gravity effects:
\begin{equation}
\displaystyle \mathcal{G}= \frac{1}{\rho}\frac{\mu_t}{\sigma_t} \grad \rho \cdot \vect{g}.
\end{equation}

The dynamic turbulent viscosity reads:
\begin{equation}
\displaystyle \mu_t=\rho C_\mu\frac{k^2}{%
\varepsilon}.
\end{equation}
\nomenclature[rstk]{$ST_{k}$}{additional turbulent kinetic energy source term \nomunit{$kg.m^{-1}.s^{-3}$}}
\nomenclature[rstepsilon]{$ST_{\varepsilon}$}{additional turbulent dissipation source term \nomunit{$kg.m^{-1}.s^{-4}$}}
$ST_{k}$ and $ST_{\varepsilon}$ stand for the additional
source terms prescribed by the user (in rare cases only).

The constants of the model are given in the Table (\ref{tab:k_epsilon_constants}):
\begin{table}[!htp]
\centering
\begin{tabular}{p{0,8cm}|p{0,8cm}|p{0,8cm}|p{0,8cm}|p{0,8cm}}
$C_\mu$ & $C_{\varepsilon_1}$ & $C_{\varepsilon_2}$ & $\sigma_k$ & $%
\sigma_\varepsilon$ \\ \hline
$0.09$ & $1.44$ & $1.92$ & $1.0$ & $1.3$
\end{tabular}%
\caption{Standard $k-\varepsilon$ model constants \cite{Launder:1974}.\label{tab:k_epsilon_constants}}
\end{table}
\nomenclature[rcmu]{$C_\mu$}{eddy viscosity constant}
\nomenclature[rcepsilon1]{$C_{\varepsilon_1}$}{constant of the standard $k-\varepsilon$ model}
\nomenclature[rcepsilon2]{$C_{\varepsilon_2}$}{constant of the standard $k-\varepsilon$ model}
\nomenclature[rcepsilon3]{$C_{\varepsilon_3}$}{constant of the standard $k-\varepsilon$ model depending on the buoyancy term}

$C_{\varepsilon_3}=0$ if $\mathcal{G}\geqslant0$ (unstable stratification)
and $C_{\varepsilon_3}=1$ if $\mathcal{G}\leqslant0$ (stable stratification).

See the \doxygenfile{turbke_8f90.html}{programmers reference of the dedicated subroutine} for further details.

%-------------------------------------------------------------------------------
%\subsection{$k-\varepsilon$ with Linear Production (\emph{LP}) model}

%-------------------------------------------------------------------------------
%\subsection{$k-\omega$ \emph{SST} model}

%-------------------------------------------------------------------------------
\subsection{$k-\epsilon-\overline{v^2}/k$ elliptic blending turbulence model}

The BL-$\overline{v^2}/k$~ \cite{Billard:2012} is a  elliptic-blending based $\overline{v^2}-f$ model.
It is a low Reynolds number model and as such the wall distance of the first off-wall cell centre must be of order of unity when expressed in viscous unit.

The following gives details about the model followed by some description of its implementation into \CS.

\subsubsection{Model description}

This eddy viscosity model solves for $k$ and $\varepsilon$ as turbulence variables,
representing respectively the turbulent kinetic energy and its dissipation rate,
as well as two non-dimensional variables, $\varphi=\overline{v^2}/k$ and $\alpha$.
The first of these latter two represents the ratio of wall normal Reynolds stress
to turbulent kinetic energy (thus being a measure of the near-wall turbulence anisotropy)
and the second is a wall proximity sensitive quantity (\emph{i.e.} it takes the value $0$ at a wall and $1$ in the far field).
The coefficient $\alpha$ is solved for via an elliptic equation
($L$ representing the turbulence length-scale):
\begin{equation}
		\alpha - L^2 \Delta \alpha = 1
		\label{eq:turbul:blv2kalpha}
\end{equation}
%
The $\varphi$ transport equation reads:
%
\begin{equation}\label{eq:turbul:blv2kphi}
\DP{\varphi}  =
   \left( 1-\alpha^3 \right) f_w
 + \alpha^3 f_h - P \frac{\varphi}{k}
+  \frac{2}{k} \frac{\nu_t}{\sigma_k} \grad \varphi  \cdot \grad k + \divs \left[ \left( \frac{\nu}{2} + \frac{\nu_t}{\sigma_\varphi}  \right) \grad \varphi \right]
\end{equation}

The aim of the BL-$\overline{v^2}/k$~ model is to stand as a code-friendly version
of the $\overline{v^2}-f$ model of \cite{Durbin:1991}. In both the wall normal stress
$\overline{v^2}$ is used in the $\nu_T$ definition to correctly represent the near-wall turbulence
damping ($T$ is the turbulence time-scale and $C_\mu=0.22$ is calibrated in the logarithmic layer of a channel flow):
%
\begin{equation}
	\nu_T= C_\mu \varphi k ~ T
\end{equation}

The elliptic blending approach mainly allows for an improved robustness.
Indeed, the original $\overline{v^2}-f$ approach solves for the quantity
$\overline{v^2}$ and a variable $f$ derived from the wall normal
pressure term\footnote{the pressure term $\phi_{22}^*$ is not decomposed but modelled as a whole}
 and defined as:
%
\begin{equation}
	f= \dfrac{1}{k} \left[ \underbrace{-\dfrac{2}{\rho}\overline{v \partial_y p}}_{\phi_{22}^*}-2 \nu\overline{\grad v \cdot \grad v}+\varepsilon \dfrac{\overline{v^2}}{k} \right]
\end{equation}
%
with $f$ being solved using an elliptic equation:
%
\begin{equation}
	f-L^2 \Delta f = f_h
\end{equation}
%
Similarly to the $\alpha$ equation, this elliptic operator allows
 to represent the non-local effects induced by the
 incompressibility of turbulence. The quantity $f_h$ is obtained by
 considering homogeneous modelling (\emph{i.e.} $\Delta f=0$) of $f$ using
for pressure strain-rate term the model of \cite{Launder:1975}. The correct
 asymptotic behaviour of the variable $\overline{v^2}$ is ensured
 by the following boundary condition:
%
\begin{equation}
   \lim_{y\to 0} f = \lim_{y\to 0} \dfrac{-20 \nu^2 \overline{v^2}}{ \varepsilon y^4}
   \label{eq:turbul:blv2kbc_f_durbin}
\end{equation}
%
This requires a balance between $O(y^4)$ terms which proves to be numerically problematic.
 In the \mbox{BL-$\overline{v^2}/k$~} model the elliptic equation is simply solved
 for a non-dimensional quantity with an homogeneous Dirichlet boundary condition,
therefore alleviating the stiffness associated to the boundary condition of the
elliptic variable. The inclusion of $\alpha$ in the definition of $f$ allows a blending
between the near-wall and the homogeneous form $f=(1-\alpha^3) f_w+\alpha^3 f_h$ in the
$\varphi$ equation. For the $f_h$ model the proposal of \cite{Speziale:1991} is preferred
for its better reproduction of the pressure term in a boundary layer.

The model also solves a $k$-$\varepsilon$ system somewhat modified compared to the one
generally adopted by $\overline{v^2}-f$ models. The $k$ and $\varepsilon$ equations
adopted by the BL-$\overline{v^2}/k$~ model read:
%
% K equation
\begin{equation} \label{eq:turbul:blv2kk}
   \DP{ k} = P -  \varepsilon
           + \divs \left[ \left( \frac{\nu}{2}  + \frac{\nu_t}{\sigma_k}  \right) \grad k \right]
    - C_{\varepsilon 3} (1-\alpha)^3 \frac{k}{\varepsilon} 2 \nu  \nu_t \left( \partial_k \partial_j U_i \right)\left( \partial_k \partial_j  U_i \right)
 \end{equation}
 % Epsilon equation
\begin{equation}  \label{eq:turbul:blv2kep}
	\DP{\varepsilon} = \frac{C_{\varepsilon 1} P - C_{\varepsilon 2}^* \varepsilon }{T}
          + \divs \left[ \left( \frac{\nu}{2}  + \frac{\nu_t}{\sigma_{\varepsilon}}  \right) \grad \varepsilon \right]
\end{equation}

The $k$ equation includes the so-called ``E term'' dependent on the second velocity
derivatives squared, similar to that introduced into the $\varepsilon$ equation
by \cite{Jones:1972}, and the homogeneous part of the dissipation rate is
independently accounted for (following the suggested formulation of \cite{Jakirlic:2002}).
This implies that the quantity $\varepsilon$ resolved by the model has a different definition
to that conventionally employed in $k$-$\varepsilon$ schemes (\emph{i.e.} a change of
variable $\varepsilon \to \varepsilon + (1-\alpha)^3\frac{k}{\varepsilon}E+\frac{1}{2}\nu\partial_{jj}k$).
This has the beneficial effect of reducing the Reynolds number dependence of the near-wall
value of the turbulence variables and of the time and length scales, $T$ and $L$ respectively,
yielding better near-wall prediction of the blending variable and the turbulent viscosity,
and hence mean flow quantities, for both low and high Reynolds numbers.

A further feature is that the coefficient $C_{\varepsilon_2}^*$ is taken as a function
of the turbulent transport of $k$ to $\varepsilon$ ratio  (as proposed by \cite{parneix1996second}):

\begin{equation}
  C_{\varepsilon 2}^* = C_{\varepsilon 2}
- \alpha^3 (0.4-C_{\varepsilon 2}) \tanh \left( \left|  \frac{\divs (\nu_t / \sigma_k \grad k)}{\varepsilon}   \right| ^{3/2}  \right)
\end{equation}

This improves the predictions of the dissipation rate in the defect layer of a channel flow (where the turbulent transport becomes significant) and yields better results in wake flows \cite{parneix1996second}. Full details of the scheme can be found in \cite{Billard:2012}.

%-------------------------------------------
\subsubsection{\emph{in extenso} definition}

\paragraph{Equations:}
Equations for the turbulence kinetic energy $k$, the turbulence dissipation rate $\varepsilon$,
the non-dimensionnal wall-normal Reynolds stress component $\varphi=\overline{v^2}/k$ and
the elliptic blending parameter $\alpha$ are given in Eq.~\eqref{eq:turbul:blv2kk},
Eq.~\eqref{eq:turbul:blv2kep},  Eq.~\eqref{eq:turbul:blv2kphi} and Eq.~\eqref{eq:turbul:blv2kalpha} respectively.

%-------------------------------
\paragraph{Scales and constants:}

The definition of the turbulent viscosity is given in Eq.~\eqref{eq:turbul:blv2knut}.
The near-wall and far field models, $f_w$ and $f_h$ for the $\varphi$ source term, $f$ are
expressed in Eq.~\eqref{eq:turbul:blv2kfw} and Eq.~\eqref{eq:turbul:blv2kfh}.
The definition of the variable coefficient $C_{\varepsilon_2}^*$ is given in Eq.~\eqref{eq:turbul:blv2kcep2}

Finally the time and length scales entering the definition of $\nu_t$, the equation of
$\varepsilon$ and the definition of $f_h$ as well as the equation of $\alpha$ are given in
Eq.~\eqref{eq:turbul:blv2kscales}. The viscous limiter used as lower bound of the time scale
has a finite wall value and therefore enables avoid the singularity consecutive to the definition
of the $\varepsilon$ sink term if the term $-C_{\varepsilon 2}^* \dfrac{\varepsilon^2}{k}$ were
used in place of $-C_{\varepsilon 2}^* \dfrac{\varepsilon}{T}$.
Similarly a viscous (Kolmogorov) limiter is used for the length-scale definition $L$ to
avoid numerical problems which would raise in the $\alpha$ equation numerical resolution
if the length-scale were to tend to zero at wall. The upper limiter $T_{lim}$ is used to
enforce the Bradshaw hypothesis (proportionality between shear stress and turbulent
kinetic energy in a boundary layer $\overline{uv}/k=C (=0.6/\sqrt{3}$ with the present approach)),
and corrects, in a wider range of cases, the excessive production rate returned by
the eddy viscosity formulation (\emph{i.e.} allowing a linear rather than a quadratic
dependance on $S$ for large strain rate).

\begin{equation}
	\nu_t= C_\mu \varphi k ~ \min(T,T_{lim})
\label{eq:turbul:blv2knut}
\end{equation}

\begin{equation}
f_w = - \dfrac{\varepsilon}{2} \dfrac{\varphi}{k}
\label{eq:turbul:blv2kfw}
\end{equation}
\begin{equation}
f_h = - \dfrac{1}{T} \left(  C_1 -1 +C_2 \dfrac{P}{\varepsilon}   \right) \left(  \varphi - \dfrac{2}{3}  \right)
\label{eq:turbul:blv2kfh}
\end{equation}

\begin{equation}
         	C_{\varepsilon 2}^*=C_{\varepsilon 2}+ \alpha^3 \left( C_{\varepsilon 4}-C_{\varepsilon 2} \right) \tanh \left( \left| \frac{\divs \left(\nu_t/\sigma_k \grad k\right)}{\varepsilon} \right|^{3/2}   \right)
	\label{eq:turbul:blv2kcep2}
\end{equation}

\begin{equation}
	\label{eq:turbul:blv2kscales}
		\begin{cases}
			L = \sqrt{C_{L}^{2}\left(\dfrac{k^{3}}{\varepsilon^{2}}+C_{\eta}^{2}\dfrac{\nu^{3/2}}{\varepsilon^{1/2}}\right)} & \\
			T = \sqrt{\dfrac{k^{2}}{\varepsilon^{2}}+C_{T}^{2}\dfrac{\nu}{\varepsilon}} & \\
			T_{lim} = \dfrac{0.6}{\sqrt{6}C_\mu \varphi \sqrt{\tens{S} : \tens{S}}}
		\end{cases}
\end{equation}

%---------------------
\paragraph{Constants:}
\tablename~ \ref{tab:turbul:cstblv2k} gives the value adopted for the constants of the model.

\begin{table}[!htp]
\centering
\begin{tabular}{ccccccc}
	\hline
	$C_{\varepsilon 1}$ & $C_{\varepsilon 2}$ & $C_{\varepsilon 3} $ & $C_{\varepsilon 4}$ & $\sigma_k$ & $\sigma_{\varepsilon}$\\
	\hline
	$ 1.44 $ & $1.83$ & $2.3$ & $0.4$ & $1$ & $1.5$ \\
	\hline
\end{tabular}

\begin{tabular}{cccccccc}
	\hline
	 $C_\mu$ & $C_T$ & $C_{L}$ & $C_{\eta}$ & $C_1$ & $C_2$ & $\sigma_\varphi$\\
	\hline
	 $0.22$ & $4$ & $0.164$ & $75$ & $1.7$ & $0.9$  &  $1$ \\
	\hline
\end{tabular}
\caption{\label{tab:turbul:cstblv2k} Constants of the BL-$\overline{v^2}/k$~ model}
\end{table}

%----------------------------------
\subsubsection{Boundary conditions}

The turbulent variables wall boundary conditions are given in Eq.~\eqref{eq:turbul:bcblv2k}
($y$ being the wall-distance)\footnote{Note that the $\varepsilon$ wall boundary condition
is halved compared to what is used in the $\varphi-\overline{f}$ model (\texttt{iturb=50}) consequently to the change of variable described above}:

\begin{equation}
		\begin{cases}
			\displaystyle   \lim_{y\to0} k =  0 & \\
			\displaystyle \lim_{y\to0} \varepsilon =  \lim_{y\to0} \dfrac{\nu k}{y^2} & \\
			\displaystyle \lim_{y\to0} \varphi =  0 & \\
			\displaystyle \lim_{y\to0} \alpha =  0 & \\
		\end{cases}
		\label{eq:turbul:bcblv2k}
\end{equation}

%-------------------------------
\subsubsection{Remaining issues}
\begin{itemize}
  \item The actual source term $\left( \partial_k \partial_j U_i \right)\left( \partial_k \partial_j  U_i \right)$ should be written as
  $\displaystyle{\sum_{i=1}^3 \sum_{j=1}^3 \sum_{k=1}^3  \left( \partial_k \partial_j  U_i \right)^2}$ and not $\displaystyle{\sum_{i=1}^3 \left(\sum_{j=1}^3 \sum_{k=1}^3  (\partial_k \partial_j  U_i )\right)^2}$ as it is, incorrectly, in the present implementation.
  \item Issues regarding grid/code dependancy of this term have already been raised \cite{Iaccarino:2001}. Alternatives may be worth investigating, such as $\left( \partial_{jj}  U_i \right)^2$.
\end{itemize}


%-------------------------------------------------------------------------------
\subsection{Spalart-Allmaras model}

\hypertarget{spalart}{}

The Spalart-Allmaras turbulence model \cite{Spalart:1992} is an \emph{EVM} \emph{RANS} model developed in the $90$'s in aeronautics, and is therefore well suited
for studying a flow around an air-plane wing for instance.

%--------------------------------
\subsubsection{Model description}
It consists in a transport equation of a scalar $\tilde{\nu}$ directly linked to the turbulent viscosity $\mu_T$.

More recently, this model has been extended by Aupoix \cite{Aupoix:2003} to rough wall for studying atmospheric flows. It was also successfully applied to flow in turbo-machinery where variants of this model has been developed.

The transport equation of $\tilde{\nu}$ (pseudo turbulent viscosity, which tends to it far from walls) reads\footnote{
the present formulation is a simplified one presented by Aupoix \cite{Aupoix:2003} where transition terms have been neglected.
}
\begin{equation}\label{eq:turbul:SA_used}
\rho \der{\tilde{\nu}}{ t} + \grad \tilde{\nu} \cdot\left( \rho \vect{u} \right)
= c_{b1} \rho  \tilde{S} \tilde{\nu}
- c_{w1}f_{w} \rho \left( \dfrac{\tilde{\nu}}{d} \right)^2
+ \dfrac{1}{ \sigma} \left[ \divs \left( (\mu + \rho \tilde{\nu}) \grad \tilde{\nu} \right)
+ c_{b2} \rho \left| \grad \tilde{\nu} \right| ^2
  \right]
  + \Gamma \left( \tilde{\nu}^{in} - \tilde{\nu}^n \right) +ST^{imp} \tilde{\nu} +ST^{exp}
\end{equation}
%
where $\tilde{\nu}^{in}$ is the injection value of $\tilde{\nu}$ in case of any mass source term, and $ST^{imp}_{\tilde{\nu}}$ and $ST^{exp}_{\tilde{\nu}}$
are respectively the implicit and explicit additional user source terms and
where
%
\begin{equation}\label{eq:def_fun_SA}
\begin{array}{ r c l}
\mu_T & =& \rho f_{v1} \tilde{\nu} \\
f_{v1} &=& \dfrac{\chi^3 }{\chi^3+ c_{v1}^3} \\
\chi & = & \dfrac{\tilde{\nu}}{ \nu} \\
\tilde{S} &=& \Omega + \dfrac{\tilde{\nu}}{ \kappa ^2 d^2} f_{v2} \\
f_{v2} &=& 1 - \dfrac{ \tilde{\nu}}{\nu + \tilde{\nu} f_{v1}} \\
f_w &=& g \left[ \dfrac{1+ c_{w3}^6 }{g^6+ c_{w3}^6} \right]^\frac{1}{6} \\
g &=& r +c_{w2} \left( r^6 -r \right) \\
r &=& \min \left[ \dfrac{ \tilde{\nu} }{ \tilde{S} \kappa^ 2 d^2 } ; \; 10 \right]
\end{array}
\end{equation}
%
The constants are defined in \tablename~\ref{tab:const_SA}.

\begin{table}[!htbp]
\centering
$
\begin{array}{c | c | c | c | c | c | c | c }
\sigma      & c_{b1} & c_{b2} & \kappa & c_{w2} & c_{w3} & c_{v1} & c_{w1} \\
\hline
\frac{2}{3} & 0.1355 & 0.622  & 0.41   & 0.3    & 2      & 7.1    & \dfrac{c_{b1}}{ \kappa^2}+ \dfrac{1+c_{b2}}{ \sigma}
\end{array}
$
\caption{Constants of the Spalart Allmaras model.\label{tab:const_SA}}
\end{table}

%----------------------------
\subsubsection{Time stepping}

Equation \eqref{eq:turbul:SA_used} can be rewritten with the $\theta$-scheme presented in \chaptername~\ref{chapter:timstp} as
%
\begin{equation}\label{eq:turbul:SA_time}
\begin{array}{c}
\overbrace{
\left[ \dfrac{\rho}{\Delta t} + \max \left( c_{w1} f_{w} \rho  \dfrac{\tilde{\nu}^n}{d^2} - c_{b1}\rho \tilde{S} , \, 0 \right) - \theta T_s^{imp} + \theta \Gamma^n \right]
}^{\texttt{implicit term}}
\delta \tilde{\nu}^{n+1}
%
\\
+ \theta
\left(
\underbrace{
 \grad \delta \tilde{\nu}^{n+1} \cdot \left( \rho \vect{u} \right)
}_{
\texttt{implicit part of the convection}
}
-
\underbrace{
\divs \left[ \dfrac{\mu + \rho \tilde{\nu}^{n}}{\sigma} \grad \delta \tilde{\nu}^{n+1} \right]
}_{
\texttt{implicit part of the diffusion}
}
\right)
\\
=
\\
- \grad \tilde{\nu}^{n} \cdot \left( \rho \vect{u} \right)
+
\divs \left[ \dfrac{\mu + \rho \tilde{\nu}^{n}}{\sigma} \grad \tilde{\nu}^{n} \right]
\\
+
c_{b1} \rho \tilde{S} \tilde{\nu}^n
- c_{w1}f_{w}\rho \left( \dfrac{\tilde{\nu}^{n}}{d} \right)^2
+ \dfrac{c_{b2}\rho}{ \sigma}
 \left| \grad \tilde{\nu}^{n} \right| ^2
 + \Gamma \left( \tilde{\nu}^{in} - \tilde{\nu}^n \right) +ST^{imp} \tilde{\nu}^n +ST^{exp}
\end{array}
\end{equation}
where $\delta \tilde{\nu}^{n+1} \equiv \tilde{\nu}^{n+1} - \tilde{\nu}^{n}$.

\begin{remark}
The term $\left( c_{w1} f_{w} \rho  \dfrac{\tilde{\nu}^n}{d^2} - c_{b1}\rho \tilde{S} \right)$ is implicit
so that $\tilde{\nu} $ does not require any clipping to remain positive if an \emph{upwind} convective scheme and no flux
reconstruction are chosen.
\end{remark}


%----------------------------------
\subsubsection{Boundary conditions}

\paragraph{Smooth walls:}
the boundary condition on $\tilde{\nu}$ is a standard zero Dirichlet boundary condition on the walls
(see \chaptername~\ref{chapter:bndcnd} for the encoding of standard Dirichlet conditions).

Note that the model gives a log law outside of the viscous sub-layer, \emph{i.e.}:
\begin{equation}
\begin{array}{r c l}
\tilde{\nu} & \simeq & \kappa u^\star d \\
\tilde{S} & \simeq & \dfrac{u^\star}{ \kappa d}
\end{array}
\end{equation}

\paragraph{Rough walls:}
In case of rough walls, let us define:
\begin{equation}
\begin{array}{rcl}
\chi_{rough} & = & \chi + c_{R1} \dfrac{h_s}{d_{rough}} \\
d_{rough} & = & d + d_0 \\
d_0     & = & \exp \left( -8.5 \kappa \right) h_s \simeq 0.03 h_s
\end{array}
\end{equation}
%
where $h_s$ is the roughness size. The Dirichlet boundary conditions
is replaced by the following Neumann boundary condition:
%
\begin{equation}\label{eq:eq_neumann_nu}
\left. \der{\tilde{ \nu}}{n} \right|_\fib = \dfrac{\left. \tilde{ \nu}\right|_\fib }{ d_0}
\end{equation}
%
A development in series in then written:
\begin{equation}\label{eq:eq_neumann_nu_vf}
 \tilde{\nu}_\fib = \tilde{\nu}_{\centip} -   \grad_\fib \tilde{ \nu} \cdot \vect{\centip \centf}
\end{equation}
Finally, that is a Robin type boundary condition formulated as follows in \CS:
\begin{equation}\label{eq:eq_neumann_nu_coef}
 \tilde{\nu}_\fib = A^g_\fib - B^g_\fib \tilde{\nu}_\centip
\end{equation}
with $A^g_\fib=0$ and
%
\begin{equation}\label{eq:eq_neumann_nu_coefb}
 B^g_\fib = \dfrac{d_0}{d_0 + \overline{\centip \centf} }
\end{equation}

\paragraph{Inlet:}
the profile of $\tilde{\nu}$ is imposed, the value is deduced from the profiles imposed on $k$ and $\varepsilon$ for a $k-\varepsilon$ turbulence
model assuming $\tilde{\nu } \simeq \nu_T$.

See the \doxygenfile{turbsa_8f90.html}{programmers reference of the dedicated subroutine} for further details.

%-------------------------------------------------------------------------------
\section{Differential Reynolds Stress Models (\emph{DRSM})}
In this section, the presented models solve a differential transport equation
on the Reynolds' stresses tensor.
%-------------------------------------------------------------------------------
\subsection{Equations for the Reynolds stress tensor components $R_{ij}$
and $\varepsilon$ (\emph{LRR} model)}

\hypertarget{rijeps}{}
%
\nomenclature[rrt2]{$\tens{R}$}{Reynolds stress tensor \nomunit{$m^{2}.s^{-2}$}}
\nomenclature[rrij]{$R_{ij}$}{componant $ij$ of the Reynolds stress tensor \nomunit{$m^{2}.s^{-2}$}}

\begin{equation}
\left\{
\begin{array}{rcll}
\displaystyle
 \rho \der{\tens{R}}{t}
+ \gradtt \, \tens{R} \cdot \left( \rho \vect{u} \right)
- \divt \left( \mu \gradtt \,\tens{R} \right)
& = &
\displaystyle
\tens{\mathit{d}} +
\tens{\mathcal{P}} + \tens{G}+ \tens{\Phi}
-\rho \tens{\varepsilon} & \displaystyle+\Gamma \tens{R}^{in}+\tens{ST}_{R_{ij}},
\\
\displaystyle
\rho \der{\varepsilon }{t}
+ \grad \varepsilon \cdot \left( \rho \vect{u} \right)
- \dive\left(\mu \grad{\varepsilon}\right)
& = & \displaystyle
\mathit{{d}+C_{\varepsilon _{1}}\frac{\varepsilon }{k}\left[ \mathcal{P}%
+G_{\varepsilon }\right] -\rho C_{\varepsilon _{2}}\frac{\varepsilon ^{2}}{k}}
& \displaystyle+\Gamma \varepsilon ^{in}+ST_{\varepsilon },
\end{array}%
\right.
\end{equation}
\nomenclature[rproductiont2]{$\tens{\mathcal{P}}$}{turbulent production tensor \nomunit{$kg.m^{-1}.s^{-3}$}}
\nomenclature[rbuoyancyt2]{$\tens{\mathcal{G}}$}{turbulent buoyancy production tensor \nomunit{$kg.m^{-1}.s^{-3}$}}
where
$\tens{\mathcal{P}}$ stands for the turbulence production tensor associated
with mean flow strain-rate and $\tens{\mathcal{G}}$ is stands for the
production- tensor associated with buoyancy effects:
\begin{equation}
\begin{array}{r c l}
\displaystyle \tens{ \mathcal{P}} & = & \displaystyle-\rho \left[ \tens{R} \cdot \transpose{\gradt \, \vect{u}}
+ \gradt \, \vect{u}  \cdot \tens{R}\right], \\
\tens{ \mathcal{G}} & = &
\displaystyle \left[\vect{r} \otimes \vect{g} +\vect{g} \otimes \vect{r}  \right].
\end{array}
\end{equation}
where $ \vect{r} \equiv \overline{\rho^\prime \vect{u}^\prime}$ is modelled through a Generalized Gradient Diffusion Hypothesis (GGDH):
\mbox{$\vect{r} \simeq \frac{3}{2}\frac{C_{\mu }}{\sigma_{t}} \frac{k}{\varepsilon } \tens{R} \cdot \grad  \rho$} and
$G_{\varepsilon }= \Max \left(0, \, \frac{1}{2}\trace \tens{\mathcal{G}}\right)$.
\nomenclature[rrt1]{$\vect{r}$}{velocity density correlation vector $\overline{\rho^\prime \vect{u}^\prime}$, generally modelled by a Generalized Gradient Diffusion Hypothesis (GGDH): $\frac{3}{2}\frac{C_{\mu }}{\sigma _{t}} \frac{k}{\varepsilon } \tens{R} \cdot \grad  \rho$ }
\nomenclature[rbuoyancyepsilon]{$G_{\varepsilon }$}{turbulent buoyancy term for dissipation}

\begin{remark}
Under Boussinesq assumption ($\rho$ varies only in the buoyancy term in the momemtum equation, lineraly with respect to $\theta$, the velocity density correlation becomes $\rho \overline{\theta^\prime \vect{u}^\prime}$.
\end{remark}

With these definitions the following relations hold:
\begin{equation}
\begin{array}{r c l}
\displaystyle k &=&\frac{1}{2} \trace{\tens{R}}, \\
\mathcal{P} &=&\frac{1}{2} \trace \left( \tens{\mathcal{P}} \right) ,
\end{array}
\end{equation}

$\tens{\Phi}$ is the term representing pressure-velocity correlations:
\nomenclature[gphit2]{$\tens{\Phi}$}{pressure-velocity correlation tensor \nomunit{$kg.s^{-3}$}}
\begin{equation}
\displaystyle \tens{\Phi} = \tens{\phi}_{1}+ \tens{\phi}_{2}+ \tens{\phi}_{3}+ \tens{\phi}_{w},
\end{equation}%
%
\begin{equation}
\begin{array}{r c l}
\tens{\phi}_{1} &=& \displaystyle -\rho \,C_{1}\frac{\varepsilon }{k}%
\deviator{\tens{R}}, \\
\tens{\phi}_{2} &=& -C_{2} \deviator{\tens{\mathcal{P}}}, \\
\tens{\phi}_{3} &=& -C_{3} \deviator{ \tens{G} }.
\end{array}
\end{equation}

The term $\tens{\phi}_{w}$ is called \emph{wall echo term} (by default, it is not
accounted for: see \doxygenfile{turrij_8f90.html}{html programmer's documentation of the subroutine} and the appendix \ref{ap:turrij}).

The dissipation term, $\tens{\varepsilon}$ , is considered isotropic:
\nomenclature[gepsilont2]{$\tens{\varepsilon}$}{turbulent kinetic energy dissipation tensor \nomunit{$m^{2}.s^{-3}$}}
\begin{equation}
\displaystyle \tens{\varepsilon}=\frac{2}{3}\ \varepsilon \tens{1}.
\end{equation}

The turbulent diffusion terms are:
\begin{equation}
\begin{array}{r c l}
\tens{d} & = & C_{S} \displaystyle \divt \left( \rho \frac{k}{\varepsilon }%
\tens{R} \cdot \gradtt \, \tens{R} \right), \\
d & = & C_{\varepsilon }\displaystyle \dive \left( \rho \frac{k}{\varepsilon}
\tens{R} \cdot \grad \varepsilon \right).
\end{array}
\end{equation}

In the rare event of mass sources, $\Gamma R_{ij}^{in}$ and $\Gamma
\varepsilon ^{i}$ are the corresponding injection terms. $ST_{R_{ij}}$ and $%
ST_{\varepsilon }$ are also rarely used additional source terms that can be
prescribed by the user.

\begin{table}[!htp]
\begin{center}
\begin{tabular}{p{0,8cm}|p{0,8cm}|p{0,8cm}|p{0,8cm}|p{0,8cm}|p{0,8cm}|p{0,8cm}|p{0,8cm}|p{0,8cm}|p{0,8cm}}
$C_\mu$ & $C_{\varepsilon}$ & $C_{\varepsilon_1}$ & $C_{\varepsilon_2}$ & $%
C_1$ & $C_2$ & $C_3$ & $C_S$ & $C^{\prime}_1$ & $C^{\prime}_2$ \\ \hline
$0.09$ & $0.18$ & $1.44$ & $1.92$ & $1.8$ & $0.6$ & $0.55$ & $0.22$ & $0.5$
& $0.3$
\end{tabular}
\end{center}
\caption{Model constants of the \emph{LRR} $R_{ij}-\varepsilon$ model \cite{Launder:1975}.}
\end{table}

%-------------------------------------------------------------------------------
\section{Large-Eddy Simulation (\emph{LES})}

%-------------------------------------------------------------------------------
\subsection{Standard Smagorinsky model}

\hypertarget{smago}{}

\begin{equation}
\mu_{t}=\rho \, \left( C_{s}\,\overline{\Delta } \right)^{2}
\sqrt{2\overline{\tens{S}} \,: \, \overline{\tens{S}}},
\end{equation}%
\nomenclature[odotproductdouble]{$:$}{double dot product}
%
where $\overline{\tens{S}}$ the filtered strain rate tensor components:

\begin{equation}
\overline{\tens{S}}= \symmetric{\overline{\tens{S}}} =
\frac{1}{2} \left[ \gradt \, \vect{\overline{u}} + \transpose{\left( \gradt \, \vect{\overline{u}} \right)}
\right].
\end{equation}
%
\nomenclature[osymmetric]{$\symmetric{ \left(\tens{.}\right)}$}{symmetric part of a tensor}
%
Here, $\overline{u_{i}}$ stands for the $i^{th}$ resolved velocity component
\footnote{%
In the case of implicit filtering, the discretization in space introduces a
spectral low pass filter: only the structures larger that twice the size of
the cells are accounted for. Those structures are called ''the resolved
scales'', whereas the rest, $u_{i}-\overline{u_{i}}$, is referred to as
''unresolved scales'' or ''sub-grid scales''. The influence of the
unresolved scales on the resolved scales have to be modelled.}.

$C$ is the Smagorinsky constant. Its theoretical value is $0.18$ for
homogeneous isotropic turbulence, but the value $0.065$ is classic for
channel flow.

$\overline{\Delta }$ is the filter width associated with the finite volume
formulation (implicit filtering which corresponds to the integration over a
cell). The value recommended for hexahedral cells is: $\overline{\Delta }
=2 \norm{\vol{\celli}}^{\frac{1}{3}}$where $\norm{\vol{\celli}}$ is the volume of the cell $\celli$.

See the \doxygenfile{vissma_8f90.html}{programmers reference of the dedicated subroutine} for further details.

%-------------------------------------------------------------------------------
\subsection{Dynamic Smagorinsky model}

\hypertarget{dynsmago}{}

A second filter is introduced: it is an explicit filter with a
characteristic width $\widetilde{\Delta }$ superior to that of the implicit
filter ($\overline{\Delta }$). If $\varia$ is a discrete variable defined over
the computational domain, the variable obtained after applying the explicit
filter to $\varia$ is noted $\tilde{\varia}$. Moreover, with:

\begin{equation}
\begin{array}{ r c l}
\tens{L} & = &\widetilde{\overline{\vect{u}} \otimes \overline{\vect{u}}}
-\widetilde{\overline{\vect{u}}} \otimes \widetilde{\overline{ \vect{u}}}, \\
\tens{\tau} & = & \overline{ \vect{u} \otimes \vect{u}}-\overline{\vect{u}} \otimes \overline{ \vect{u}}, \\
\tens{T} &= &\widetilde{\overline{ \vect{u} \otimes \vect{u}}}-\widetilde{\overline{\vect{u}}} \otimes
\widetilde{\overline{ \vect{u}}},
\end{array}
\end{equation}
Germano identity reads:
\begin{equation}
\tens{L} = \tens{T}-\widetilde{\tens{\tau}}.
\end{equation}

Both dynamic models described hereafter rely on the estimation of the tensors
$\tens{T}$ and $\tens{\tau}$ as functions of the filter widths and of the
strain rate tensor (Smagorinsky model). The following modelling is adopted%
\footnote{$\delta_{ij}$ stands for the Kroeneker symbol.}:

\begin{equation}
\begin{array}{ r c l}
T_{ij}-\frac{1}{3}\trace \tens{T} \delta_{ij} &=& -2 C \widetilde{\Delta}^2 |\widetilde{%
\overline{D_{ij}}}| \widetilde{\overline{D_{ij}}}, \\
\tau_{ij}-\frac{1}{3} \tens{\tau } \delta_{ij} &=& -2 C^* \overline{\Delta}^2 |%
\overline{D_{ij}}| \overline{D_{ij}} ,
\end{array}
\end{equation}
where
$\overline{u}$ stands for the \emph{implicit-filtered} value of a variable $u$
defined at the centres of the cells and $\tilde{u}$ represents the
\emph{explicit-filtered} value associated with the variable $u$. It follows that
the numerical computation of $L_{ij}$ is possible, since it requires the
explicit filtering to be applied to implicitly filtered variables only
(\emph{i.e.} to the variables explicitly computed).

On the following assumption:

\begin{equation}
C = C^*,
\end{equation}
and assuming that $C^*$ is only slightly non-uniform, so that it can be
taken out of the explicit filtering operator, the following equation is
obtained:

\begin{equation}
\deviator{\tens{L}} =  C \left(
\tens{ \alpha}- \tens{\widetilde{\beta}} \right),
\end{equation}
with:
\begin{equation}
\begin{array}{rcl}
\alpha_{ij} &=& -2 \widetilde{\Delta}^2 |\widetilde{\overline{D_{ij}}}|
\widetilde{\overline{D_{ij}}} , \\
\beta_{ij} &=& -2 \overline{\Delta}^2 |\overline{D_{ij}}| \overline{D_{ij}}.
\end{array}
\end{equation}

Since we are left with six equations to determine one single variable, the
least square method is used\footnote{
$\trace \tens{L}$ has no effect for
incompressible flows.}. With:
\begin{equation}
\tens{E} = \tens{L}-C \left( \tens{\alpha} - \tens{\widetilde{\beta}} \right),
\end{equation}
the value for $C$ is obtained by solving the following equation:
\begin{equation}
\frac{\partial \tens{E} : \tens{E}}{\partial C} = 0.
\end{equation}

Finally:
\begin{equation}
C = \frac{ \tens{M} : \tens{L} }{ \tens{M} : \tens{M}},
\end{equation}
with
\begin{equation}
\tens{M} = \tens{\alpha} - \tens{\widetilde{\beta}}.
\end{equation}

This method allows to calculate the Smagorinsky "constant" dynamically at
each time step and at each cell. However, the value obtained for $C$ can be
subjected to strong variations. Hence, this approach is often restricted to
flows presenting one or more homogeneous directions (Homogeneous Isotropic
Turbulence, 2D flows presenting an homogeneous span-wise direction...).
Indeed, in such cases, the model can be (and is) stabilized by replacing $C$
by an average value of $C$ computed over the homogeneous direction(s).

For a general case (without any homogeneous direction), a specific averaging
is introduced to stabilize the model: for any given cell of the mesh, the
averaged Smagorinsky constant is obtained as an average of $C$ over the
"extended neighbouring" of the cell (the set of cells that share at least
one vertex with the cell considered). More precisely, the average value
(also denoted $C$ hereafter) is calculated as indicated below:

\begin{equation}
C = \frac{\widetilde{ \tens{M} : \tens{L}}} {\widetilde{ \tens{M} : \tens{M}}}
\end{equation}

See the \doxygenfile{visdyn_8f90.html}{programmers reference of the dedicated subroutine} for further details.

%-------------------------------------------------------------------------------
%\subsection{WALE model}