1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
/*============================================================================
* Code_Saturne documentation page
*============================================================================*/
/*
This file is part of Code_Saturne, a general-purpose CFD tool.
Copyright (C) 1998-2021 EDF S.A.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/*-----------------------------------------------------------------------------*/
/*!
\page user_source_terms Examples of data settings for source terms (cs_user_source_terms.c)
See also the \ref cs_user_source_terms reference documentation.
\brief Additional right-hand side source terms
- \subpage function_cs_user_source_terms_momentum
- \subpage function_cs_user_source_terms_scalar
- \subpage function_cs_user_turbulence_source_terms
- \subpage cs_user_source_terms-scalar_in_a_channel
*/
//________________________________________________________________________________________________
/*!
\page function_cs_user_source_terms_momentum For velocity components equation (Navier-Stokes)
\brief Additional right-hand side source terms for velocity components equation
(Navier-Stokes)
\section loc_var1 Local variables and initialization
\snippet cs_user_source_terms-momentum.c st_meta
\section example_source_terms_1 Example
Example of arbitrary source term for component \f$\vect{u}\f$:
\f$ \vect{S} = \tens{A} \cdot \vect{u} + \vect{B} \f$ appearing in the equation under the form:
\f$ \rho \dfrac{d\vect{u}}{dt} = \vect{S} \: (+ \text{standard Navier-Stokes terms})\f$
In the following example:
\f[ \tens{A} = -\rho \cdot \tens{CKP} \f]
\f[ \vect{B} = \vect{XMMT} \f]
with:
- <tt> CKP = 1.0 </tt>(in \f$ s^{-1}\f$) (return term on velocity) \n
- <tt> MMT = 100.0 </tt>(in \f$kg \cdot m^{-2} \cdot s^{-2}\f$) (momentum production by volume and time unit)
which yields:
- <tt> st_imp[i][0][0] = volume[i] * A = - volume[i]*(rho*CKP)</tt> \n
- <tt> st_exp[i][0] = volume[i] * B = volume[i]*(XMMT) </tt>
\section body1 Body
\snippet cs_user_source_terms-momentum.c st_momentum_e_1
\section example_source_terms_2 Example of a boussinesq momentum source term
Example to add Boussinesq source to the z component of \f$\vect{u}\f$:
\section body2 Body
\snippet cs_user_source_terms-momentum.c boussinesq_st
*/
//_________________________________________________________________________________________________
/*!
\page function_cs_user_source_terms_scalar Transported scalar source terms
Source terms for transported scalars may be defined using the \ref cs_user_source_terms
user-defined function.
\subsection field_meta Field access and information
The following initialization block or portions thereof needs to be added for the
following examples:
\snippet cs_user_source_terms-base.c st_meta
Indicator of variance scalars:
To determine whether a scalar is a variance, the following info can be accessed:
\snippet cs_user_source_terms-base.c field_is_variance
- If <tt> var_f_id == -1 </tt>,
the scalar is not a variance
- If <tt> var_f_id >= 0 </tt>,
the field is the variance of the scalar with field id \c var_f_id
Density
\snippet cs_user_source_terms-base.c density_2
\section examplesource_2_1 Example 1
Example of arbitrary source term for the scalar f, named "scalar_2" in the calculation.
\f$ S=A \cdot f+B \f$
appearing in the equation under the form
\f$ \rho \dfrac{df}{dt}=S \: \text{(+ regular other terms in the equation)} \f$
In the following example:
\f[A=-\frac{\rho}{\tau_f} \f]
\f[B=\rho \cdot prod_f \f]
with:
- tauf = 10.0 (in \f$ s \f$) (dissipation time for \f$f\f$)
- prodf = 100.0 (in \f$ [f]\cdot s^{-1} \f$) (production of \f$f\f$ by unit of time)
which yields:
- <tt> st_imp[i] = volume[i]*A = -volume[i]*rho/tauf </tt>
- <tt> st_exp[i] = volume[i]*B = volume[i]*rho*prod_f </tt>
\subsection bodysource2 Body
<b> Source term applied to second scalar</b>
\snippet cs_user_source_terms-base.c src_term_applied
\section examplesource2_2 Example 2
Example of arbitrary volumic heat term in the equation for enthalpy h.
In the considered example, a uniform volumic source of heating is imposed
in the cells with coordinate X in [0;1.2] and Y in [3.1;4].
The global heating power if \c Pwatt (in \f$W\f$) and the total volume of the
selected cells is \c volf (in \f$m^3\f$).
This yields:
- <tt> st_imp[i] = 0 </tt>
- <tt> st_exp[i] = volume[i]* pwatt/volf </tt>
\subsection end2 Body
\warning It is assumed here that the thermal scalar is an enthalpy. If the scalar is a temperature. PWatt does not need to be divided by \f$ C_p \f$ because \f$C_p\f$ is put outside the diffusion term and multiplied in the temperature equation as follows:
\f[ \rho C_p \norm{\vol{\celli}} \frac{dT}{dt} + ... = \norm{\vol{\celli}[i]} \frac{pwatt}{voltf} \f]
with <tt> pwatt = 100.0 </tt>
\subsection cs_user_st_3_apply Apply source term
\snippet cs_user_source_terms-base.c ex_3_apply
*/
//________________________________________________________________________________________________
/*!
\page function_cs_user_turbulence_source_terms Turbulence model source terms.
Turbulence source terms may be modified using the \ref cs_user_source_terms
user-defined function.
\brief Additional right_hand side source terms for turbulence models
\section loc_var3 Local variables
\snippet cs_user_source_terms-turbulence.c st_meta
<b> Remaining initialization</b>
Get the density array in \c cpro_rom
\snippet cs_user_source_terms-turbulence.c dens_array_3
Get the array of the current turbulent variable and its name
\snippet cs_user_source_terms-turbulence.c current_turb_3
\section example3_1 Example
Example of arbitrary additional source term for turbulence models (Source term on the TKE "k" here).
Source term for \f$\varia:\f$
\f[ \rho \norm{\vol{\celli}} \frac{d(\varia)}{dt} = ... - \rho \norm{\vol{\celli}} \cdot ff - \rho \frac{ \varia}{\tau}\f]
with \f$ ff \f$ = <tt> 3.0 </tt> an \f$ \tau \f$ = <tt> 4.0 </tt>
\section body3 Body
\note The turbulence variable names are:
- 'k' and 'epsilon' for the k-epsilon models
- 'rij' and 'epsilon' for the Rij-epsilon LRR and S SG
- 'rij', 'epsilon' and 'alpha' for the EBRSM
- 'k', 'epsilon', 'phi' and 'f_bar' for the phi-model
- 'k', 'epsilon', 'phi' and 'alpha' for the Bl-v2-k model
- 'k' and 'omega' for the k-omega turbulence model
- 'nu_tilda' for the Spalart Allmaras model
\subsection cal_exp_imp3 Calculation of the explicit and implicit source terms
\snippet cs_user_source_terms-turbulence.c rem_code_3
*/
|