1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
|
%-------------------------------------------------------------------------------
\section{Eddy viscosity Models (\emph{EVM})}
In this section eddy viscosity hypothesis is made which states that the Reynolds stress tensor
is aligned with the rate of strain $\tens{S}$:
%
\begin{equation}
\rho \tens{R} = \dfrac{2}{3} \rho k \tens{1} - 2 \mu_T \deviator{\tens{S}}
\end{equation}
%-------------------------------------------------------------------------------
\subsection{Equations for the variables $k$ and $\varepsilon$ (standard $k-\varepsilon$ model)}
\hypertarget{keps}{}
\begin{equation}
\left\{
\begin{array}{r c l}
\displaystyle
\rho \der{k }{t} + \grad k \cdot \left( \rho \vect{u} \right)
- \divs \left[ \left( \mu +\frac{\mu _{t}}{\sigma _{k}} \right)\grad{k}\right]
&=&\displaystyle
\mathcal{P}+\mathcal{G}-\rho \varepsilon +\Gamma k^{in}+ST_{k}, \\
\displaystyle
\rho \der{ \varepsilon }{t} + \grad \varepsilon \cdot \left(\rho \vect{u} \right)
-\divs \left[ \left( \mu +\frac{\mu _{t}}{\sigma _{\varepsilon }} \right) \grad{\varepsilon}\right]
&=& \displaystyle
C_{\varepsilon _{1}}\frac{\varepsilon }{k}\left[
\mathcal{P}+(1-C_{\varepsilon _{3}})\mathcal{G}\right] -\rho C_{\varepsilon
_{2}}\frac{\varepsilon ^{2}}{k}+\Gamma \varepsilon ^{in}+ST_{\varepsilon },
\end{array}
\right.
\end{equation}
\nomenclature[rk]{$k$}{turbulent kinetic energy \nomunit{$m^{2}.s^{-2}$}}
\nomenclature[gepslion]{$ \varepsilon $}{turbulent kinetic energy dissipation \nomunit{$m^{2}.s^{-3}$}}
\nomenclature[rproduction]{$\mathcal{P}$}{turbulent kinetic energy production \nomunit{$kg.m^{-1}.s^{-3}$}}
where $\mathcal{P}$ is the production term created by mean shear:
%
\begin{equation}
\begin{array}{rcl}
\mathcal{P} & = & \displaystyle -\rho \tens{R} : \gradt \, \vect{u}
= -\left[-2 \mu_t \deviator{\tens{S}}
+ \frac{2}{3}\rho k \tens{1}\right] : \tens{S}, \\
& = & \displaystyle
2 \mu_t \deviator{\tens{S}}: \deviator{\tens{S}}
-\dfrac{2}{3}
\rho k \trace \left( \gradt \,\vect{u} \right),
\end{array}
\end{equation}
\nomenclature[rbuoyancy]{$\mathcal{G}$}{turbulent kinetic energy buoyancy term \nomunit{$kg.m^{-1}.s^{-3}$}}
and
$\mathcal{G}$ is the production term created by gravity effects:
\begin{equation}
\displaystyle \mathcal{G}= \frac{1}{\rho}\frac{\mu_t}{\sigma_t} \grad \rho \cdot \vect{g}.
\end{equation}
The dynamic turbulent viscosity reads:
\begin{equation}
\displaystyle \mu_t=\rho C_\mu\frac{k^2}{%
\varepsilon}.
\end{equation}
\nomenclature[rstk]{$ST_{k}$}{additional turbulent kinetic energy source term \nomunit{$kg.m^{-1}.s^{-3}$}}
\nomenclature[rstepsilon]{$ST_{\varepsilon}$}{additional turbulent dissipation source term \nomunit{$kg.m^{-1}.s^{-4}$}}
$ST_{k}$ and $ST_{\varepsilon}$ stand for the additional
source terms prescribed by the user (in rare cases only).
The constants of the model are given in the Table (\ref{tab:k_epsilon_constants}):
\begin{table}[!htp]
\centering
\begin{tabular}{p{0,8cm}|p{0,8cm}|p{0,8cm}|p{0,8cm}|p{0,8cm}}
$C_\mu$ & $C_{\varepsilon_1}$ & $C_{\varepsilon_2}$ & $\sigma_k$ & $%
\sigma_\varepsilon$ \\ \hline
$0.09$ & $1.44$ & $1.92$ & $1.0$ & $1.3$
\end{tabular}%
\caption{Standard $k-\varepsilon$ model constants \cite{Launder:1974}.\label{tab:k_epsilon_constants}}
\end{table}
\nomenclature[rcmu]{$C_\mu$}{eddy viscosity constant}
\nomenclature[rcepsilon1]{$C_{\varepsilon_1}$}{constant of the standard $k-\varepsilon$ model}
\nomenclature[rcepsilon2]{$C_{\varepsilon_2}$}{constant of the standard $k-\varepsilon$ model}
\nomenclature[rcepsilon3]{$C_{\varepsilon_3}$}{constant of the standard $k-\varepsilon$ model depending on the buoyancy term}
$C_{\varepsilon_3}=0$ if $\mathcal{G}\geqslant0$ (unstable stratification)
and $C_{\varepsilon_3}=1$ if $\mathcal{G}\leqslant0$ (stable stratification).
See the \doxygenfile{turbke_8f90.html}{programmers reference of the dedicated subroutine} for further details.
%-------------------------------------------------------------------------------
%\subsection{$k-\varepsilon$ with Linear Production (\emph{LP}) model}
%-------------------------------------------------------------------------------
%\subsection{$k-\omega$ \emph{SST} model}
%-------------------------------------------------------------------------------
\subsection{$k-\epsilon-\overline{v^2}/k$ elliptic blending turbulence model}
The BL-$\overline{v^2}/k$~ \cite{Billard:2012} is a elliptic-blending based $\overline{v^2}-f$ model.
It is a low Reynolds number model and as such the wall distance of the first off-wall cell centre must be of order of unity when expressed in viscous unit.
The following gives details about the model followed by some description of its implementation into \CS.
\subsubsection{Model description}
This eddy viscosity model solves for $k$ and $\varepsilon$ as turbulence variables,
representing respectively the turbulent kinetic energy and its dissipation rate,
as well as two non-dimensional variables, $\varphi=\overline{v^2}/k$ and $\alpha$.
The first of these latter two represents the ratio of wall normal Reynolds stress
to turbulent kinetic energy (thus being a measure of the near-wall turbulence anisotropy)
and the second is a wall proximity sensitive quantity (\emph{i.e.} it takes the value $0$ at a wall and $1$ in the far field).
The coefficient $\alpha$ is solved for via an elliptic equation
($L$ representing the turbulence length-scale):
\begin{equation}
\alpha - L^2 \Delta \alpha = 1
\label{eq:turbul:blv2kalpha}
\end{equation}
%
The $\varphi$ transport equation reads:
%
\begin{equation}\label{eq:turbul:blv2kphi}
\DP{\varphi} =
\left( 1-\alpha^3 \right) f_w
+ \alpha^3 f_h - P \frac{\varphi}{k}
+ \frac{2}{k} \frac{\nu_t}{\sigma_k} \grad \varphi \cdot \grad k + \divs \left[ \left( \frac{\nu}{2} + \frac{\nu_t}{\sigma_\varphi} \right) \grad \varphi \right]
\end{equation}
The aim of the BL-$\overline{v^2}/k$~ model is to stand as a code-friendly version
of the $\overline{v^2}-f$ model of \cite{Durbin:1991}. In both the wall normal stress
$\overline{v^2}$ is used in the $\nu_T$ definition to correctly represent the near-wall turbulence
damping ($T$ is the turbulence time-scale and $C_\mu=0.22$ is calibrated in the logarithmic layer of a channel flow):
%
\begin{equation}
\nu_T= C_\mu \varphi k ~ T
\end{equation}
The elliptic blending approach mainly allows for an improved robustness.
Indeed, the original $\overline{v^2}-f$ approach solves for the quantity
$\overline{v^2}$ and a variable $f$ derived from the wall normal
pressure term\footnote{the pressure term $\phi_{22}^*$ is not decomposed but modelled as a whole}
and defined as:
%
\begin{equation}
f= \dfrac{1}{k} \left[ \underbrace{-\dfrac{2}{\rho}\overline{v \partial_y p}}_{\phi_{22}^*}-2 \nu\overline{\grad v \cdot \grad v}+\varepsilon \dfrac{\overline{v^2}}{k} \right]
\end{equation}
%
with $f$ being solved using an elliptic equation:
%
\begin{equation}
f-L^2 \Delta f = f_h
\end{equation}
%
Similarly to the $\alpha$ equation, this elliptic operator allows
to represent the non-local effects induced by the
incompressibility of turbulence. The quantity $f_h$ is obtained by
considering homogeneous modelling (\emph{i.e.} $\Delta f=0$) of $f$ using
for pressure strain-rate term the model of \cite{Launder:1975}. The correct
asymptotic behaviour of the variable $\overline{v^2}$ is ensured
by the following boundary condition:
%
\begin{equation}
\lim_{y\to 0} f = \lim_{y\to 0} \dfrac{-20 \nu^2 \overline{v^2}}{ \varepsilon y^4}
\label{eq:turbul:blv2kbc_f_durbin}
\end{equation}
%
This requires a balance between $O(y^4)$ terms which proves to be numerically problematic.
In the \mbox{BL-$\overline{v^2}/k$~} model the elliptic equation is simply solved
for a non-dimensional quantity with an homogeneous Dirichlet boundary condition,
therefore alleviating the stiffness associated to the boundary condition of the
elliptic variable. The inclusion of $\alpha$ in the definition of $f$ allows a blending
between the near-wall and the homogeneous form $f=(1-\alpha^3) f_w+\alpha^3 f_h$ in the
$\varphi$ equation. For the $f_h$ model the proposal of \cite{Speziale:1991} is preferred
for its better reproduction of the pressure term in a boundary layer.
The model also solves a $k$-$\varepsilon$ system somewhat modified compared to the one
generally adopted by $\overline{v^2}-f$ models. The $k$ and $\varepsilon$ equations
adopted by the BL-$\overline{v^2}/k$~ model read:
%
% K equation
\begin{equation} \label{eq:turbul:blv2kk}
\DP{ k} = P - \varepsilon
+ \divs \left[ \left( \frac{\nu}{2} + \frac{\nu_t}{\sigma_k} \right) \grad k \right]
- C_{\varepsilon 3} (1-\alpha)^3 \frac{k}{\varepsilon} 2 \nu \nu_t \left( \partial_k \partial_j U_i \right)\left( \partial_k \partial_j U_i \right)
\end{equation}
% Epsilon equation
\begin{equation} \label{eq:turbul:blv2kep}
\DP{\varepsilon} = \frac{C_{\varepsilon 1} P - C_{\varepsilon 2}^* \varepsilon }{T}
+ \divs \left[ \left( \frac{\nu}{2} + \frac{\nu_t}{\sigma_{\varepsilon}} \right) \grad \varepsilon \right]
\end{equation}
The $k$ equation includes the so-called ``E term'' dependent on the second velocity
derivatives squared, similar to that introduced into the $\varepsilon$ equation
by \cite{Jones:1972}, and the homogeneous part of the dissipation rate is
independently accounted for (following the suggested formulation of \cite{Jakirlic:2002}).
This implies that the quantity $\varepsilon$ resolved by the model has a different definition
to that conventionally employed in $k$-$\varepsilon$ schemes (\emph{i.e.} a change of
variable $\varepsilon \to \varepsilon + (1-\alpha)^3\frac{k}{\varepsilon}E+\frac{1}{2}\nu\partial_{jj}k$).
This has the beneficial effect of reducing the Reynolds number dependence of the near-wall
value of the turbulence variables and of the time and length scales, $T$ and $L$ respectively,
yielding better near-wall prediction of the blending variable and the turbulent viscosity,
and hence mean flow quantities, for both low and high Reynolds numbers.
A further feature is that the coefficient $C_{\varepsilon_2}^*$ is taken as a function
of the turbulent transport of $k$ to $\varepsilon$ ratio (as proposed by \cite{parneix1996second}):
\begin{equation}
C_{\varepsilon 2}^* = C_{\varepsilon 2}
- \alpha^3 (0.4-C_{\varepsilon 2}) \tanh \left( \left| \frac{\divs (\nu_t / \sigma_k \grad k)}{\varepsilon} \right| ^{3/2} \right)
\end{equation}
This improves the predictions of the dissipation rate in the defect layer of a channel flow (where the turbulent transport becomes significant) and yields better results in wake flows \cite{parneix1996second}. Full details of the scheme can be found in \cite{Billard:2012}.
%-------------------------------------------
\subsubsection{\emph{in extenso} definition}
\paragraph{Equations:}
Equations for the turbulence kinetic energy $k$, the turbulence dissipation rate $\varepsilon$,
the non-dimensionnal wall-normal Reynolds stress component $\varphi=\overline{v^2}/k$ and
the elliptic blending parameter $\alpha$ are given in Eq.~\eqref{eq:turbul:blv2kk},
Eq.~\eqref{eq:turbul:blv2kep}, Eq.~\eqref{eq:turbul:blv2kphi} and Eq.~\eqref{eq:turbul:blv2kalpha} respectively.
%-------------------------------
\paragraph{Scales and constants:}
The definition of the turbulent viscosity is given in Eq.~\eqref{eq:turbul:blv2knut}.
The near-wall and far field models, $f_w$ and $f_h$ for the $\varphi$ source term, $f$ are
expressed in Eq.~\eqref{eq:turbul:blv2kfw} and Eq.~\eqref{eq:turbul:blv2kfh}.
The definition of the variable coefficient $C_{\varepsilon_2}^*$ is given in Eq.~\eqref{eq:turbul:blv2kcep2}
Finally the time and length scales entering the definition of $\nu_t$, the equation of
$\varepsilon$ and the definition of $f_h$ as well as the equation of $\alpha$ are given in
Eq.~\eqref{eq:turbul:blv2kscales}. The viscous limiter used as lower bound of the time scale
has a finite wall value and therefore enables avoid the singularity consecutive to the definition
of the $\varepsilon$ sink term if the term $-C_{\varepsilon 2}^* \dfrac{\varepsilon^2}{k}$ were
used in place of $-C_{\varepsilon 2}^* \dfrac{\varepsilon}{T}$.
Similarly a viscous (Kolmogorov) limiter is used for the length-scale definition $L$ to
avoid numerical problems which would raise in the $\alpha$ equation numerical resolution
if the length-scale were to tend to zero at wall. The upper limiter $T_{lim}$ is used to
enforce the Bradshaw hypothesis (proportionality between shear stress and turbulent
kinetic energy in a boundary layer $\overline{uv}/k=C (=0.6/\sqrt{3}$ with the present approach)),
and corrects, in a wider range of cases, the excessive production rate returned by
the eddy viscosity formulation (\emph{i.e.} allowing a linear rather than a quadratic
dependance on $S$ for large strain rate).
\begin{equation}
\nu_t= C_\mu \varphi k ~ \min(T,T_{lim})
\label{eq:turbul:blv2knut}
\end{equation}
\begin{equation}
f_w = - \dfrac{\varepsilon}{2} \dfrac{\varphi}{k}
\label{eq:turbul:blv2kfw}
\end{equation}
\begin{equation}
f_h = - \dfrac{1}{T} \left( C_1 -1 +C_2 \dfrac{P}{\varepsilon} \right) \left( \varphi - \dfrac{2}{3} \right)
\label{eq:turbul:blv2kfh}
\end{equation}
\begin{equation}
C_{\varepsilon 2}^*=C_{\varepsilon 2}+ \alpha^3 \left( C_{\varepsilon 4}-C_{\varepsilon 2} \right) \tanh \left( \left| \frac{\divs \left(\nu_t/\sigma_k \grad k\right)}{\varepsilon} \right|^{3/2} \right)
\label{eq:turbul:blv2kcep2}
\end{equation}
\begin{equation}
\label{eq:turbul:blv2kscales}
\begin{cases}
L = \sqrt{C_{L}^{2}\left(\dfrac{k^{3}}{\varepsilon^{2}}+C_{\eta}^{2}\dfrac{\nu^{3/2}}{\varepsilon^{1/2}}\right)} & \\
T = \sqrt{\dfrac{k^{2}}{\varepsilon^{2}}+C_{T}^{2}\dfrac{\nu}{\varepsilon}} & \\
T_{lim} = \dfrac{0.6}{\sqrt{6}C_\mu \varphi \sqrt{\tens{S} : \tens{S}}}
\end{cases}
\end{equation}
%---------------------
\paragraph{Constants:}
\tablename~ \ref{tab:turbul:cstblv2k} gives the value adopted for the constants of the model.
\begin{table}[!htp]
\centering
\begin{tabular}{ccccccc}
\hline
$C_{\varepsilon 1}$ & $C_{\varepsilon 2}$ & $C_{\varepsilon 3} $ & $C_{\varepsilon 4}$ & $\sigma_k$ & $\sigma_{\varepsilon}$\\
\hline
$ 1.44 $ & $1.83$ & $2.3$ & $0.4$ & $1$ & $1.5$ \\
\hline
\end{tabular}
\begin{tabular}{cccccccc}
\hline
$C_\mu$ & $C_T$ & $C_{L}$ & $C_{\eta}$ & $C_1$ & $C_2$ & $\sigma_\varphi$\\
\hline
$0.22$ & $4$ & $0.164$ & $75$ & $1.7$ & $0.9$ & $1$ \\
\hline
\end{tabular}
\caption{\label{tab:turbul:cstblv2k} Constants of the BL-$\overline{v^2}/k$~ model}
\end{table}
%----------------------------------
\subsubsection{Boundary conditions}
The turbulent variables wall boundary conditions are given in Eq.~\eqref{eq:turbul:bcblv2k}
($y$ being the wall-distance)\footnote{Note that the $\varepsilon$ wall boundary condition
is halved compared to what is used in the $\varphi-\overline{f}$ model (\texttt{iturb=50}) consequently to the change of variable described above}:
\begin{equation}
\begin{cases}
\displaystyle \lim_{y\to0} k = 0 & \\
\displaystyle \lim_{y\to0} \varepsilon = \lim_{y\to0} \dfrac{\nu k}{y^2} & \\
\displaystyle \lim_{y\to0} \varphi = 0 & \\
\displaystyle \lim_{y\to0} \alpha = 0 & \\
\end{cases}
\label{eq:turbul:bcblv2k}
\end{equation}
%-------------------------------
\subsubsection{Remaining issues}
\begin{itemize}
\item The actual source term $\left( \partial_k \partial_j U_i \right)\left( \partial_k \partial_j U_i \right)$ should be written as
$\displaystyle{\sum_{i=1}^3 \sum_{j=1}^3 \sum_{k=1}^3 \left( \partial_k \partial_j U_i \right)^2}$ and not $\displaystyle{\sum_{i=1}^3 \left(\sum_{j=1}^3 \sum_{k=1}^3 (\partial_k \partial_j U_i )\right)^2}$ as it is, incorrectly, in the present implementation.
\item Issues regarding grid/code dependancy of this term have already been raised \cite{Iaccarino:2001}. Alternatives may be worth investigating, such as $\left( \partial_{jj} U_i \right)^2$.
\end{itemize}
%-------------------------------------------------------------------------------
\subsection{Spalart-Allmaras model}
\hypertarget{spalart}{}
The Spalart-Allmaras turbulence model \cite{Spalart:1992} is an \emph{EVM} \emph{RANS} model developed in the $90$'s in aeronautics, and is therefore well suited
for studying a flow around an air-plane wing for instance.
%--------------------------------
\subsubsection{Model description}
It consists in a transport equation of a scalar $\tilde{\nu}$ directly linked to the turbulent viscosity $\mu_T$.
More recently, this model has been extended by Aupoix \cite{Aupoix:2003} to rough wall for studying atmospheric flows. It was also successfully applied to flow in turbo-machinery where variants of this model has been developed.
The transport equation of $\tilde{\nu}$ (pseudo turbulent viscosity, which tends to it far from walls) reads\footnote{
the present formulation is a simplified one presented by Aupoix \cite{Aupoix:2003} where transition terms have been neglected.
}
\begin{equation}\label{eq:turbul:SA_used}
\rho \der{\tilde{\nu}}{ t} + \grad \tilde{\nu} \cdot\left( \rho \vect{u} \right)
= c_{b1} \rho \tilde{S} \tilde{\nu}
- c_{w1}f_{w} \rho \left( \dfrac{\tilde{\nu}}{d} \right)^2
+ \dfrac{1}{ \sigma} \left[ \divs \left( (\mu + \rho \tilde{\nu}) \grad \tilde{\nu} \right)
+ c_{b2} \rho \left| \grad \tilde{\nu} \right| ^2
\right]
+ \Gamma \left( \tilde{\nu}^{in} - \tilde{\nu}^n \right) +ST^{imp} \tilde{\nu} +ST^{exp}
\end{equation}
%
where $\tilde{\nu}^{in}$ is the injection value of $\tilde{\nu}$ in case of any mass source term, and $ST^{imp}_{\tilde{\nu}}$ and $ST^{exp}_{\tilde{\nu}}$
are respectively the implicit and explicit additional user source terms and
where
%
\begin{equation}\label{eq:def_fun_SA}
\begin{array}{ r c l}
\mu_T & =& \rho f_{v1} \tilde{\nu} \\
f_{v1} &=& \dfrac{\chi^3 }{\chi^3+ c_{v1}^3} \\
\chi & = & \dfrac{\tilde{\nu}}{ \nu} \\
\tilde{S} &=& \Omega + \dfrac{\tilde{\nu}}{ \kappa ^2 d^2} f_{v2} \\
f_{v2} &=& 1 - \dfrac{ \tilde{\nu}}{\nu + \tilde{\nu} f_{v1}} \\
f_w &=& g \left[ \dfrac{1+ c_{w3}^6 }{g^6+ c_{w3}^6} \right]^\frac{1}{6} \\
g &=& r +c_{w2} \left( r^6 -r \right) \\
r &=& \min \left[ \dfrac{ \tilde{\nu} }{ \tilde{S} \kappa^ 2 d^2 } ; \; 10 \right]
\end{array}
\end{equation}
%
The constants are defined in \tablename~\ref{tab:const_SA}.
\begin{table}[!htbp]
\centering
$
\begin{array}{c | c | c | c | c | c | c | c }
\sigma & c_{b1} & c_{b2} & \kappa & c_{w2} & c_{w3} & c_{v1} & c_{w1} \\
\hline
\frac{2}{3} & 0.1355 & 0.622 & 0.41 & 0.3 & 2 & 7.1 & \dfrac{c_{b1}}{ \kappa^2}+ \dfrac{1+c_{b2}}{ \sigma}
\end{array}
$
\caption{Constants of the Spalart Allmaras model.\label{tab:const_SA}}
\end{table}
%----------------------------
\subsubsection{Time stepping}
Equation \eqref{eq:turbul:SA_used} can be rewritten with the $\theta$-scheme presented in \chaptername~\ref{chapter:timstp} as
%
\begin{equation}\label{eq:turbul:SA_time}
\begin{array}{c}
\overbrace{
\left[ \dfrac{\rho}{\Delta t} + \max \left( c_{w1} f_{w} \rho \dfrac{\tilde{\nu}^n}{d^2} - c_{b1}\rho \tilde{S} , \, 0 \right) - \theta T_s^{imp} + \theta \Gamma^n \right]
}^{\texttt{implicit term}}
\delta \tilde{\nu}^{n+1}
%
\\
+ \theta
\left(
\underbrace{
\grad \delta \tilde{\nu}^{n+1} \cdot \left( \rho \vect{u} \right)
}_{
\texttt{implicit part of the convection}
}
-
\underbrace{
\divs \left[ \dfrac{\mu + \rho \tilde{\nu}^{n}}{\sigma} \grad \delta \tilde{\nu}^{n+1} \right]
}_{
\texttt{implicit part of the diffusion}
}
\right)
\\
=
\\
- \grad \tilde{\nu}^{n} \cdot \left( \rho \vect{u} \right)
+
\divs \left[ \dfrac{\mu + \rho \tilde{\nu}^{n}}{\sigma} \grad \tilde{\nu}^{n} \right]
\\
+
c_{b1} \rho \tilde{S} \tilde{\nu}^n
- c_{w1}f_{w}\rho \left( \dfrac{\tilde{\nu}^{n}}{d} \right)^2
+ \dfrac{c_{b2}\rho}{ \sigma}
\left| \grad \tilde{\nu}^{n} \right| ^2
+ \Gamma \left( \tilde{\nu}^{in} - \tilde{\nu}^n \right) +ST^{imp} \tilde{\nu}^n +ST^{exp}
\end{array}
\end{equation}
where $\delta \tilde{\nu}^{n+1} \equiv \tilde{\nu}^{n+1} - \tilde{\nu}^{n}$.
\begin{remark}
The term $\left( c_{w1} f_{w} \rho \dfrac{\tilde{\nu}^n}{d^2} - c_{b1}\rho \tilde{S} \right)$ is implicit
so that $\tilde{\nu} $ does not require any clipping to remain positive if an \emph{upwind} convective scheme and no flux
reconstruction are chosen.
\end{remark}
%----------------------------------
\subsubsection{Boundary conditions}
\paragraph{Smooth walls:}
the boundary condition on $\tilde{\nu}$ is a standard zero Dirichlet boundary condition on the walls
(see \chaptername~\ref{chapter:bndcnd} for the encoding of standard Dirichlet conditions).
Note that the model gives a log law outside of the viscous sub-layer, \emph{i.e.}:
\begin{equation}
\begin{array}{r c l}
\tilde{\nu} & \simeq & \kappa u^\star d \\
\tilde{S} & \simeq & \dfrac{u^\star}{ \kappa d}
\end{array}
\end{equation}
\paragraph{Rough walls:}
In case of rough walls, let us define:
\begin{equation}
\begin{array}{rcl}
\chi_{rough} & = & \chi + c_{R1} \dfrac{h_s}{d_{rough}} \\
d_{rough} & = & d + d_0 \\
d_0 & = & \exp \left( -8.5 \kappa \right) h_s \simeq 0.03 h_s
\end{array}
\end{equation}
%
where $h_s$ is the roughness size. The Dirichlet boundary conditions
is replaced by the following Neumann boundary condition:
%
\begin{equation}\label{eq:eq_neumann_nu}
\left. \der{\tilde{ \nu}}{n} \right|_\fib = \dfrac{\left. \tilde{ \nu}\right|_\fib }{ d_0}
\end{equation}
%
A development in series in then written:
\begin{equation}\label{eq:eq_neumann_nu_vf}
\tilde{\nu}_\fib = \tilde{\nu}_{\centip} - \grad_\fib \tilde{ \nu} \cdot \vect{\centip \centf}
\end{equation}
Finally, that is a Robin type boundary condition formulated as follows in \CS:
\begin{equation}\label{eq:eq_neumann_nu_coef}
\tilde{\nu}_\fib = A^g_\fib - B^g_\fib \tilde{\nu}_\centip
\end{equation}
with $A^g_\fib=0$ and
%
\begin{equation}\label{eq:eq_neumann_nu_coefb}
B^g_\fib = \dfrac{d_0}{d_0 + \overline{\centip \centf} }
\end{equation}
\paragraph{Inlet:}
the profile of $\tilde{\nu}$ is imposed, the value is deduced from the profiles imposed on $k$ and $\varepsilon$ for a $k-\varepsilon$ turbulence
model assuming $\tilde{\nu } \simeq \nu_T$.
See the \doxygenfile{turbsa_8f90.html}{programmers reference of the dedicated subroutine} for further details.
%-------------------------------------------------------------------------------
\section{Differential Reynolds Stress Models (\emph{DRSM})}
In this section, the presented models solve a differential transport equation
on the Reynolds' stresses tensor.
%-------------------------------------------------------------------------------
\subsection{Equations for the Reynolds stress tensor components $R_{ij}$
and $\varepsilon$ (\emph{LRR} model)}
\hypertarget{rijeps}{}
%
\nomenclature[rrt2]{$\tens{R}$}{Reynolds stress tensor \nomunit{$m^{2}.s^{-2}$}}
\nomenclature[rrij]{$R_{ij}$}{componant $ij$ of the Reynolds stress tensor \nomunit{$m^{2}.s^{-2}$}}
\begin{equation}
\left\{
\begin{array}{rcll}
\displaystyle
\rho \der{\tens{R}}{t}
+ \gradtt \, \tens{R} \cdot \left( \rho \vect{u} \right)
- \divt \left( \mu \gradtt \,\tens{R} \right)
& = &
\displaystyle
\tens{\mathit{d}} +
\tens{\mathcal{P}} + \tens{G}+ \tens{\Phi}
-\rho \tens{\varepsilon} & \displaystyle+\Gamma \tens{R}^{in}+\tens{ST}_{R_{ij}},
\\
\displaystyle
\rho \der{\varepsilon }{t}
+ \grad \varepsilon \cdot \left( \rho \vect{u} \right)
- \dive\left(\mu \grad{\varepsilon}\right)
& = & \displaystyle
\mathit{{d}+C_{\varepsilon _{1}}\frac{\varepsilon }{k}\left[ \mathcal{P}%
+G_{\varepsilon }\right] -\rho C_{\varepsilon _{2}}\frac{\varepsilon ^{2}}{k}}
& \displaystyle+\Gamma \varepsilon ^{in}+ST_{\varepsilon },
\end{array}%
\right.
\end{equation}
\nomenclature[rproductiont2]{$\tens{\mathcal{P}}$}{turbulent production tensor \nomunit{$kg.m^{-1}.s^{-3}$}}
\nomenclature[rbuoyancyt2]{$\tens{\mathcal{G}}$}{turbulent buoyancy production tensor \nomunit{$kg.m^{-1}.s^{-3}$}}
where
$\tens{\mathcal{P}}$ stands for the turbulence production tensor associated
with mean flow strain-rate and $\tens{\mathcal{G}}$ is stands for the
production- tensor associated with buoyancy effects:
\begin{equation}
\begin{array}{r c l}
\displaystyle \tens{ \mathcal{P}} & = & \displaystyle-\rho \left[ \tens{R} \cdot \transpose{\gradt \, \vect{u}}
+ \gradt \, \vect{u} \cdot \tens{R}\right], \\
\tens{ \mathcal{G}} & = &
\displaystyle \left[\vect{r} \otimes \vect{g} +\vect{g} \otimes \vect{r} \right].
\end{array}
\end{equation}
where $ \vect{r} \equiv \overline{\rho^\prime \vect{u}^\prime}$ is modelled through a Generalized Gradient Diffusion Hypothesis (GGDH):
\mbox{$\vect{r} \simeq \frac{3}{2}\frac{C_{\mu }}{\sigma_{t}} \frac{k}{\varepsilon } \tens{R} \cdot \grad \rho$} and
$G_{\varepsilon }= \Max \left(0, \, \frac{1}{2}\trace \tens{\mathcal{G}}\right)$.
\nomenclature[rrt1]{$\vect{r}$}{velocity density correlation vector $\overline{\rho^\prime \vect{u}^\prime}$, generally modelled by a Generalized Gradient Diffusion Hypothesis (GGDH): $\frac{3}{2}\frac{C_{\mu }}{\sigma _{t}} \frac{k}{\varepsilon } \tens{R} \cdot \grad \rho$ }
\nomenclature[rbuoyancyepsilon]{$G_{\varepsilon }$}{turbulent buoyancy term for dissipation}
\begin{remark}
Under Boussinesq assumption ($\rho$ varies only in the buoyancy term in the momemtum equation, lineraly with respect to $\theta$, the velocity density correlation becomes $\rho \overline{\theta^\prime \vect{u}^\prime}$.
\end{remark}
With these definitions the following relations hold:
\begin{equation}
\begin{array}{r c l}
\displaystyle k &=&\frac{1}{2} \trace{\tens{R}}, \\
\mathcal{P} &=&\frac{1}{2} \trace \left( \tens{\mathcal{P}} \right) ,
\end{array}
\end{equation}
$\tens{\Phi}$ is the term representing pressure-velocity correlations:
\nomenclature[gphit2]{$\tens{\Phi}$}{pressure-velocity correlation tensor \nomunit{$kg.s^{-3}$}}
\begin{equation}
\displaystyle \tens{\Phi} = \tens{\phi}_{1}+ \tens{\phi}_{2}+ \tens{\phi}_{3}+ \tens{\phi}_{w},
\end{equation}%
%
\begin{equation}
\begin{array}{r c l}
\tens{\phi}_{1} &=& \displaystyle -\rho \,C_{1}\frac{\varepsilon }{k}%
\deviator{\tens{R}}, \\
\tens{\phi}_{2} &=& -C_{2} \deviator{\tens{\mathcal{P}}}, \\
\tens{\phi}_{3} &=& -C_{3} \deviator{ \tens{G} }.
\end{array}
\end{equation}
The term $\tens{\phi}_{w}$ is called \emph{wall echo term} (by default, it is not
accounted for: see \doxygenfile{turrij_8f90.html}{html programmer's documentation of the subroutine} and the appendix \ref{ap:turrij}).
The dissipation term, $\tens{\varepsilon}$ , is considered isotropic:
\nomenclature[gepsilont2]{$\tens{\varepsilon}$}{turbulent kinetic energy dissipation tensor \nomunit{$m^{2}.s^{-3}$}}
\begin{equation}
\displaystyle \tens{\varepsilon}=\frac{2}{3}\ \varepsilon \tens{1}.
\end{equation}
The turbulent diffusion terms are:
\begin{equation}
\begin{array}{r c l}
\tens{d} & = & C_{S} \displaystyle \divt \left( \rho \frac{k}{\varepsilon }%
\tens{R} \cdot \gradtt \, \tens{R} \right), \\
d & = & C_{\varepsilon }\displaystyle \dive \left( \rho \frac{k}{\varepsilon}
\tens{R} \cdot \grad \varepsilon \right).
\end{array}
\end{equation}
In the rare event of mass sources, $\Gamma R_{ij}^{in}$ and $\Gamma
\varepsilon ^{i}$ are the corresponding injection terms. $ST_{R_{ij}}$ and $%
ST_{\varepsilon }$ are also rarely used additional source terms that can be
prescribed by the user.
\begin{table}[!htp]
\begin{center}
\begin{tabular}{p{0,8cm}|p{0,8cm}|p{0,8cm}|p{0,8cm}|p{0,8cm}|p{0,8cm}|p{0,8cm}|p{0,8cm}|p{0,8cm}|p{0,8cm}}
$C_\mu$ & $C_{\varepsilon}$ & $C_{\varepsilon_1}$ & $C_{\varepsilon_2}$ & $%
C_1$ & $C_2$ & $C_3$ & $C_S$ & $C^{\prime}_1$ & $C^{\prime}_2$ \\ \hline
$0.09$ & $0.18$ & $1.44$ & $1.92$ & $1.8$ & $0.6$ & $0.55$ & $0.22$ & $0.5$
& $0.3$
\end{tabular}
\end{center}
\caption{Model constants of the \emph{LRR} $R_{ij}-\varepsilon$ model \cite{Launder:1975}.}
\end{table}
%-------------------------------------------------------------------------------
\section{Large-Eddy Simulation (\emph{LES})}
%-------------------------------------------------------------------------------
\subsection{Standard Smagorinsky model}
\hypertarget{smago}{}
\begin{equation}
\mu_{t}=\rho \, \left( C_{s}\,\overline{\Delta } \right)^{2}
\sqrt{2\overline{\tens{S}} \,: \, \overline{\tens{S}}},
\end{equation}%
\nomenclature[odotproductdouble]{$:$}{double dot product}
%
where $\overline{\tens{S}}$ the filtered strain rate tensor components:
\begin{equation}
\overline{\tens{S}}= \symmetric{\overline{\tens{S}}} =
\frac{1}{2} \left[ \gradt \, \vect{\overline{u}} + \transpose{\left( \gradt \, \vect{\overline{u}} \right)}
\right].
\end{equation}
%
\nomenclature[osymmetric]{$\symmetric{ \left(\tens{.}\right)}$}{symmetric part of a tensor}
%
Here, $\overline{u_{i}}$ stands for the $i^{th}$ resolved velocity component
\footnote{%
In the case of implicit filtering, the discretization in space introduces a
spectral low pass filter: only the structures larger that twice the size of
the cells are accounted for. Those structures are called ''the resolved
scales'', whereas the rest, $u_{i}-\overline{u_{i}}$, is referred to as
''unresolved scales'' or ''sub-grid scales''. The influence of the
unresolved scales on the resolved scales have to be modelled.}.
$C$ is the Smagorinsky constant. Its theoretical value is $0.18$ for
homogeneous isotropic turbulence, but the value $0.065$ is classic for
channel flow.
$\overline{\Delta }$ is the filter width associated with the finite volume
formulation (implicit filtering which corresponds to the integration over a
cell). The value recommended for hexahedral cells is: $\overline{\Delta }
=2 \norm{\vol{\celli}}^{\frac{1}{3}}$where $\norm{\vol{\celli}}$ is the volume of the cell $\celli$.
See the \doxygenfile{vissma_8f90.html}{programmers reference of the dedicated subroutine} for further details.
%-------------------------------------------------------------------------------
\subsection{Dynamic Smagorinsky model}
\hypertarget{dynsmago}{}
A second filter is introduced: it is an explicit filter with a
characteristic width $\widetilde{\Delta }$ superior to that of the implicit
filter ($\overline{\Delta }$). If $\varia$ is a discrete variable defined over
the computational domain, the variable obtained after applying the explicit
filter to $\varia$ is noted $\tilde{\varia}$. Moreover, with:
\begin{equation}
\begin{array}{ r c l}
\tens{L} & = &\widetilde{\overline{\vect{u}} \otimes \overline{\vect{u}}}
-\widetilde{\overline{\vect{u}}} \otimes \widetilde{\overline{ \vect{u}}}, \\
\tens{\tau} & = & \overline{ \vect{u} \otimes \vect{u}}-\overline{\vect{u}} \otimes \overline{ \vect{u}}, \\
\tens{T} &= &\widetilde{\overline{ \vect{u} \otimes \vect{u}}}-\widetilde{\overline{\vect{u}}} \otimes
\widetilde{\overline{ \vect{u}}},
\end{array}
\end{equation}
Germano identity reads:
\begin{equation}
\tens{L} = \tens{T}-\widetilde{\tens{\tau}}.
\end{equation}
Both dynamic models described hereafter rely on the estimation of the tensors
$\tens{T}$ and $\tens{\tau}$ as functions of the filter widths and of the
strain rate tensor (Smagorinsky model). The following modelling is adopted%
\footnote{$\delta_{ij}$ stands for the Kroeneker symbol.}:
\begin{equation}
\begin{array}{ r c l}
T_{ij}-\frac{1}{3}\trace \tens{T} \delta_{ij} &=& -2 C \widetilde{\Delta}^2 |\widetilde{%
\overline{D_{ij}}}| \widetilde{\overline{D_{ij}}}, \\
\tau_{ij}-\frac{1}{3} \tens{\tau } \delta_{ij} &=& -2 C^* \overline{\Delta}^2 |%
\overline{D_{ij}}| \overline{D_{ij}} ,
\end{array}
\end{equation}
where
$\overline{u}$ stands for the \emph{implicit-filtered} value of a variable $u$
defined at the centres of the cells and $\tilde{u}$ represents the
\emph{explicit-filtered} value associated with the variable $u$. It follows that
the numerical computation of $L_{ij}$ is possible, since it requires the
explicit filtering to be applied to implicitly filtered variables only
(\emph{i.e.} to the variables explicitly computed).
On the following assumption:
\begin{equation}
C = C^*,
\end{equation}
and assuming that $C^*$ is only slightly non-uniform, so that it can be
taken out of the explicit filtering operator, the following equation is
obtained:
\begin{equation}
\deviator{\tens{L}} = C \left(
\tens{ \alpha}- \tens{\widetilde{\beta}} \right),
\end{equation}
with:
\begin{equation}
\begin{array}{rcl}
\alpha_{ij} &=& -2 \widetilde{\Delta}^2 |\widetilde{\overline{D_{ij}}}|
\widetilde{\overline{D_{ij}}} , \\
\beta_{ij} &=& -2 \overline{\Delta}^2 |\overline{D_{ij}}| \overline{D_{ij}}.
\end{array}
\end{equation}
Since we are left with six equations to determine one single variable, the
least square method is used\footnote{
$\trace \tens{L}$ has no effect for
incompressible flows.}. With:
\begin{equation}
\tens{E} = \tens{L}-C \left( \tens{\alpha} - \tens{\widetilde{\beta}} \right),
\end{equation}
the value for $C$ is obtained by solving the following equation:
\begin{equation}
\frac{\partial \tens{E} : \tens{E}}{\partial C} = 0.
\end{equation}
Finally:
\begin{equation}
C = \frac{ \tens{M} : \tens{L} }{ \tens{M} : \tens{M}},
\end{equation}
with
\begin{equation}
\tens{M} = \tens{\alpha} - \tens{\widetilde{\beta}}.
\end{equation}
This method allows to calculate the Smagorinsky "constant" dynamically at
each time step and at each cell. However, the value obtained for $C$ can be
subjected to strong variations. Hence, this approach is often restricted to
flows presenting one or more homogeneous directions (Homogeneous Isotropic
Turbulence, 2D flows presenting an homogeneous span-wise direction...).
Indeed, in such cases, the model can be (and is) stabilized by replacing $C$
by an average value of $C$ computed over the homogeneous direction(s).
For a general case (without any homogeneous direction), a specific averaging
is introduced to stabilize the model: for any given cell of the mesh, the
averaged Smagorinsky constant is obtained as an average of $C$ over the
"extended neighbouring" of the cell (the set of cells that share at least
one vertex with the cell considered). More precisely, the average value
(also denoted $C$ hereafter) is calculated as indicated below:
\begin{equation}
C = \frac{\widetilde{ \tens{M} : \tens{L}}} {\widetilde{ \tens{M} : \tens{M}}}
\end{equation}
See the \doxygenfile{visdyn_8f90.html}{programmers reference of the dedicated subroutine} for further details.
%-------------------------------------------------------------------------------
%\subsection{WALE model}
|