1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
<?xml version="1.0" encoding="UTF-8"?>
<ui version="4.0">
<class>NumericalParamGlobalForm</class>
<widget class="QWidget" name="NumericalParamGlobalForm">
<property name="geometry">
<rect>
<x>0</x>
<y>0</y>
<width>871</width>
<height>783</height>
</rect>
</property>
<property name="windowTitle">
<string>Form</string>
</property>
<layout class="QGridLayout">
<property name="margin">
<number>9</number>
</property>
<property name="spacing">
<number>6</number>
</property>
<item row="0" column="0">
<widget class="QGroupBox" name="groupBox">
<property name="mouseTracking">
<bool>false</bool>
</property>
<property name="toolTip">
<string><html><head/><body><p><span style=" font-size:9pt;">Define global numerical parameters for the calculation.</span></p></body></html></string>
</property>
<property name="title">
<string>Global parameters</string>
</property>
<layout class="QGridLayout">
<property name="margin">
<number>9</number>
</property>
<property name="spacing">
<number>6</number>
</property>
<item row="0" column="0">
<layout class="QGridLayout" name="gridLayout_3">
<property name="margin">
<number>0</number>
</property>
<item row="1" column="0">
<widget class="QComboBox" name="comboBoxIMRGRA">
<property name="minimumSize">
<size>
<width>360</width>
<height>20</height>
</size>
</property>
<property name="toolTip">
<string><html><head/><body><p><span style=" font-size:9pt;">Indicate the gradient reconstruction method (one method for all the variables):<br/>- Iterative handling of the non-orthogonalities,<br/>- Least squares method based on the first neighbour cells (which share a face with the treated cell),<br/>- Least squares method based on the extended neighbourhood (cells which share a node with the treated cell),<br/>- Least squares method based on a partial extended neighbourhood (all first neighbours plus the extended neighbourhood cells that are connected to a face where the non-orthogonality angle is larger than a certain parameter),<br/>- Iterative method with least squares initialization on the first neighbours</span></p></body></html></string>
</property>
</widget>
</item>
<item row="0" column="1">
<spacer>
<property name="orientation">
<enum>Qt::Horizontal</enum>
</property>
<property name="sizeHint" stdset="0">
<size>
<width>20</width>
<height>20</height>
</size>
</property>
</spacer>
</item>
<item row="0" column="0">
<widget class="QLabel" name="labelIMRGRA">
<property name="toolTip">
<string><html><head/><body><p><span style=" font-size:9pt;">Indicate the gradient reconstruction method (one method for all the variables):<br/>- Iterative handling of the non-orthogonalities,<br/>- Least squares method based on the first neighbour cells (which share a face with the treated cell),<br/>- Least squares method based on the extended neighbourhood (cells which share a node with the treated cell),<br/>- Least squares method based on a partial extended neighbourhood (all first neighbours plus the extended neighbourhood cells that are connected to a face where the non-orthogonality angle is larger than a certain parameter),<br/>- Iterative method with least squares initialization on the first neighbours</span></p></body></html></string>
</property>
<property name="text">
<string>Gradient calculation method:</string>
</property>
</widget>
</item>
</layout>
</item>
<item row="3" column="0">
<spacer>
<property name="orientation">
<enum>Qt::Vertical</enum>
</property>
<property name="sizeHint" stdset="0">
<size>
<width>420</width>
<height>20</height>
</size>
</property>
</spacer>
</item>
<item row="1" column="0">
<layout class="QGridLayout" name="gridLayout_2">
<property name="margin">
<number>0</number>
</property>
<item row="1" column="1">
<widget class="QLabel" name="labelIVISSE">
<property name="toolTip">
<string><html><head/><body><p><span style=" font-size:9pt;">Indicate whether the source terms in transposed gradient and velocity divergence should be taken into account in the moment equation. In the compressible module, these terms also account for the volume viscosity.</span></p><p><span style=" font-size:9pt;">(Code_Saturne key word: </span><span style=" font-size:9pt; font-weight:600;">IVISSE</span><span style=" font-size:9pt;">)</span></p></body></html></string>
</property>
<property name="text">
<string>Handling of transposed gradient and divergence
source terms in momentum equation</string>
</property>
</widget>
</item>
<item row="2" column="3">
<spacer>
<property name="orientation">
<enum>Qt::Horizontal</enum>
</property>
<property name="sizeHint" stdset="0">
<size>
<width>16</width>
<height>16</height>
</size>
</property>
</spacer>
</item>
<item row="0" column="3">
<spacer>
<property name="orientation">
<enum>Qt::Horizontal</enum>
</property>
<property name="sizeHint" stdset="0">
<size>
<width>16</width>
<height>16</height>
</size>
</property>
</spacer>
</item>
<item row="4" column="2">
<widget class="QLineEdit" name="lineEditRELAXP">
<property name="sizePolicy">
<sizepolicy hsizetype="Fixed" vsizetype="Fixed">
<horstretch>0</horstretch>
<verstretch>0</verstretch>
</sizepolicy>
</property>
<property name="minimumSize">
<size>
<width>60</width>
<height>0</height>
</size>
</property>
<property name="toolTip">
<string><html><head/><body><p><span style=" font-size:9pt;">Define the relaxation coefficient of the pressure, in case of unsteady algorithm. Its default value is 1 for the pressure.</span></p></body></html></string>
</property>
</widget>
</item>
<item row="5" column="1">
<widget class="QLabel" name="labelSRROM">
<property name="toolTip">
<string><html><head/><body><p><span style=" font-size:9pt;">Define the sub-relaxation coefficient </span><span style=" font-size:9pt; font-weight:600;">SRROM</span><span style=" font-size:9pt;"> for the density, in case of gas combustion, pulverized coal or electric arcs: </span></p><p><span style=" font-size:9pt; font-weight:600;">rho</span><span style=" font-size:9pt; font-weight:600; vertical-align:super;">n+1</span><span style=" font-size:9pt; font-weight:600;"> = SRROM * rho</span><span style=" font-size:9pt; font-weight:600; vertical-align:super;">n</span><span style=" font-size:9pt; font-weight:600;"> + (1-SRROM) * rho</span><span style=" font-size:9pt; font-weight:600; vertical-align:super;">n+1</span></p><p><span style=" font-size:9pt;">(Code_Saturne key word: </span><span style=" font-size:9pt; font-weight:600;">SRROM</span><span style=" font-size:9pt;">)</span></p></body></html></string>
</property>
<property name="text">
<string>Relaxation of density</string>
</property>
</widget>
</item>
<item row="2" column="1">
<widget class="QLabel" name="labelEXTRAG">
<property name="toolTip">
<string><html><head/><body><p><span style=" font-size:9pt;">Choose the extrapolation of pressure gradient on domain boundary:<br/>- Homogeneous Neumann calculated at first-order,<br/>- Gradient extrapolation (gradient at the boundary face equal to the gradient in the neighbour cell), calculated at second-order in the case of an orthogonal mesh and at first-order otherwise. It can correct the non-physical velocities that appear on horizontal walls when there is a variable density and gravity.</span></p></body></html></string>
</property>
<property name="text">
<string>Extrapolation of pressure gradient
on domain boundary</string>
</property>
</widget>
</item>
<item row="3" column="1">
<widget class="QLabel" name="labelICFGRP">
<property name="toolTip">
<string><html><head/><body><p><span style=" font-size:9pt;">Choose whether the boundary conditions should take into account the hydrostatic balance.</span></p><p><span style=" font-size:9pt;">In the cases where gravity is predominant, taking into account the hydrostatic pressure allows to get rid of the disturbances which may appear near the horizontal walls when the flow is little convective. Otherwise, the pressure condition is calculated from the solution of the one-dimensional Euler equations for a perfect gas near a wall, for the variables normal velocity, density and pressure.</span></p><p><span style=" font-size:9pt;">(Code_Saturne key word: </span><span style=" font-size:9pt; font-weight:600;">ICFGRP</span><span style=" font-size:9pt;">)</span></p></body></html></string>
</property>
<property name="text">
<string>Hydrostatic equilibrium for pressure at walls</string>
</property>
</widget>
</item>
<item row="4" column="1">
<widget class="QLabel" name="labelRELAXP">
<property name="toolTip">
<string><html><head/><body><p><span style=" font-size:9pt;">Define the relaxation coefficient of the pressure, in case of unsteady algorithm. Its default value is 1 for the pressure.</span></p></body></html></string>
</property>
<property name="text">
<string>Relaxation of pressure increase</string>
</property>
</widget>
</item>
<item row="5" column="2">
<widget class="QLineEdit" name="lineEditSRROM">
<property name="sizePolicy">
<sizepolicy hsizetype="Fixed" vsizetype="Fixed">
<horstretch>0</horstretch>
<verstretch>0</verstretch>
</sizepolicy>
</property>
<property name="minimumSize">
<size>
<width>60</width>
<height>0</height>
</size>
</property>
<property name="toolTip">
<string><html><head/><body><p><span style=" font-size:9pt;">Define the sub-relaxation coefficient </span><span style=" font-size:9pt; font-weight:600;">SRROM</span><span style=" font-size:9pt;"> for the density, in case of gas combustion, pulverized coal or electric arcs: </span></p><p><span style=" font-size:9pt; font-weight:600;">rho</span><span style=" font-size:9pt; font-weight:600; vertical-align:super;">n+1</span><span style=" font-size:9pt; font-weight:600;"> = SRROM * rho</span><span style=" font-size:9pt; font-weight:600; vertical-align:super;">n</span><span style=" font-size:9pt; font-weight:600;"> + (1-SRROM) * rho</span><span style=" font-size:9pt; font-weight:600; vertical-align:super;">n+1</span></p><p><span style=" font-size:9pt;">(Code_Saturne key word: </span><span style=" font-size:9pt; font-weight:600;">SRROM</span><span style=" font-size:9pt;">)</span></p></body></html></string>
</property>
</widget>
</item>
<item row="0" column="1">
<widget class="QLabel" name="labelIPUCOU">
<property name="toolTip">
<string><html><head/><body><p><span style=" font-size:9pt;">Choose the algorithm for velocity/pressure coupling:<br/>- Standard algorithm (unticked box),<br/>- Reinforced coupling in case of calculation with long time steps (ticked box).</span></p><p><span style=" font-size:9pt;">(Code_Saturne key word: </span><span style=" font-size:9pt; font-weight:600;">IPUCOU</span><span style=" font-size:9pt;">)</span></p></body></html></string>
</property>
<property name="text">
<string>Pseudo-coupled velocity-pressure solver</string>
</property>
</widget>
</item>
<item row="6" column="1">
<widget class="QLabel" name="labelImprovedPressure">
<property name="toolTip">
<string><html><head/><body><p><span style=" font-size:9pt;">Specify the method for taking into account the balance between the pressure gradient and the source terms (gravity and head losses):<br/>- Standard algorithm (Unticked box),<br/>- Improved algorithm (Ticked box).</span></p><p><span style=" font-size:9pt;"><br/>When the density effects are important, the choice of the improved algorithm allows to improve the interpolation of the pressure and correct the non-physical velocities which may appear in highly stratified areas or near horizontal walls. The improved algorithm also allows eradicating the velocity oscillations which tend toappear at the frontiers of areas with high head losses.</span></p><p><span style=" font-size:9pt;">(Code_Saturne key word: </span><span style=" font-size:9pt; font-weight:600;">IPHYDR</span><span style=" font-size:9pt;"> and </span><span style=" font-size:9pt; font-weight:600;">ICALHY</span><span style=" font-size:9pt;">)</span></p></body></html></string>
</property>
<property name="text">
<string>Improved pressure interpolation in stratified flow</string>
</property>
</widget>
</item>
<item row="2" column="2">
<widget class="QComboBox" name="comboBoxEXTRAG">
<property name="toolTip">
<string><html><head/><body><p><span style=" font-size:9pt;">Choose the extrapolation of pressure gradient on domain boundary:<br/>- Homogeneous Neumann calculated at first-order,<br/>- Gradient extrapolation (gradient at the boundary face equal to the gradient in the neighbour cell), calculated at second-order in the case of an orthogonal mesh and at first-order otherwise. It can correct the non-physical velocities that appear on horizontal walls when there is a variable density and gravity.</span></p></body></html></string>
</property>
</widget>
</item>
<item row="6" column="2">
<widget class="QCheckBox" name="checkBoxImprovedPressure">
<property name="toolTip">
<string><html><head/><body><p><span style=" font-size:9pt;">Specify the method for taking into account the balance between the pressure gradient and the source terms (gravity and head losses):<br/>- Standard algorithm (Unticked box),<br/>- Improved algorithm (Ticked box).</span></p><p><span style=" font-size:9pt;"><br/>When the density effects are important, the choice of the improved algorithm allows to improve the interpolation of the pressure and correct the non-physical velocities which may appear in highly stratified areas or near horizontal walls. The improved algorithm also allows eradicating the velocity oscillations which tend toappear at the frontiers of areas with high head losses.</span></p><p><span style=" font-size:9pt;">(Code_Saturne key word: </span><span style=" font-size:9pt; font-weight:600;">IPHYDR</span><span style=" font-size:9pt;"> and </span><span style=" font-size:9pt; font-weight:600;">ICALHY</span><span style=" font-size:9pt;">)</span></p></body></html></string>
</property>
<property name="text">
<string/>
</property>
</widget>
</item>
<item row="3" column="2">
<widget class="QCheckBox" name="checkBoxICFGRP">
<property name="toolTip">
<string><html><head/><body><p><span style=" font-size:9pt;">Choose whether the boundary conditions should take into account the hydrostatic balance.</span></p><p><span style=" font-size:9pt;">In the cases where gravity is predominant, taking into account the hydrostatic pressure allows to get rid of the disturbances which may appear near the horizontal walls when the flow is little convective. Otherwise, the pressure condition is calculated from the solution of the one-dimensional Euler equations for a perfect gas near a wall, for the variables normal velocity, density and pressure.</span></p><p><span style=" font-size:9pt;">(Code_Saturne key word: </span><span style=" font-size:9pt; font-weight:600;">ICFGRP</span><span style=" font-size:9pt;">)</span></p></body></html></string>
</property>
<property name="text">
<string/>
</property>
</widget>
</item>
<item row="1" column="2">
<widget class="QCheckBox" name="checkBoxIVISSE">
<property name="toolTip">
<string><html><head/><body><p><span style=" font-size:9pt;">Indicate whether the source terms in transposed gradient and velocity divergence should be taken into account in the moment equation. In the compressible module, these terms also account for the volume viscosity.</span></p><p><span style=" font-size:9pt;">(Code_Saturne key word: </span><span style=" font-size:9pt; font-weight:600;">IVISSE</span><span style=" font-size:9pt;">)</span></p></body></html></string>
</property>
<property name="text">
<string/>
</property>
</widget>
</item>
<item row="0" column="2">
<widget class="QCheckBox" name="checkBoxIPUCOU">
<property name="toolTip">
<string><html><head/><body><p><span style=" font-size:9pt;">Choose the algorithm for velocity/pressure coupling:<br/>- Standard algorithm (unticked box),<br/>- Reinforced coupling in case of calculation with long time steps (ticked box).</span></p><p><span style=" font-size:9pt;">(Code_Saturne key word: </span><span style=" font-size:9pt; font-weight:600;">IPUCOU</span><span style=" font-size:9pt;">)</span></p></body></html></string>
</property>
<property name="text">
<string/>
</property>
</widget>
</item>
</layout>
</item>
</layout>
</widget>
</item>
</layout>
</widget>
<resources/>
<connections/>
</ui>
|