File: atmo.tex

package info (click to toggle)
code-saturne 7.0.2%2Brepack-1~exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 62,868 kB
  • sloc: ansic: 395,271; f90: 100,755; python: 86,746; cpp: 6,227; makefile: 4,247; xml: 2,389; sh: 1,091; javascript: 69
file content (1734 lines) | stat: -rwxr-xr-x 66,644 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
%===============================================
\section{Atmospheric flow modelling}
%===============================================

%=====================================
\subsection{Equations of atmospheric motion}
%=====================================

\subsubsection{Atmospheric specific features}

The following table illustrates the vertical
variations observed in the standard atmosphere:


\begin{table}[htbp]

\begin{center}

\caption[Variation]{vertical variation of different variables}

\begin{tabular}{|l|l|l|l|}

\hline

altitude \newline
(m)&
Temperature (\textdegree C)&
Pressure \newline
(Pa)&
Density \newline
(kg/m$^{3})$ \\

\hline
0.&
15.0&
101325.&
1.225 \\
\hline
1000.&
8.5&
89869.&
1.112 \\
\hline
2000.&
2.0&
79485.&
1.007 \\
\hline
3000.&
-4.5&
70095.&
.909 \\
\hline
4000.&
-11.0&
61624.&
.819 \\
\hline
5000.&
-17.5&
54002.&
.736 \\
\hline
6000.&
-24.0&
47162.&
.660 \\
\hline
7000.&
-30.5&
41041.&
.589 \\
\hline
8000.&
-37.0&
35580.&
.525 \\
\hline
9000.&
-43.5&
30723.&
.466 \\
\hline
10000.&
-50.0&
26418.&
.412 \\
\hline
11000.&
-56.5&
22614.&
.364 \\
\hline


\end{tabular}
\label{tab:atmo:tab1}
\end{center}
\end{table}

We therefore see that for motions with vertical scales that are of the order
of 100m one can approximately consider the density as constant, except when
thermal effects are important. Alternatively we have to take into account
these variations with height as described below.

\subsubsection{Anelastic approximation}
Atmospheric flows can be both considered incompressible in the sense that
their Mach number is much less than one but also flows in which the density
is a function of pressure (as seen in \tablename{} \ref{tab:atmo:tab1}).

These can be reconcilied with the anelastic approximation (see \cite{Pielke:1984})
 in which the time derivative term $\frac{\partial \rho }{\partial
t}$ is neglected in front of the other terms. The continuity equation
therefore becomes:
\begin{equation}
\frac{\partial \rho u_{i} }{\partial x_{i} }=0
\end{equation}
This form of the continuity equation eliminates the acoustic waves, which
have a very high propagation velocity, from the possible solutions.

\subsubsubsection{Potential temperature}
Potential temperature is derived from the temperature but is a conserved
quantity through adiabatic transformation (compression/expansion). Its
expression is (see \cite{Holton:1979} and \cite{Stull:1988}):
\begin{equation}
\label{eq1}
\theta =T\left( {\frac{p_{s}}{p}} \right)^{\left( {\frac{R^{\star }}{C_{p}}} \right)}
\end{equation}
where $p_{s}$ is a constant pressure conventionally taken as 1000 mb
and $R^{\star}$ is the gaz constant for dry air (=287 $Jkg^{-1}K^{-1}$).
With this variable the thermal equation becomes:

\begin{equation}
\rho \left( {\frac{\partial \theta }{\partial t}+u_{j} \frac{\partial \theta
}{\partial x_{j} }} \right)\approx\left( {\frac{\partial }{\partial x_{j}
}\left( {\frac{\lambda_{t} }{C_{p} }\frac{\partial \theta}{\partial x_{j} }}
\right)+\Phi } \right)
\end{equation}
Where $\Phi $ is the heating/cooling source term and $\lambda_{t}$ is the thermal conductivity.

During their motion air parcels keep their potential temperature unless
diabatic effect are present (such as condensation/evaporation of water as we
will see in the micro-physics section)

Potential temperature is also used to easily characterize the local static
stability of the atmosphere:
\begin{itemize}
  \item if $\frac{\partial \theta }{\partial z}_{\, \, \, }$\textgreater 0 , the
    thermal stratification is stable,
  \item if$_{\, \, \, }\frac{\partial \theta }{\partial z}_{\, }=$ 0 , the
    thermal stratification is neutral,
  \item if$_{\, \, \, }\frac{\partial \theta }{\partial z}_{\, }$\textless 0 ,
    the thermal stratification is unstable.
\end{itemize}

The distinction between the temperature and the potential temperature is
important. For example in the table above the temperature is decreasing with
height (by approximately 6.5 K/km) but the standard atmosphere is stably
stratified with a potential temperature increasing with height.


\subsubsection{Turbulence production by buoyancy}
In standard \CS with the $k-\varepsilon$ turbulence model, the production or destruction rate of the turbulent kinetic energy due to buoyancy is given by:
\begin{equation}
\label{eq:atmo:buoyancy_prod}
G=-g_{i} \frac{\mu_{t} }{\sigma_{t} }\frac{1}{\rho }\frac{\partial \rho
}{\partial z}
\end{equation}
where $\sigma_{t}$ is the turbulent Prandtl (Schmidt) number and $\mu_{t}$ is the turbulent viscosity.
However for the neutral (adiabatic) atmosphere for which the buoyancy
production of turbulence is zero, we have a diminution of the density with
height and formula \eqref{eq:atmo:buoyancy_prod} is no longer valid and for atmospheric motions should
be replaced by \cite{Stull:1988}:
\begin{equation}
\label{eq:atmo:eq4}
G=-g_{i} \frac{\mu_{t}}{\sigma_{t} }\frac{1}{\theta }\frac{\partial \theta
}{\partial z}
\end{equation}

\subsubsection{ Momentum equations }
The momentum equations of the standard \CS are not
modified for small scale atmospheric flows, and in particular the Coriolis
term should not be used as the Rossby number is almost always much larger
than one. In very specific cases the Coriolis term and the associated
pressure gradient can be introduced as user source terms.

\section{ Method of imbrication in \CS Atmospheric physics (MICA)}
We explain in this section how meteorological profiles are used in
atmospheric flow calculations for defining boundary values.

A first option is to use only one profile giving the wind (horizontal components U and V),
the turbulent kinetic energy (TKE), the dissipation rate of TKE ($\epsilon$),
temperature (and optionally specific humidity and water droplet density for
humid atmosphere physics) as function of the altitude. This option does not allow to take into account the horizontal gradients present in the
fields given by a larger scale model, as the values given by the
profile are imposed at all the boundary faces of the computational domain
marked as inlet.

Generating a physically consistent marking is already a
challenging task since the wind direction may vary with the altitude,
justifying the introduction of the ``automatic boundary conditions'' flag:
for each boundary face so flagged the scalar product of the wind given by
the profile and the normal vector to the face is computed and that face is
then deemed inlet or free outlet according to the sign of the result (the
limit case 0 is considered inlet too). But if the nature (inlet or outlet)
is diagnosed face by face at each time step one is not restricted to
horizontally homogeneous profiles: this flag permits the use of large scale
fields coming from another meteorological model , WRF (the Weather
Research and Forecasting Model: www.wrf-model.org) for
instance, to specify boundary values.

We describe now the method of interpolation of the large scale profiles on the ``automatic boundary
conditions'' faces of the computational domain: the so called Cressman
method.

This method has a rather long history of use in meteorological
modelisation: the first publication (see \cite{Cressman:1959}) appeared more than 50 years ago.
Its formulation is simple: in order to estimate the value of a physical variable (\emph{e.g.} wind components, temperature)
at a grid point from scattered data points one uses a weighted average of the values.
The weights of the different data are function of the displacement between
the data points and the estimation point, very often function of their
distance only. In the original publication the function was a clipped
rational function of the distance while the method used in \CS
atmospheric flows uses a Gaussian kernel like in \cite{Barnes:1964}.
If we denote the Cartesian coordinates of the scattered data points by
$(x_{i}y_{i}z_{i})$, by (x, y, z) the coordinates of the generic estimation
point and by Vi the values of the variable of interest the estimate reads:
\begin{equation}
\tilde{V}\, =\frac{\sum\nolimits_i {V_{i\, }f(x-x_{i},y-y_{i},z-z_{i})}
}{\sum\nolimits_i {f(x-x_{i},y-y_{i},z-z_{i})} }
\end{equation}
This will be a well-defined weighted average as long as the weight function
f is positive and the sum appearing as denominator strictly positive. For
application in \CS the following form of f has been chosen:

\begin{equation}
f\left( x,y,z \right)=
\mathrm{exp}(-\frac{x^{2}+y^{2}}{4R_{H}^{2}}-\frac{z^{2}}{4R_{V}^{2}})
\end{equation}

The radius $R_{H}$ ($R_{HV})$ is the so called horizontal (vertical) range
of the method. Their influence on the estimates is easy to describe. When
the horizontal (vertical) distance of a data point to the estimation point
is much larger than the corresponding range this data will see its
contribution to the estimate diminish. Only points relatively close to the
estimation point will yield appreciable contributions to this estimate.
Please notice also that even at the data point the formula will give an
estimate different from the data value. The estimation is not an exact
interpolator, but a smoothing estimator.

\section{Radiation parameterizations for atmosphere}

For these parameterizations we distinguish two spectral domains: visible
(0.2 $\mu$m -- 5 $\mu$m) for solar radiation and infrared (5 $\mu$m
-- 100 $\mu$m) for thermal radiation.

\subsection{Thermal infrared radiation}
The radiation transfer equation applied to a plan parallel atmosphere (1-D)
using the two stream approximation for a non-scattering medium with the
broadband emissivity approximation for spectral integration (see \cite{Liou:2002}
and \cite{Makke:2016}) leads to the expressions of the upward
and downward fluxes:
\begin{equation}
F\uparrow =\sigma T_{g}^{4}\left( 1-\epsilon \left( z,0 \right)
\right)-\int_0^z \sigma T^{4}\left( z' \right)\frac{d\epsilon
}{dz'}\left( z,z' \right)dz'
\end{equation}

\begin{equation}
F\downarrow =\int_z^\infty \sigma T^{4}\left( z' \right)\frac{d\epsilon
}{dz'}\left( z,z' \right)dz'
\end{equation}
Where T is the fluid temperature in K, T$_{g}$ the ground surface temperature in K,

$\sigma $ the Stefan Boltzman constant and $\varepsilon$ the atmosphere
emissivity defines by:
\begin{equation}
\varepsilon \left( z,z' \right)
=\frac{1}{\sigma T^{4}}\int_0^\infty {\left(1-I_{\lambda}\left(z,z'
\right) \right)\pi I_{\lambda}^{0}} \left( z,z' \right)d\lambda
\end{equation}
\newline
Where
$I_{\lambda }^{0}=
{2hc^{2}\lambda^{-5}}
{(e^{\frac{{hc}}{k_{B}\lambda T}}-1)}$ is the Planck function,
\newline
$I_{\lambda}$ the transmittance and $k_{B}$ is the Boltzman constant.
\newline
\newline
If the ground surface is not considered as a black body, with a ground
emissivity $\varepsilon_{g}$ the upward flux can be written (see \cite{Ponnulakshmi:2012}):
\newline
\begin{equation}
F\uparrow =\varepsilon_{g}\sigma T_{g}^{4}\left( 1-\varepsilon \left( z,0
\right) \right)+\left( 1-\varepsilon_{g} \right)\int_0^\infty {\sigma
T^{4}} \left( z' \right)\varepsilon \left( -z,z' \right)dz'-\int_0^z
{\sigma T^{4}\left( z' \right)\frac{d\varepsilon }{dz'}\left(z',z
\right)dz'}
\end{equation}
\newline
In this expression, the second term can be considered as a downward
radiation along --z and infinite. Integration by parts and supposing
isothermal atmospheric layers above zt $=$ 11000 m leads to the following
expressions for upward and downward fluxes:
\newline
\begin{equation}
F\downarrow =\varepsilon \left( \infty ,0 \right)\sigma T^{4}\left( zt
\right)\, -\, \int_z^{zt} {\varepsilon (z',z)\frac{d \sigma
T^{4}(z')}{dz'}dz'}
\end{equation}

\begin{equation}
F\uparrow =\varepsilon_{g}T_{g}^{4}+\int_0^z {\frac{d\left( \sigma
T^{4}\left( z' \right) \right)}{dz'}\, \varepsilon \left( z',z
\right)dz'+\left( 1-\varepsilon_{g} \right)[\sigma T^{4}} \left( zt
\right)\, \varepsilon \left( \infty ,-z \right)-\int_0^{zt} \frac{d\sigma
T^{4}\left( z' \right)}{dz'} \, \varepsilon (-z,z')dz']
\end{equation}

The heating/cooling for atmospheric layers is deduced from the divergence of
the net Flux:
\begin{equation}
F_{n}=F\uparrow -F\downarrow .
\end{equation}

\begin{multline}
\frac{dF_{n}}{dz}=\int_0^z {\frac{d\left( \sigma T^{4}\left( z' \right)
\right)}{dz'}\, \frac{d\varepsilon \left( z',z
\right)}{dz'}dz'
+\left( 1-\varepsilon_{g} \right)[\sigma T^{4}} \left(zt \right)\frac{\, d\varepsilon \left( \infty ,-z \right)}{dz'}\\
-\int_0^{zt} \frac{d\sigma T^{4}\left( z' \right)}{dz'} \frac{\, d\varepsilon \left( -z,z' \right)}{dz'}dz']
-\, \frac{d\varepsilon \left( \infty ,0 \right)}{dz}\sigma T^{4}\left( zt \right)
+\, \int_z^{zt} {\frac{d\varepsilon (z',z)}{dz'}\frac{d\sigma T^{4}(z')}{dz'}dz'}
\end{multline}

\subsubsection{Clear sky}
To determine emissivity it is common to introduce the corrected path length
$u_{g}(z,z')$ for major absorbing gases: water vapor, carbon dioxide and ozone.

\begin{equation}
u_{g}\left( z,z' \right)=\int_{z'}^{z} \rho_{g} \left( z"
\right)\mathrm{\Psi }\left( T_{0},P_{0},T,P \right)\, dz"
\end{equation}
where $\mathrm{\Psi }$ is a scaling function eliminating the dependence of
the absorption coefficient on pressure and temperature. These corrections,
known as the one-parameter scaling approximation, are attributed to \cite{Chou:1980}.
The emissivity $\varepsilon(z,z')$ for each gas is now a
function of the scaled path $\varepsilon (u_{g}(z,z'))$. The total emissivity for
the three dominant atmospheric gases in the infrared domain is:

\begin{multline}
\varepsilon \left( z,z' \right)=
\, \varepsilon_{H_{2}O}(u_{H_{2}O}\left(z,z' \right)
+\varepsilon_{O_{3}}(u_{O_{3}}\left( z,z' \right)\\
+\varepsilon_{CO_{2}}(u_{CO_{2}}\left( z,z' \right)T_{15\mu }\left( u_{H_{2}O}\left( z,z'
\right) \right)+\varepsilon_{dim}(u_{dim}\left( z,z' \right)T_{w}\left(
u_{H_{2}O}\left( z,z' \right) \right)
\end{multline}

The optical thickness are:
\begin{equation}
u_{H_{2}O}\left( z,z' \right)=\int_{z'}^{z} \rho_{H_{2}O} \left( z" \right)\,
\left( \frac{P(z")}{P_{0}}\sqrt \frac{T_{0}}{T(z")} \right)^{n}dz"
\end{equation}

\begin{equation}
u_{CO_{2}}\left( z,z' \right)=\int_{z'}^{z} \rho_{CO_{2}} \left( z" \right)\,
\left( \frac{P(z")}{P_{0}} \right)^{3/4}dz"
\end{equation}

\begin{equation}
u_{O_{3}}\left( z,z' \right)=\left| f_{Green}\left( z
\right)-f_{Green}(z') \right|
\end{equation}

\begin{equation}
u_{dim}\left( z,z' \right)=\int_{z'}^{z} \rho_{H_{2}O} \left( z" \right)\,
e(z")dz"f(T(z"),T_{0})dz"
\end{equation}
Where $f\left( T\left( z \right)\mathrm{,}T_{\mathrm{0}}
\right)\mathrm{=exp}\left[ \mathrm{1800}\left(
\frac{\mathrm{1}}{T\mathrm{(}z\mathrm{)}}\mathrm{-}\frac{\mathrm{1}}{\mathrm{296.0}}
\right) \right]$ and $f_{Green}\left( z
\right)\mathrm{=}a\frac{\mathrm{1+}e^{\mathrm{-}b\mathrm{/}c}}{\mathrm{1+}e^{\mathrm{(}z\mathrm{-}b\mathrm{)/}c}}$
\newline
with a$=$0.1 cm$/$STP (Standard Temperature and Pressure), b$=$ 20km,
\newline
c chosen as b/c$=$5 (see \cite{Green:1964})

The associated emissivities are:

\cite{Sasamori:1968} formula for water vapor, carbon dioxide and ozone:
\begin{equation}
\varepsilon_{H_{2}O}\left( u_{H_{2}O} \right)=\left\{ {\begin{array}{l}
 0.846\ast \left( 3.59\times {10}^{-5}+\frac{u_{H_{2}O}}{10.} \right)^{0.243}\,
\, for\, u_{H_{2}O}<0.1\, kg.m^{-2} \\
 0.24\, {log}_{10}\left( 0.01+\frac{u_{H_{2}O}}{10.} \right)+0.622\, \, \,
for\, u_{H_{2}O}\ge 0.1\, kg.m^{-2} \\
 \end{array}} \right.
\end{equation}

\begin{equation}
\varepsilon_{O_{3}}\left( u_{O_{3}} \right)=\left\{ {\begin{array}{l}
 0.209\ast \left( u_{O_{3}}+7.0\times {10}^{-5} \right)^{0.436}-3.21\times
{10}^{-3}\, for\, u_{O_{3}}<0.01\, cm/STP \\
 7.49\times {10}^{-2}+2.12\times {10}^{-2}\, {log}_{10}\left( u_{O_{3}}
\right)\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, for\,
{u_{O_{3}}\ge 0.01\, cm/STP} \\
 \end{array}} \right.
\end{equation}

\begin{equation}
\varepsilon_{CO_{2}}\left( u_{CO_{2}} \right)=\left\{ {\begin{array}{l}
 0.0676\ast \left( 0.01022+u_{C02} \right)^{0.421}-0.00982\, \, for\,
u_{CO_{2}}<1\, cm/STP \\
 0.24\, {log}_{10}\left( 0.0676+u_{CO_{2}} \right)+0.622\, \, \, \, \, \, \, \,
\, \, \, \, \, \, for\, u_{CO_{2}}\ge 1\, cm/STP \\
 \end{array}} \right.
\end{equation}

\begin{equation}
T_{15\mu }\left( u_{H_{2}O} \right)=\left\{ {\begin{array}{l}
 1.33-0.832\left( 0.0286+\frac{u_{H_{2}O}}{10.} \right)^{0.26}\, for\, {\,
u}_{H_{2}O}<20\, kg.m^{-2} \\
 0.33-0.2754\, \left( {log}_{10}\left( \frac{u_{H_{2}O}}{10.} \right)-0.3011
\right)\, for\, {\, u}_{H_{2}O}\ge 20\, kg.m^{-2} \\
 \end{array}} \right.
\end{equation}
(see \cite{Veyre:1980}) for water vapor dimer:
\newline%FIXME
$\varepsilon_{dim}\left( u_{dim} \right)=\left\{ {\begin{array}{l}
 0.4614\left[ 1-\left( \sum\limits_{i=0}^2 {a_{i}u_{dim}^{i}} \right)/\left(
\sum\limits_{j=0}^3 {b_{j}u_{dim}^{j}} \right) \right]\, \, \, for{\,
u}_{dim}\le 0.5\, g.{cm}^{-2} \\
 0.4614\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \,
\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \,
\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, for\, {\,
u}_{dim}>0.5\, g.{cm}^{-2} \\
 \end{array}} \right.$

with
\begin{equation}
a_{0}=0.015075,\, a_{1}=\, -0.036185,\, a_{2}=0.0019245,\,
b_{0}=a_{0},b_{1}=0.19547,\, b_{2}=0.75271,\, b_{3}=1
\end{equation}

$T_{w}\left( u_{H_{2}O} \right)=\left( \sum\limits_{i=0}^4
{a_{i}^{'}u_{dim}^{i}} \right)/\left( \sum\limits_{j=0}^5
{b_{j}^{'}u_{dim}^{j}} \right)$
\newline
with
\newline
\begin{equation}
a_{0}^{'}=7.76192\times {10}^{-7},\, a_{1}^{'}=1.33836\times {10}^{-3},\,
a_{2}^{'}=0.166649,\, a_{3}^{'}=2.17686,\, a_{4}^{'}=2.6902\,
\end{equation}

\begin{equation}
b_{0}^{'}=7.79097\times {10}^{-7},\, b_{1}^{'}=1.36832\times {10}^{-3},\,
b_{2}^{'}=0.179601,\, b_{3}^{'}=2.70573,\, b_{4}^{'}=5.15119,\, b_{5}^{'}=1
\end{equation}

\subsubsection{Cloudy sky}
The transmittance by cloud droplets can be considered as grey body
transmittance and overlapping by gas absorption is taken into account as
in \cite{Sasamori:1972}.
\begin{equation}
\varepsilon \left( z',z \right)=1-\left( 1-\varepsilon_{gas}\left( z',z
\right) \right)\tau_{l}\left( z',z \right)
\end{equation}
with $\tau_{l}\mathrm{(}z^{\mathrm{'}}z\mathrm{)=1-}\varepsilon
_{l}\mathrm{(z',z)=exp(-}K_{l}\int_{z\mathrm{'}}^z
{\rho \mathrm{(}z^{\mathrm{''}}\mathrm{)}q_{l}\left( z^{\mathrm{''}}
\right)dz\mathrm{''}} $ )

and K$_{l}=$1.66 3/4r$_{e}$ where r$_{e}$ is the
effective radius of the cloud droplet.

In case of partial cloudiness N$_{max}$, the transmittance for liquid water
can be modified following \cite{Bougeault:1985}.
\begin{equation}
\tau_{l}\left( z',z \right)=1-N_{max}\left( z',z
\right)+N_{max}(z',z)\mathrm{exp}(-K_{l}\int_{z'}^z {\rho
(z^{''})q_{l}\left( z^{''} \right)dz'')}
\end{equation}


\subsection{Solar radiation}
The first step consists to determine astronomic factors linked to earth-sun
position

\subsubsection{Determination of zenithal angle and correction factors for solar
constant (see \cite{Paltridge:1974})}

\begin{equation}
\mu_{0}=\cos \theta =\sin \delta \sin \phi +\cos \delta \cos \phi \cos
{th}
\end{equation}
Where $\varphi $ is the latitude, $\delta $ the inclination which depends on
the day of year:
\begin{multline}
\delta =
0.006918
-0.399912\cos \theta_{0}
+0.070257\sin \theta_{0}
-0.006758\cos 2\theta_{0}\\
+0.000907\sin 2\theta_{0}
-0.002697\cos 3\theta_{0}
+0.001480\sin 3\theta_{0}
\end{multline}

with $\theta_{0}=2\pi J/365\\$

The solar local time th$= $ local time $+$ longitude correction $+$ Eq (Time
equation).

\begin{equation}
Eq=0.000075+0.001868\cos {\theta_{0}-0.032077\sin {\theta_{0}-0.014615\cos
{2\theta_{0}}}}-0.040849\sin {2\theta_{0}}
\end{equation}
A correction for sun-earth distance is taken into account

\begin{equation}
F=F_{0} (1.00011+0.034221\cos {\theta_{0}+0.001280\sin {\theta
_{0}+0.000719\cos {2\theta_{0}}}}+0.000077\sin {2\theta_{0}})
\end{equation}
with F$_{0}=$1367 W m$^{-2}$.

In order to take into account earth curvature a correcting term is
added:
\begin{equation}
\mu_{0}=\frac{r_{1}}{\sqrt {\mu_{0}^{2}+r_{1}(r_{1}+2)} -\mu_{0}}\, \,
with\, r_{1=}\, \frac{H_{atmo}}{R_{earth}}=\frac{8\, km}{6371\, km}
\end{equation}

\subsubsection{Solar radiation in clear sky without aerosols}
The radiation transfer equation applied to a plan parallel atmosphere (1D)
using the two stream approximation in a non-scattering medium with an
external radiation source term (the sun) for the global radiation (direct
$+$ diffuse) leads to the expression of downward and upward fluxes for a
spectral band $\Delta \nu $ (see \cite{Lacis:1974}):
\begin{equation}
S\downarrow =\mu_{0} F_{0} \tau_{\Delta \nu}\, u_{gas}\left( z,\infty
\right)\,
\end{equation}

\begin{equation}
S\uparrow =\mu_{0} F_{0} R_{g}\tau_{\Delta \nu}\, (u_{gas}(
0,\infty), u_{gas}(0,z))
\end{equation}
Where F$_{0}$ is the solar constant, $\mu_{0}$ is the corrected cosines of the
zenithal angle, $\tau_{\Delta \nu}$ the transmittance and u$_{gas}$ the
optical thickness for the considered gas.

The solar spectrum is divided in two bands: One for ozone (0.2-0.7 $\mu$m)
where absorption occurs in the upper layers of the atmosphere, a second one
for water vapor (0.7-5 $\mu$m) part where absorption occurs in the lower
part of the atmosphere.

\subsubsection{Ozone Band}

For ozone band, the Rayleigh diffusion is parameterized as an albedo for the
lower part of the atmosphere combined with earth surface albedo. With these
approximations the heating rate due to ozone in the layer (l, l$+$1) is
(LH74):
\begin{equation}
F_{abs}^{O_{3}}=\mu_{0}F\, [\, A_{O_{3}}\left( x_{l+1} \right)-A_{O_{3}}\left( x_{l}
\right)-\bar{R}(\mu_{0})\left( A_{O_{3}}\left( x_{l+1}^{\star }
\right)-A_{O_{3}}\left( x_{l}^{\star } \right) \right)]
\end{equation}
With $x=Mu_{O_{3}}\left( \infty ,z \right),\, \, \, \, x^{\star }=Mu_{O_{3}}\left(
\infty ,0 \right)+\bar{M}(u_{O_{3}}\left( \infty ,0 \right)-u_{O_{3}}\left( \infty
,z \right))$ \\
where $\bar{M}=1.9$ and $\, \, \, M=35/{(1224\mu
_{0}^{2}+1)}^{1/2}$.

$\bar{R}(\mu_{0})$ is the composite albedo including Rayleigh diffusion
effect and ground reflection

$\bar{R}\left( \mu_{0} \right)=\overline{R_{a}}\left( \mu_{0}
\right)+(1-\overline{R_{a}}\left( \mu_{0} \right))(1-\overline{R_{a}^{\star
}}{)R}_{g}/(1-\overline{R_{a}^{\star }}R_{g})$

with $\overline{R_{a}}\left( \mu_{0}
\right)=0.213/(1+0.816\mu_{0})$ and $\overline{R_{a}^{\star }}=0.144$.

The ozone absorption is parameterized as LH74 for both Chappuis and
ultraviolet bands:

$A_{O_{3}}\left( x
\right)=\frac{0.02118x}{1+0.042x+0.000323x^{2}}+\frac{1.082x}{{(1+138.6x)}^{0.805}}+\frac{0.0658x}{1+{(103.6x)}^{3}}$
where x is in cm/STP.


The global downward flux in the O3 band is (LH74):

${F\downarrow}_{g}^{O_{3}}=\mu_{0}F(0.647-A_{O_{3}}\left( x
\right)-\overline{R_{r}}\left( \mu_{0} \right))(1-
\overline{\overline{R_{r}^{\star }}}
R_{g})$
\newline
with $\overline{R_{r}} \mu_{0}=0.28/(1+6.43\mu_{0})$
\newline
and $\overline{\overline{R_{r}^{\star }}}=0.0685$
\newline
\newline
The direct downward flux is (see \cite{Atwater:1978}):
\begin{equation}
{F\downarrow }_{d}^{O_{3}}=\mu_{0}F\left( 0.647-A_{d}^{O_{3}}\left( z \right)
\right)with
A_{d}^{O_{3}}\left( z \right)=1-(1.041-0.16\ast \sqrt {M\left( 0.949\,
{10}^{-3}P\left( z \right)+0.051 \right)} )
\end{equation}
\subsubsection{Vapor water band}

For water vapor band (LH74):
\begin{equation}
F_{abs}^{H_{2}O}=\mu_{0}F\, [\, A_{H_{2}O}\left( y_{l+1} \right)-A_{H_{2}O}\left(
y_{l} \right)-R_{g}\left( A_{H_{2}O}\left( y_{l+1}^{\star }
\right)-A_{H_{2}O}\left( y_{l}^{\star } \right) \right)]
\end{equation}
\newline
With $y=Mu_{H_{2}O}\left( \infty ,z \right),\, \, \, \, y^{\star
}=Mu_{H_{2}O}\left( \infty ,0 \right)+\frac{5}{3}(u_{H_{2}O}\left( \infty ,0
\right)-u_{H_{2}O}\left( \infty ,z \right))$

The direct downward flux is equal to the global downward flux:
\begin{equation}
{F\downarrow }_{d}^{H_{2}O}={F\downarrow }_{g}^{H_{2}O}=\mu_{0}F\left(
0.353-A_{H_{2}O}\left( y_{l} \right) \right)
\end{equation}
The water vapor absorption is parameterized as in \cite{Yamamoto:1962}

$A_{H_{2}O}\left( y \right)=\frac{0.29}{{(1.+14.15y)}^{0.635}+0.5925y}$ for y in
kg m$^{-2}$

\subsubsection{Solar radiation for cloudy atmosphere or in presence of aerosols}
\subsubsection{Ozone Band}

For ozone band, a similar expression is used to clear sky formulation by
replacing Rayleigh diffusion by cloud droplets diffusion in the composite
albedo including ground reflection. That leads to the following expression
for solar heating:
\begin{equation}
F_{abs}^{c,a,O3}=\mu_{0}F\, [\, A_{O_{3}}\left( x_{l+1} \right)-A_{O_{3}}\left(
x_{l} \right)-\bar{R}(\mu_{0})\left( A_{O_{3}}\left( x_{l+1}^{\star }
\right)-A_{O_{3}}\left( x_{l}^{\star } \right) \right)]
\end{equation}

$\bar{R}(\mu_{0})$ is the composite albedo including cloud droplet (c) or
aerosol (a) diffusion effect and ground reflection

\begin{equation}
\bar{R}\left( \mu_{0} \right)=\overline{R_{c,a}}\left( \mu_{0}
\right)+(1-\overline{R_{c,a}}\left( \mu_{0} \right))(1-\overline{R_{c,a}^{\star
}}{)R}_{g}/(1-\overline{R_{c,a}^{\star }}R_{g})
\end{equation}
With $\overline{R_{c,a}}\left( \mu_{0} \right)=\overline{R_{c,a}^{\star }}=\sqrt 3
\left( 1-g_{c,a} \right)\tau_{c,a}/(2+\sqrt 3 \left( 1-g_{c,a} \right)\tau
_{c,a})$
Where $g_{c,a}$ is the asymmetry factor of the cloud or aerosols
particles phase function, \\
g$_{c}=$0.85, g$_{a}=$ 0.66, $\tau_{a,c}$ is the total visual optical thickness
for cloud liquid water and aerosol concentration:

$\tau_{c}=1.5\int_0^{zt} \frac{\rho q_{l}}{r_{e}} dz$ and $\tau
_{a}=1.5\int_0^{zt} \frac{\rho C_{aero}}{r_{aero}} dz$ (see \cite{Stephens:1984}).

In case of partial cloudiness $N_{max}$, the heating rate and the downward
flux can be weighted between clear and cloudy sky as follows:

\begin{equation}
F_{abs}^{t,O3}={N_{max}F}_{abs}^{c,O3}+(1-N_{max})F_{abs}^{O_{3}}
\end{equation}
The effect of aerosol particles is only taken into account in the clear sky
layers with aerosol cloud fraction equal to unity and the absorption in that
case is $F_{abs}^{a,O3}$.

The global downward and direct fluxes are:
\begin{equation}
{F\downarrow }_{g}^{c,a,O3}=\mu_{0}F(0.647-A_{O_{3}}\left( x
\right)-\overline{R_{r}}\left( \mu_{0} \right))(1-\overline{R_{c,a}}\left( \mu_{0}
\right)/(1-\overline{R_{c,a}^{\star }}R_{g}),\quad
{F\downarrow }_{d}^{c,a,O3}=0.
\end{equation}

That gives if partial cloudiness is taken into account:
\begin{equation}
{F\downarrow }_{g}^{t,O3}={N_{max}F\downarrow
}_{g}^{c,a,O3}+(1-N_{max}){F\downarrow }_{g}^{O_{3}}
\end{equation}

\begin{equation}
{F\downarrow }_{d}^{t,O3}=(1-N_{max}){F\downarrow }_{d}^{O_{3}}
\end{equation}
\subsubsection{Vapor water band}

For water vapor, the diffusion processes are directly modelled using the
adding method with k distribution method for overlapping between liquid and
vapor water (LH74).

For each cloud layer l in the frequency interval n, the optical thickness $\tau
_{l,n}$ , the single scattering albedo $\omega_{l,n}$ and the asymmetry
factor $g$ are:
\begin{equation}
\tau_{l,n}^{'}=\tau_{c}+\tau_{a}+k_{n}u_{H_{2}O}
\end{equation}

\begin{equation}
\omega_{l,n}^{'}=(\omega_{c}\tau_{c}+\omega_{a}\tau_{a})/\tau
_{l,n}^{'}
\end{equation}

\begin{equation}
g^{'}=(\omega_{c}\tau_{c}g_{c}+\omega_{a}\tau_{a}g_{a})/{\omega
'}_{l,n}\tau_{l,n}^{'}
\end{equation}

\cite{Joseph:1976} corrections are used in order to describe highly forward
scattering for cloud droplets. That gives with $f=g'^{2}$ (see \cite{Stephens:1984}):

\begin{equation}
{\tau_{l,n}=\tau }_{l,n}^{'}(1-f\omega_{l,n}^{'})
\end{equation}

\begin{equation}
{\omega_{l,n}=\omega }_{l,n}^{'}(1-f)/(1-f\tau_{l,n}^{'})
\end{equation}

\begin{equation}
g=(g'-f)/(1-f)
\end{equation}

The transmission and reflection functions for global radiation are:

For clear layer:

$R_{l}=R_{l}^{\star }=0\, ,
\quad
T_{l}=T_{l}^{\star }=\mathrm{exp}(-\frac{5}{3}\tau_{l,n})$ except for a
clear layer above the highest cloud layer for which
$T_{l}=\mathrm{exp}(-M\tau_{l,n})$

For cloudy layer:
\begin{equation}
R_{l}=\frac{(u+1)(u-1)\left( e^{t}-e^{-t} \right)}{\left( u+1
\right)^{2}e^{t}-\left( u-1 \right)^{2}e^{-t}}\, ,\, T_{l}=\frac{4u}{\left(
u+1 \right)^{2}e^{t}-\left( u-1 \right)^{2}e^{-t}}
\end{equation}
with
\newline
\newline
$u=\sqrt {\frac{1-g\omega_{l,n}}{1-\omega_{l,n}}\, } $ and $t=\tau
_{l,n}\sqrt {3(1-\omega_{l,n})(1-g\omega_{l,n})} $
\newline
The transmission function for direct solar radiation is
\newline
\newline
$T_{l}=\mathrm{exp}(-\frac{5}{3}\tau_{l,n})$ for clear layers and
\newline
$T_{l}=\mathrm{exp}(-M\tau_{l,n})$ for cloudy layers
\newline
\newline
In the case where cloud fraction is taken into account the reflection and
transmission functions can be weighted by the cloud fraction
\newline
\newline
 $N_{l} : T_{l}=N_{l} T_{l,cloud}+$\textit{ (1-N}$_{l})T_{l,clear}$\textit{ and R}$_{l}=N_{l}R_{l,cloud}$
\newline
\newline
The following five steps are carried out for each value of k$_{n}$ which can
yield significant absorption, \emph{e.g.}, n$=$1-8 for the discrete distribution
given in the following table:

\begin{table}[htbp]
\begin{center}
\caption[absorption]{Absorption}
\begin{tabular}{|p{76pt}|l|l|l|l|l|l|l|l|}

\hline

\hline

$k_{n};n\in \left[ 1,8 \right]$&
4.10$^{-6}$&
2.10$^{-4}$&
0.0035&
0.0377&
0.195&
0.94&
4.46&
19 \\
\hline
$p\left( k_{n} \right)$&
0.6470&
0.0698&
0.1443&
0.0584&
0.0335&
0.0225&
0.0158&
0.0087\\
\hline

\end{tabular}
\label{tab2}
\end{center}
\end{table}


\begin{enumerate}
\item $R_{l} $ and $T_{l}$ for l $=$ 1, L are computed for each layer
\item The layers are added, going down, to obtain $R_{1,l}$ and $T_{1,l}$ as follow:

\begin{equation}
R_{1,l}=R_{1,l-1}+\frac{T_{1,l-1}R_{l}T_{1,l-1}^{\star }}{1-R_{1,l-1}^{\star
}R_{l}}\, \, ,\, \, T_{1,l}=\frac{T_{1,l-1}T_{l}}{1-R_{1,l-1}^{\star }R_{l}}
\end{equation}
With similar expressions for $R*$ and $T*$
\item Layers are added one at a time, going up, to obtain $R_{L+1,l}$ and $T_{L+1,l}$
\item As two composite layers, say 1,l and l$+$1, L$+$1 are added, the upward and downward fluxes boundary between the two layers are determined:
\begin{equation}
U_{l}=\frac{T_{1,l}{\, R}_{L+1,l}}{1-R_{1,l}^{\star }R_{L+1,l+1}}\, \, ,\, \,
D_{l}=\frac{T_{1,l}}{1-R_{1,l}^{\star }R_{L+1,l+1}}
\end{equation}
The fraction of the total incident flux absorbed in the upper composite
layer is:
\begin{equation}
A_{1,l(n)}=p\left( k_{n} \right)\left( 1-R_{1,L+1(n)}
\right)+U_{l(n)}-D_{l(n)}
\end{equation}
The total absorption in each layer l is found by differencing, \emph{e.g.},
\begin{equation}
A_{l(n)}=A_{1,l(n)}-A_{1,l-1(n)}
\end{equation}
The total absorption in each layer l is found by summing over the values of
n for which k$_{n}$ is significant
\begin{equation}
F_{abs}^{H_{2}O}=\mu_{0}F\sum\limits_{n=1}^{n=8} A_{l(n)}
\end{equation}
The downward flux for global radiation is:
\begin{equation}
{F\downarrow }_{g}^{H_{2}O}=\mu_{0}F\sum\limits_{n=1}^{n=8} {D_{l}\left( n
\right)p\left( k_{n} \right)}
\end{equation}
\end{enumerate}
For the downward direct radiation the layers are added as in the step 2) but
only for the transmission function and with reflection equal to zero:
$T_{1,l}=T_{1,l-1}T_{l}$ Since the downward direct radiation is:
\begin{equation}
{F\downarrow }_{d}^{H_{2}O}=\mu_{0}F\, \sum\limits_{n=1}^{n=8} T_{1,l} \left(
n \right)p(k_{n})
\end{equation}

\section{Warm cloud parameterization}
In order to represent cloud formation new thermodynamic variables are used
to be conservative through condensation/evaporation processes. These
variables are (see \cite{Betts:1973}):
\begin{equation}
\theta_{l} =\theta -\frac{L_{v} \theta }{C_{p} T }q_{l},
\quad
q_{w} =q_{v} +q_{l}
\end{equation}
\newline
where $\theta_{l}$ (K) is the liquid-water potential temperature,
\newline
$\theta $(K) the potential temperature,$T $(K) the temperature,
\newline
$q_{w}$ (kg kg$^{-1})$ the total water specific humidity (sum of the specific humidity
for water vapor $q_{v}$ (kg kg$^{-1})$ and liquid water $q_{l}$ (kg
kg$^{-1}))$,
\newline
$ L_{v\, }=$2.5 (MJ kg$^{-1})$ and $C_{p\, }=$ 1005 (J kg$^{-1}$ K$^{-1})$.
\newline
The ensemble mean of each quantity is denoted by an
overbar, whereas primes denotes fluctuating quantities (\emph{e.g.} $q=\bar{q}+q')$.

The energy and water conservation equations become with these variables:
\newline
\newline
\begin{equation}
\left( \frac{\partial }{\partial t}+\overline u_{i} \frac{\partial }{x_{i}}
\right)\overline \theta_{l} =\frac{\partial }{x_{i}}\left[ \left(
\frac{\lambda_{c}}{C_{p}}+\frac{\mu_{t}}{\sigma_{t}}
\right)\frac{\partial \overline \theta_{l} }{\partial x_{i}}
\right]+\frac{\overline \theta }{\overline T }\frac{1}{C_{p}}\frac{\partial
F_{R}}{\partial z}-\rho \frac{L}{C_{p}}\frac{\overline \theta }{\overline T}\left(
\frac{\partial \overline q_{l} }{\partial t} \right)_{sed}
\end{equation}

\begin{equation}
\left( \frac{\partial }{\partial t}+\overline u_{i} \frac{\partial }{x_{i}}
\right)\overline {q_{w}} =\frac{\partial }{x_{i}}\left[ \left( \frac{\lambda
_{c}}{C_{p}}+\frac{\mu_{t}}{\sigma_{t}} \right)\frac{\partial \overline
q_{w} }{\partial x_{i}} \right]+\rho \left( \frac{\partial
\bar{q_{l}}}{\partial t} \right)_{sed}
\end{equation}
Where $\rho $ is the air density, u$_{i}$ the wind components, $\lambda_{c}$ the thermal diffusivity, $\mu_{t}$ the turbulent viscosity,
$\sigma_{t}$ the turbulent Prandtl number and Fr the net radiative flux.

To be comprehensive, we have included the settling term $\left(
\frac{\partial \overline{q_{l} } } {\partial t} \right)_{sed}$ that can play an
important role in some cases, as shown for example for fog in \cite{Musson-Genon:1987}.

With the set of variables used, the liquid water content $q_{l}$ must be
diagnosed. This is done by using a subgrid condensation scheme described in
details in \cite{Bouzereau:2007}.

\subsection{Condensation processes in $\theta_{l}$ and $q_{w}$ variables}

$q_{l}$ is diagnosed from the predicted value of $q_{w}$ by using a subgrid
condensation scheme (see \cite{Bouzereau:2007}) which can take into
account temperature and specific humidity turbulent fluctuations inside the
resolved mesh:
\begin{flalign}
&q_{l}=q_{w}-q_{s}\\
&\! q_{w}-q_{s}=A_{l}
\left( \overline {q_{w}}-\overline{q_{sl}} \right)+A_{l}\left(
q_{w}^{'}-\alpha_{l}\theta_{l}^{'} \right)
\end{flalign}
with
$A_{l}=\left(1+\frac{{L_{v}}^{2}\overline{q_{sl}}}{C_{p}R_{v}\overline{T}_{l}^{2}} \right)^{-1}$
and
$\alpha_{l}=\frac{L_{v}\overline{q_{sl}}}{R_{v}\overline{T}_{l}^{2}}\frac{\overline{T}}{\bar{\theta}}$

where $q_{s}$ (kg kg$^{-1})$ is water vapor specific humidity at saturation
level and R$_{v}$ is the specific gas constant for water vapor.

$with\, q_{s}=\frac{0.622\, e_{sat}}{P-0.378e_{sat}}\, ,\, \,
e_{sat}=610.78\, \mathrm{exp}(17.269\ast \frac{\overline {T}-273.15}{\overline T
-35.86})$ \textit{and} $\overline{q_{sl}}=q_{s}\left( \overline{T_{l}} \right)$

where $e_{sat} $ is saturation vapor pressure and $P$ atmospheric pressure.

We assume a bivariate normal distribution function $\tilde{G}(\theta
_{l}q_{w})$ in order to represent the subgrid-scale fluctuations of the
variables $\theta_{l}$ and $q_{w}$:
\begin{equation}
R=\int_{-\infty}^{ +\infty}\int_{q_{s}}^{+\infty}\tilde{G}\left(\theta_{l},q_{w} \right)dq_{w}\, d\theta_{l}
\end{equation}
\begin{equation}
\overline {q_{w}}=
\int_{-\infty}^{ +\infty}\int_{q_{s}}^{+\infty}
(q_{w}-q_{s})\tilde{G}\left( \theta_{l},q_{w} \right)\, dq_{w\, \,
}d\theta_{l}
\end{equation}
We reduce the integration to a single variable $s=\bar{s}+s^{'}\, with\,
s=\frac{A_{l}\left( \overline {q_{w}}-\overline{q_{sl}}
\right)}{2}, s'=A_{l}(q_{w}^{'}-\alpha_{l}\theta_{l}^{'})/2$

and introduce $Q_{1}=\bar{s}/s'$ a dimensionless measure of the deviation of
the mean state from saturation and $t=s^{'}/\sigma_{s'}$ with $\sigma
_{s'}=(\frac{A_{l}}{2})(\overline{q_{w}^{'2}}+\alpha_{l}^{2}\overline{\theta
_{l}^{'2}}-2\alpha_{l}\overline{\theta_{l}^{'}q_{w}^{'}})$.

In that condition, partial cloudiness R, cloud water specific humidity, and
second order momentum can be estimated for different subgrid distribution
(all or nothing and gaussian) and are given in the following table:

\begin{table}[htbp]
\begin{center}
\caption[distribution]{}
\begin{tabular}{|p{99pt}|p{177pt}|p{184pt}|}
\hline
Subgrid distribution&
``All or nothing'' distribution&
Gaussian distribution \\
\hline
G(t)&
$\delta (t)$ Dirac distribution&
$\frac{1}{\sqrt {2\pi } }e^{-t^{2}/2}$ \\
\hline
R&
$Q_{1}\ge 0,\quad 1$ \par $Q_{1}<0,\quad 0$&
$\frac{1}{2}\left(1+erf\left(Q_{1}/\sqrt 2 \right) \right)$ \\
\hline
$\frac{\overline{q_{l}}}{2\sigma_{s'}}$&
$Q_{1}\ge 0,\quad Q_{1}$ \par $Q_{1}<0,\quad 0$&
$RQ_{1}+\frac{e^{-Q_{1}^{2}/2}}{\sqrt {2\pi } }$ \\
\hline
$
\frac{\overline{s'q_{l}^{'}}}{2\sigma_{s'}^{2}}
$
&
0&
$R-\frac{\bar{q_{l}}}{2\sigma_{s'}}\frac{e^{-Q_{1}^{2}/2}}{\sqrt {2\pi } }$\\
\hline
\end{tabular}
\label{tab3}
\end{center}
\end{table}

We have now to determine$\, \overline{q_{w}^{'2}}$,$\, \overline{\theta_{l}^{'2}}$
and $\overline{\theta_{l}^{'}q_{w}^{'}}$. This can be done by stationarising
(balance between production and dissipation) the equation of evolution of
the second order moments. That gives (see \cite{Musson-Genon:1995}):
\begin{equation}
\overline{q_{w}^{'2}}=\frac{2}{c_{2}}\frac{e}{\varepsilon }K_{\theta }\left(
\frac{\partial \overline {q_{w}}}{\partial z} \right)^{2}{,\quad
\overline{{\theta'_{l}}^{2}}}=\frac{2}{c_{2}}\frac{e}{\varepsilon }K_{\theta }\left(
\frac{\partial \overline{\theta_{l}}}{\partial z} \right)^{2},\quad
\overline{\theta_{l}^{'}q_{w}^{'}}=-\frac{2}{c_{2}}\frac{e}{\varepsilon }K_{\theta }{\left(
\frac{\partial \overline {q_{w}}}{\partial z} \right)\left( \frac{\partial
\overline{\theta_{l}}}{\partial z} \right)}
\end{equation}
With $c_{2\, }=$2.3 and $K_{\theta }=c_{\mu }\frac{e^{2}}{\varepsilon }$
for the e-$\varepsilon $ turbulent closure

In addition, the buoyancy term in the e-$\varepsilon $ turbulent closure has
to be expressed in terms of $\theta_{l\, }$ and $ q_{w}$ variables. This
leads to the following expression (see \cite{Bouzereau:2007}).
\begin{equation}
\overline{w^{'}\theta_{v}^{'}}=E_{\theta }\overline{w^{'}\theta
_{l}^{'}}+E_{q}\overline{w'q_{w}^{'}}
\end{equation}
where

\begin{equation}
\end{equation}
$E_{\theta }=\tau -NA_{l}\alpha_{l}D_{q\, }and\, E_{q}=0.608 \, \theta
+NA_{l}D_{q}$ and $\tau =\left( 1+0.608 \, \overline {q_{w}}-1.608 \, \bar{q_{l}}
\right)$,
$D_{q}=\frac{g}{T_{0}}-1.608 \, \bar{\theta }$ and
$N=\overline{s^{'}q_{l}^{'}}/2\sigma_{s'}^{2}$
T$_{0}$ being the mean temperature
of the atmospheric boundary-layer.

\subsection{ Evolution of the droplet spectrum }
For computing the evolution of the droplet spectrum, we have chosen a
semi-spectral method for its simplicity and its low computational cost.

The prognostic equation for the number of droplet $N_{d}$ is (here N$_{d}$ is
the ensemble mean of droplet number):
\begin{equation}
\left( \frac{\partial }{\partial t}+\bar{u_{i}}\frac{\partial }{\partial
x_{i}} \right)N_{d}=\frac{1}{\rho }\frac{\partial }{x_{i}}\left[ \left(
\frac{\lambda_{c}}{C_{p}}+\frac{\mu_{t}}{\sigma_{t}}
\right)\frac{\partial \overline {q_{w}}}{\partial x_{i}} \right]+\left(
\frac{\partial \bar{q_{l}}}{\partial t} \right)_{E/C}+\left( \frac{\partial
\bar{q_{l}}}{\partial t} \right)_{nuc}+\left( \frac{\partial
\bar{q_{l}}}{\partial t} \right)_{sed}
\end{equation}
where the last three terms of the right-hand side are respectively the
evaporation and condensation term, the nucleation term and the droplet
settling term. Besides, this equation is associated with a lognormal
distribution law defined as follows:

$N_{d}\left( r \right)=\frac{N_{d}}{r\sigma_{c}\sqrt {2\pi } }exp\left[
\frac{-1}{2\sigma_{c}^{2}}\left( ln\frac{r}{r_{0}} \right)^{2} \right]$

where r is the droplet radius, r$_{0}$ is the distribution median value and
$\sigma_{c}$ the logarithmic standard deviation.

With this law, the relationship between liquid water content q$_{l}$ and
N$_{d}$ is:
\begin{equation}
\rho \bar{q_{l}}=\frac{4}{3}\pi \bar{r_{3}}^{3}\rho_{w}N_{d}
\end{equation}
Where$\, \, \, \, \bar{r_{3}}=r_{0}exp\left( \frac{3}{2}\sigma_{c}^{2}
\right)$ is the mean volume (or mass) radius and $\rho
_{w}=$1000kg.m$^{-3}$ the density of liquid water.

We will now describe the different processes which are playing a role in the
evolution equation for $N_{d}$.

\subsubsection{Nucleation}
The nucleation is described by the equations of the heterogeneous nucleation
occurring in the atmosphere and summarized in
\cite{Pruppacher:2000}. It depends on the characteristics of the cloud condensation nuclei
(CNN). We have:
\begin{equation}
\left( \frac{\partial N_{d}}{\partial t} \right)_{Nuc}=\frac{1.}{\Delta
t}max\left( \left( N_{CCN} \right)_{max}-N_{d},\, 0. \right)
\end{equation}
where N$_{CCN}$ is the Cloud Condensation Nuclei density and $\Delta $t is
the numerical time step.

The number of droplet formed through nucleation is strongly correlated to
the super-saturation
\newline
s $=$ e/e$_{sat}$ -1

 Supersaturation is characterized by s\textgreater 0
(e being the partial pressure of water vapour in moist
air and e$_{sat}$ the saturation vapour pressure).

A simple expression taking into account all cooling processes for s is (see
\cite{Zhang:2014}):
\begin{equation}
\frac{ds}{dt}=\left( \frac{\xi L_{v}g}{R_{a}T^{2}C_{p}}-\frac{g}{R_{a}T}
\right)\bar{w}-\left( \frac{R_{a}T}{\xi e_{s}}+\frac{\xi L_{v}^{2}}{pTC_{p}}
\right)\frac{d\bar{q_{l}}}{dt}+\frac{\xi L_{v}g}{{\rho
R}_{a}T^{2}C_{p}}\frac{\partial F_{rad}}{\partial z}
\end{equation}
\begin{center}
lifting \quad	\quad \quad \quad \quad \quad \quad \quad \quad latent	\quad heat \quad	release \quad	radiation
\end{center}
\begin{equation}
=A_{1}w-A_{2}\frac{d\bar{q_{l}}}{dt}+A_{4}\frac{\partial F_{rad}}{\partial
z}
\end{equation}
where $\xi =$ 0.622 (molecular weight of water/molecular
weight of air), $g $(m s$^{-2})$ is the gravity, $R_{a}$ is the gas constant for
dry air, $\bar{w}$ (m s$^{-1})$ is the vertical air velocity, $e_{s}$ (Pa) is
the saturation vapor pressure water and $F_{rad}$ the net radiation flux (W
m$^{-2})$.

\subsubsection{Abdul-Razzack nucleation scheme}

As the primary source of cloud droplets, the nucleation process depends on
many factors including the characteristics (size and chemical composition)
of the aerosols. In order to take into account size distribution and
chemical composition if they are known, the Abdul-Razzak (AR) scheme
for aerosol activation is used \cite{Abdul-Razzak:2000}. With the superposition of three
lognormal aerosol distributions, as proposed by AR, the droplet number
concentration at the maximum super-saturation $s_{max}$, is given by:
\begin{equation}
N_{d}\left( s_{max} \right)=\frac{1}{2}\sum\limits_{i=1}^3 {N_{ai}\left(
1-erf\left[ \frac{2\, ln\left( s_{i}/s_{max} \right)}{3\sqrt {2\, } ln\left(
\sigma_{ai} \right)} \right] \right)} ,
\end{equation}
where $N_{ai} $ is the total aerosol number concentration of mode $i$,
$s_{i}$ the critical super-saturation of a particle with the diameter $r_{ai}$ and
the geometric mean diameter of the aerosol mode $i$.

It can be calculated by using K\"{o}hler's theory.

The maximum supersaturation $s_{max} $ is given by:
\begin{equation}
s_{max}=\sum\limits_{i=1}^3 \frac{1}{s_{i}^{2}} \left[ f_{i}\left(
\frac{\varsigma }{\eta_{i}} \right)^{3/2}+g_{i}\left( \frac{s_{i}^{2}}{\eta
_{i}+3\varsigma } \right)^{3/4} \right],
\end{equation}
With $f_{i}=0.5\exp \left( 2.5\, {ln}^{2}\sigma_{i\, } \right),\, g_{i}=1+0.25\, ln\sigma_{i}$,
$s_{i}=\frac{2}{\sqrt B_{i} }\left(\frac{A}{3r_{a}} \right)^{3/2}$
\newline
and $\varsigma =\frac{2A}{3}\left( \frac{A_{1}w+A_{4}\partial
F_{rad}/\partial z}{A_{3}} \right)^{1/2}$, $\eta_{i}=\frac{\left[ \left(
A_{1}w+A_{4}\partial F_{rad}/\partial z \right)/A_{3} \right]^{3/2}}{2\pi
\rho_{w}A_{2}N_{ai}}$
\newline
where $\rho_{w}$ (kg m$^{-3})$ is the water density, $A_{1}$, $A_{2}$,
$A_{4}$ are the constants defined above,
and $A_{3}$, $A$, $B_{i}$ can be found in
 \cite{Abdul-Razzak:2000}.

\begin{equation}
A_{3}=\left( \frac{\rho_{w}R_{v}T}{e_{s}D_{v}^{\star }}-\frac{L_{v}\rho
_{w}}{k_{a}^{\star }T}\left( 1-\frac{L_{v}}{TR_{v}} \right) \right)^{-1},\,
\, A=\frac{2\sigma_{vw}}{R_{v}T\rho_{w}},
B_{i}=\frac{\nu \phi_{s}\epsilon_{m}M_{w}\rho_{ai}}{M_{ai}\rho_{w}}
\end{equation}
where $k_{a}^{\star }=4.187\, {10}^{-3}\left( 5.69+0.017\, T\left( in\,
^{\circ}C \right) \right)$ Jm$^{-1}$s$^{-1}$K$^{-1}$ is the dry air
conductivity and

$D_{v}^{\star }=0.211\, {10}^{-4}\left( \frac{T}{273.15} \right)^{1.94}\left(
\frac{1.01325\, {10}^{5}}{P} \right)$ m$^{2}$s$^{-1}$ the water vapour
diffusivity.

$M_{w}$ is the molecular weight of water, $\rho_{w}$ water density,
$\sigma_{vw}$ is the partial pressure at air/water interface,
\newline
$\nu $ the number of ions the salt dissociates into within water,
\newline
$\varphi $ the osmotic coefficient, $\rho_{ai}$ the density of aerosols material,
\newline
$M_{ai}$ the molecular weight of the aerosol material.
\newline
When not any information is available on the characteristic of the aerosols,
a simpler model can be used deduced from typical air mass aerosol
concentrations.

\subsubsection{Cohard and Pinty nucleation scheme}

The Cloud Condensation Nuclei (CCN) density is given by:
\newline
$N_{ccn}\left( {cm}^{-3} \right)=\tilde{C}\tilde{s}^{k}=Cs^{k}\, \, \, \, \,
$when s\textgreater 0
\newline
where the deviation from saturation s is defined by s $=$ e/e$_{sat}$ -1 and
\newline
when s\textgreater 0 is called the supersaturation (e being the partial
pressure of water vapour in moist air and e$_{sat}$ the saturation vapor
pressure). Note that the nucleation is not possible for negative value of s.
The parameters C and $\tilde{C}$ are constants of the nucleation
process.

Due to different usage in the literature, it is important to be aware of the
difference between $\tilde{C}$ and $C=10^{2k}\tilde{C}$ (C is in cm$^{-3})$ and
between $\tilde{s}$, the super-saturation in percentage, and s
($\tilde{s}=100\mbox{s})$.
\newline
\newline
In our simulation, we choose the model and methodology of
\cite{Cohard:1998} and \cite{Cohard:2000}, that is: $N_{ccn}\left(
{cm}^{-3} \right)=\tilde{C}\tilde{s}^{k}F\left( \mu
,\frac{k}{2};\frac{k}{2}+1;-\beta \tilde{s}^{2} \right)$
\newline
F is the hyper-geometric function adjusted to give rather good results from
weak (s\textless 0.02{\%}) to significant (s\textgreater 1{\%})
super-saturation, as it could occur in the atmosphere. $\mu$, $\beta $ and $k$ are
some parameters characterizing the aerosols distribution of the air mass.

\subsubsection{ Sedimentation and deposition}
Cloud water sedimentation is included by assuming a lognormal size
distribution of droplets falling in a Stokes regime, in which the changes to
N$_{d}$ and q$_{l\, }$are given by:

\begin{equation}
\left( \frac{\partial N_{d}}{\partial t} \right)_{sed}=\frac{\partial
}{\partial z}\int\limits_0^\infty {V_{g}\left( r \right)n_{d}\left( r
\right)dr} =\frac{\partial }{\partial z}\left( N_{d}V_{g}\left( r_{mv}
\right)\exp \left( -\sigma_{d}^{2} \right) \right)
\end{equation}

\begin{equation}
\left( \frac{\partial \bar{q_{l}}}{\partial t} \right)_{sed}=\frac{1}{\rho
}\frac{\partial }{\partial z}\int\limits_0^\infty {V_{g}\left( r
\right)\frac{4\pi }{3}r^{3}n_{d}\left( r \right)dr} =\frac{1}{\rho
}\frac{\partial }{\partial z}\left( \rho \bar{q_{l}}V_{g}\left( r_{mv}
\right)\exp \left( 5\sigma_{d}^{2} \right) \right)
\end{equation}
\newline
where$ V_{g}$ is droplet fall velocity.
\newline
In this parametrization $V_{g}$(r) is calculated as a function of droplet
size radius:
\begin{equation}
V_{g}\left( r \right)=\rho gC_{c}r^{2}\left( 4.5\mu_{air} \right)^{-1}
\end{equation}
where $C_{c} =$\textit{ 1. }$+ l_{air}$\textit{ (1.257 }$+$\textit{ 0.4 exp(1.1 r/l}$_{air}))/r$ is the slip correction factor to
account for non-continuum effects for small droplets and which depends on
the mean free path of air molecules l$_{air}$, $\mu_{air}$ is the
viscosity of the air.

Fog deposition process over vegetation has long been recognized as an
important factor in the water balance of ecosystems. This process results
from the turbulence exchange of fog water and collection from the surface.
The deposition flux of fog water, $F_{dep}$, is predicted from the simple
inferential model equation of the type:

\begin{equation}
F_{dep}=\bar{q_{l}}\frac{1}{R_{t}}=\bar{q_{l}}V_{dep}
\end{equation}
where $V_{dep}$ is the deposition velocity and $R_{t}$ is the total resistance
against deposition and computed as a combination (parallel and serial
arrangements) of aerodynamic ($R_{aero})$ and surface ($R_{surf})$ resistances
within the first layer (between the ground surface and the first grid level):
\newline
$R_{aero}=\frac{1}{2}\frac{\ln \left( \frac{z_{1}}{z_{0}}
\right)-\mathrm{\Psi }_{h}}{\kappa u_{\star }}$ and
$R_{surf}=\frac{1}{\varepsilon_{0}u_{\star }\left( E_{imp}+E_{int} \right)}$
\newline
where $z_{1}$ is the height at which the deposition velocity is evaluated,
$z_{0\, }$ is the roughness height, $\psi_{h}$ is the stability function,
$\kappa $ is the von Karman constant, $u_{\star }$ is the friction velocity,
$\varepsilon_{0}=$ 3 is an empirical constant for all types of land.
$E_{imp}$, $E_{int}$ are collection efficiency from impaction and interception
respectively (see \cite{Zhang:2001} ):
\newline
\newline
$E_{imp}=\left( \frac{St}{St+1.5} \right)^{2}$ with $St=\frac{V_{g}u_{\star
}}{0.01g}$ , $E_{int}=2\frac{r_{mv}}{0.01}$
\newline
\newline
The collection by Brownian motion of fog droplet is neglected because its
effect is only significant for very small particle diameter (\textless 0.1
$\mu$m).

If a deposition process is taken into account in the model, the new bulk
velocity that is estimated for liquid water will be calculated as the sum of
$V_{g}$ and $V_{dep\, }$at the$_{\, }$lowest level and this will be used to
estimate $F_{dep}$.

\subsubsection{Condensation-evaporation}
The condensation processes do not have any effect on $N_{d}$, the nucleation
being treated independently, thus we can write:
\begin{equation}
\left( \frac{\partial N_{d}}{\partial t} \right)_{C}=0.
\end{equation}
For the evaporation, we distinguish two regimes:
\begin{itemize}
\item the total evaporation of all droplets (s\textless 0 and
 $\bar{q_{l}}=$0) is simply described by $N_{d}=$\textit{0} (see \cite{Cohard:2000}).
\item the partial evaporation (s\textless 0 and
 $\bar{q_{l}}$\textgreater 0, i.e. a total evaporation only for the
 smallest droplets), we choose to follow \cite{Chaumerliac:1987} and to force
 the droplets to disappear for radius less than a critical value r$_{crit}$:
\end{itemize}
\begin{equation}
r_{crit}=\sqrt {-2A_{3}s\mathrm{\Delta }t}
\end{equation}

Finally, the expression for partial evaporation is:
\begin{equation}
\left( \frac{\partial N_{d}}{\partial t}
\right)_{E/C}=\frac{1}{\mathrm{\Delta t}}\int_{0}^{r_{crit}}
\frac{N_{d}}{r\sigma_{c}\sqrt {2\pi } } exp\left( -\frac{1}{2\sigma
_{c}^{2}}\left( ln\frac{r}{r_{0}} \right)^{2}\, \right)dr
\end{equation}
For $\overline{{\, q}_{l}}$, condensation and evaporation are not treated
explicitly but implicitly through the subgrid scheme (see \cite{Bouzereau:2007}).

\section{Earth-atmosphere interactions}
In \CS different options can be used in order to
determine surface boundary conditions.

\subsection{Direct estimation of turbulent fluxes}
The first one is to directly impose the fluxes for momentum (surface shear stress), temperature and
humidity (eventually any scalar). That consists in giving data for
${u^{\star}} ^2 =\sqrt {\overline {u'w'}^{2}+\overline {v'w'}^{2}} $ where
$u',\,\,v',\,\,w'$ are the turbulent fluctuations of
the three components of the wind speed,
\newline
\newline
$Q_{0} =\overline{w'\theta'}$ the kinematic flux of sensible heat where
$\theta '$ is the turbulent fluctuation of the potential temperature,
\newline
\newline
$E_{0} =\overline {w'q'} $ being the kinematic
evaporative flux and $q'$ the turbulent fluctuation of the specific
humidity.

These data could be obtained, for example, by experimental
measurements with sonic anemometer.

\subsection{Impose temperature and humidity from experimental estimation}
In that option fluxes are computed from difference of temperature and
humidity between their values at ground level (z$_{1}=$z$_{0}$ roughness
height for the wind, z$_{1}=$z$_{ot}$ thermic roughness height for
temperature and humidity) and at the first level z$_{2}$ in the air.
It needs to determine turbulent fluxes from gradients (see \cite{Musson_Genon:2007}).

Monin-Obukhov's similarity theory gives relations between the fluxes of
sensible heat, latent heat and momentum by means of universal functions:
\begin{equation}
\label{eq:atmo:eq5}
\frac{\partial \left| {\vect{u}} \right|}{\partial z} =
\left( {\frac{{u}^{{\star }} }{\kappa z}} \right) \, \phi_{m} \left(
{\dfrac{z}{L}} \right),
\end{equation}

\begin{equation}
\label{eq:atmo:eq6}
\frac{\partial {\theta }}{\partial z}=\left( {\frac{\theta_{\star}}{\kappa z}} \right)\phi_{h} \left({\frac{z}{L}} \right)
\end{equation}

\begin{equation}
\label{eq:atmo:eq7}
\frac{\partial q}{\partial z}=\left(
{\frac{q_{\star} }{\kappa z}} \right) \,
\phi_{q} \left(
{\frac{z}{L}} \right),
\end{equation}


where $\left| {\vect{u}} \right|$ is the modulus of the horizontal mean wind speed,
\newline
$u_\star $ is the friction velocity with $u_{\star}^{2} =\sqrt{(\overline{u'w'}^{2}+\overline{v'w'}^{2})}$
\newline
$u',\,\,v',\,\,w'$ are the turbulent fluctuations of the three components of the wind speed,
\newline
where $\theta$ is the mean potential temperature and q is the mean specific humidity:
\begin{equation}
\theta_{\star}=\frac{-Q_{0}}{u_{\star}}
\end{equation}

\begin{equation}
q_{\star} =-E_{0} \mbox{/u}_{\star}
\end{equation}
\newline
Here, $\kappa$ denotes Von Karman's constant, $\phi_{m} \, \phi_{h} \,\,\mbox{and}\,\,\phi_{q} $
are the universal functions for wind, temperature and humidity, z is the
altitude and L is the Obukhov length:
\begin{equation}
\label{eq:atmo:eq8}
L = \dfrac{-u_{\star}^{3}}{
  \kappa \dfrac{g}{T_{0}} \, Q_{0}
  +0.61T_{0} E_{0}
},
\end{equation}
where T$_{0}$ is the mean temperature in the surface layer (z$_{2}$-z$_{1}$
layer).

Usually, the function $\phi_{q} $ is chosen equal to $\phi
_{h} $. Classically, see for example \cite{Garratt:1992} or \cite{Cheng:2005},
integration of the relations \eqref{eq:atmo:eq5}, \eqref{eq:atmo:eq6} and \eqref{eq:atmo:eq7}
between two different levels $0<z_{1} <z_{2} $ gives:
\begin{equation}
\label{eq:atmo:eq9}
\delta u=u(z_2)-u(z_1)=
\left(\frac {u_{\star}}{\kappa} \right)\Psi_{m}\left({L,z_2,z_1} \right)
\end{equation}

\begin{equation}
\label{eq:atmo:eq10}
\delta \theta=\theta (z_2) -\theta (z_1)=
\left(\frac{\theta_{\star}}{\kappa} \right)\Psi_{h}\left({L,z_2,z_1} \right)
\end{equation}

\begin{equation}
\label{eq:atmo:eq11}
\delta q=q(z_2)-q(z_1)
\left( {\frac{q_{\star}}{\kappa}} \right)\Psi_{h} \left({L,z_2,z_1} \right)
\end{equation}

The formulation of the universal functions are given in \tablename{} \ref{tab:atmo:tab4} (two
options available) and the integrated form (expressions of the $\Psi$ functions:
the dynamical profiles $\Psi_{m}$ and the thermal profiles $\Psi_{h}$) are given in the following paragraph:

\paragraph{The dynamical profiles $\Psi_{m}$}

\subparagraph{Unstable case:}

$\zeta_{2}< \zeta_{1}$ \textless 0:
$\Psi_{m} =\log \frac{z_{2}}{z_{1}}-2\log \left({\frac{1+\Psi_{2} }{1+\Psi_{1} }}\right)-\log
\left( {\frac{1+\Psi_{2}^{2} }{1+\Psi_{1}^{2} }} \right)+2\left( {\arctan
\Psi_{2} -\arctan \Psi_{1} } \right)$,
\newline
where $\Psi_{2}= (1-b_{m} \zeta_{2})^{1/4}$ and $\Psi_{1} =(1-b_{m} \zeta_{1})^{1/4}$,
\newline
with $\zeta_{1}= $ z$_{1}$/L, $\zeta_{2}= $ z$_{2}$/L, b$_{m\, }= $ 15.

\subparagraph{Neutral or stable cases:}

0 \textless $\zeta_{1}$ \textless $\zeta_{2}$ \textless 0.5:
$\Psi_{m} =log\frac{z_{2} }{z_{1} }+b_{m} \left( {\zeta_{2} -\zeta_{1} } \right)$,

0.5 \textless $\zeta_{2}$ \textless 10:
$\Psi_{m} =c_{1m} log(2\zeta_{2})+\frac{4.25}{\zeta_{2}}-\frac{0.5}{\zeta_{2}^{2}}-log(2\zeta_{1} )-b_{m} \zeta_{1} -c_{2m} $

$\zeta_{2\quad }>\quad 10:
\quad
\Psi_{m} =d_{1m} \zeta_{2}
+c_{1m} log\left( {2\zeta_{2} }
\right)-\mbox{11.165}-log(2\zeta_{1}
)-b_{m} \zeta_{1}
$
\newline
with $\quad b_{m} = 4.7, c_{1m} = 7.85, c_{2m} = 4.15, d_{1m} = 0.7435$

In the case of \cite{Cheng:2005}, $\Psi_{m\, }$ may be expressed as:

0 \textless $\zeta_{1}$ \textless $\zeta_{2}$:$_{\, }\Psi_{m} =alog\frac{z_{2} }{z_{1}
}-\mbox{a}\,\,log\left( {\zeta+\left( {1+\zeta^{b}} \right)^{\frac{1}{b}}} \right)_{\, }$ with a
$=$ 6.1 and b $=$ 2.5

\paragraph{The thermal profiles $\Psi_{h}$}

\subparagraph{Unstable case:}

$\zeta_{2 }< \zeta_{1}$ \textless 0: $\Psi_{h}
=\mbox{a}_{h} \left( {log\left( {\frac{z_{2}
}{z_{1} }} \right)-\mbox{2log}\left(
{\frac{1+\Psi_{2} }{1+\Psi_{1}
}} \right)} \right)$,

where $\Psi_{2} =1-b_{h} \zeta_{2} )^{1/2}$ and $\Psi_{1}
=1-b_{h} \zeta_{1}
)^{1/2}$, with a$_{h\, }=$ 0.74, b$_{h\, }=$ 9

\subparagraph{Stable cases:}

$\zeta_{2 }> \zeta_{1}$ \textgreater 0: $\Psi_{h}
=alog\frac{z_{2} }{z_{1} }+b(\zeta_{2} -\zeta_{1} )$ ,

with a$_{h\, }=$ 0.74, $b_{h\, }= $ 4.7 for \cite{Businger:1971}

In the case of \cite{Cheng:2005}, $\Psi_{h}$ may be expressed as:

0 \textless $\zeta_{1}$ \textless $\zeta_{2}$:$_{\, \, }\Psi_{h} =alog\frac{z_{2} }{z_{1}
}-c\,\,log\left( {\zeta+\left( {1+\zeta^{d}} \right)^{\frac{1}{d}}} \right)_{\, }$with c
$=$ 5.3 and d $=$ 1.1.

\begin{table}[htbp]
\begin{center}
\caption[fonction]{Detailed expressions for the universal functions from
  \cite{Businger:1971}; \cite{Hicks:1976}, and \cite{Cheng:2005}
}
\begin{tabular}{|p{74pt}|p{116pt}|p{262pt}|}
\hline
\textbf{Function}&
\textbf{unstable} \par $\zeta <0$&
\textbf{stable}

$0<\zeta <0.5,\quad
1<\zeta <10,\quad
\zeta >10$ \\
\hline
unstable:
\cite{Businger:1971} \par stable: \cite{Hicks:1976}&
$\phi_{m} =\left( {1-15\zeta } \right)^{-1/4}$ \par
$\phi_{h} =0.74\left( {1-9\zeta } \right)^{-1/2}$&
$\phi_{m} =1+4.7\zeta ,\quad
\phi_{m} =7.85-\frac{4.25}{\zeta }+\frac{1}{\xi^{2}},\quad
\phi_{m} =0.7435\,\zeta $ \par $\phi_{h} =0.74+4.7\zeta $ \\
\hline
\cite{Businger:1971} \par stable: \cite{Cheng:2005} \par &

$\phi_{m} =\left( {1-15\zeta }\right)^{-1/4}$

\par
$\phi_{h} =0.74\left( {1-9\zeta } \right)^{-1/2}$&

$\phi_{m} =
1+a\frac{\zeta+\zeta^b{1+\zeta^b}^{\frac{1-b}{b}}} {\zeta+(1+\zeta^b)^{\frac{1}{b}} }$
a$=$6.1, b$=$2.5 \par

$\phi_{h}=
1+c\left(\frac{{\zeta+\zeta^d}\left({1\zeta^d}\right)^{\frac{1-d}{d}}} {\zeta+\left(1+\zeta^d)\right)^{\frac{1}{d}} }\right)$
c$=$5.3, d$=$1.1\small \\
\hline

\end{tabular}
\label{tab:atmo:tab4}
\end{center}
\end{table}

But these expressions do not determine explicitly the atmospheric fluxes as
functions of the differences of wind, temperature and humidity between two
levels. Two methods for solving this implicit problem are described in the
next section.

\subsubsection{The exact iterative method}

From the definition of $L$, and with the help of Equations \eqref{eq:atmo:eq9}, \eqref{eq:atmo:eq10} and
\eqref{eq:atmo:eq11} giving $u_\star $, Q$_{0}$ and E$_{0}$, the following
expression is obtained:
\begin{equation}
\label{eq:atmo:eq12}L=\frac{\delta u^{2} \Psi_{h}}{\frac{g}{T_{0}}\Psi_{m}^{2}(\delta {\theta}+0.61 T_{0} \delta {q})}
\end{equation}

Since $\Psi_{m}, \Psi_{h}$ depend on $L$, this
relation has to be solved by an iterative method. We follow \cite{Beljaars:1991}
using an initial value of $L$ that depends on the sign of
$\delta \theta +0.61 T_{0} \delta q$.

This iterative procedure converges rapidly in all unstable situations. In
stable situations for small values of $u_{\star}$ and $L$, the
solution for $L$ tends to zero. For this reason, a minimum value is imposed
for $L$. On the other hand, we have verified that the solution obtained is not
dependent on the initial value of $L$.

Having determined $L$ and $u_{\star}$, the kinematic
fluxes of sensible heat Q$_{0}$ and latent heat E$_{0}$ are then simply
given by \eqref{eq:atmo:eq10} and \eqref{eq:atmo:eq11}, as well as $q_{\star} $and
$\theta_{\star} $.

The iterative method is well adapted to local determination of the fluxes
because this method derives directly from the experimental determination of
the MO universal functions, using assumptions on which the MO theory is
based: quasi-stationarity and horizontally homogeneity of the flow, with the
Coriolis effect negligible.

\subsubsection{The approximate analytical method}
To determine the turbulent fluxes in a meteorological model it is preferable
to use an analytical approximation in order to avoid an expensive iterative
resolution of an equation.

This method is based on a formulation of the universal functions differing
from those presented in \tablename{} \ref{tab:atmo:tab4} and leads to a complete analytical method
(see \cite{Louis:1982}).

In this formulation the fluxes are estimated with the bulk Richardson
number, defined by:
\begin{equation}
\label{eq13}
Ri=\frac{g(z_{2} -z_{1})
({\delta \theta }
+0.61T_{0} \delta q)}
{T_{0} {\delta u}^{2}}
\end{equation}

Using Equation \eqref{eq:atmo:eq12} a relation between $Ri$, the measurement levels $z_{1}$ and
$z_{2}$, and $L$ is established:
\begin{equation}
\label{eq14}
\frac{L}{z_{2} -z_{1}
}=\frac{\Psi_{h} }{Ri\,\Psi_{m}^{2}},
\end{equation}

Then $u_{\star} $, Q$_{0}$, E$_{0}$ according to \cite{Louis:1982}, are
given by:

\begin{equation}
\label{eq15}
u_{\star} =\delta u \left( C_{n} F_{d} \left(Ri, \, \frac{z_{2}}{z_{1}} \right) \right)^{1/2},
\end{equation}

\begin{equation}
\label{eq16}
Q_{0} =-\delta \theta \delta u C_{n} F_{h} \left( Ri,\,\frac{z_{2} }{z_{1} }\right),
\end{equation}

\begin{equation}
\label{eq17}
E_{0} =-\delta q \delta u C_{n} F_{h} \left( Ri, \frac {z_{2}}{z_{1}} \right),
\end{equation}

where $C_{n} $ is defined as: $C_{n} =\left(
{\dfrac{\kappa}{\ln(z_{2} /z_{1} )}}
\right)^{2}$.

The universal functions $F_{d}$ and $F_{h}$ depend on the atmospheric
stability through the bulk Richardson number, and are tuned to give results
close to those of the exact iterative method, at least in the unstable case.

In the unstable case, the functions $F_{d}$ and $F_{h}$ must be
asymptotically equivalent to $Ri^{1/2}$ in order to be consistent with the
free convection regime. Moreover, continuity must be assured when crossing
the neutral point and the slope of the wind profile in the neighbourhood of
zero must be slightly larger than the slope of the humidity and temperature.
Taking all these considerations into account, one obtains,
\begin{equation}
\label{eq18}
F_{d} =1-\frac{2bRi
}{1+3b c_{\star} \sqrt {\left| {Ri} \right|} },
\end{equation}

\begin{equation}
\label{eq19}
F_{h}
=1-\frac{{3bRi}}{1+{2bc}_{\star} \sqrt
{\left| {{Ri}} \right|} },
\end{equation}
with $c_{\star} =C_{n} \, \left(
{1-z_{1} /z_{2} }
\right)^{1/2}\left( {(z_{1} /z_{2}
)^{1/3}-1} \right)^{3/2}$ and $b = c = 5$.

For the stable case, the total extinction of the turbulence is prevented by
a modification of the asymptotic behaviour of the universal functions in
order to avoid thermal disconnection in very stable model layers close to
the ground, but also to take into account subgrid or intermittent turbulence
effects for Richardson number greater than the theoretical critical value of
0.21. The expressions become:
\begin{equation}
\label{eq20}
F_{d} =\frac{1}{1+\frac{2bRi}{\sqrt
{1+d\, Ri} }},
\end{equation}

\begin{equation}
\label{eq21}
F_{h} =\frac{1}{1+ 3 b \, Ri\sqrt
{1+ d \, Ri} },
\end{equation}
with $b = d = 5$.

The functions do not depend on the ratio $z_{1}
\mbox{/z}_{2} $.

\subsection{Estimation of soil temperature and humidity from an energetic budget}

\subsubsection{Soil temperature evolution}
The soil temperature T$_{s}$ (assimilated to the temperature at z$_{ot}$,
thermal roughness height) is computed by using an energy balance equation
for the earth's surface after \cite{Deardorff:1978}.

\begin{equation}
\label{eq22}
\frac{dT_{s}}{dt}\mathrm{=}\frac{\mathrm{2}\pi^{\mathrm{1/2}}}{\rho
_{s}c_{s}\left( \nu_{s}\tau_{\mathrm{1}}
\right)^{\mathrm{1/2}}}H_{at}\mathrm{-}\frac{\mathrm{2}\pi }{\tau
_{\mathrm{1}}}\left( T_{s}\mathrm{-}T_{p} \right),
\end{equation}
\newline
with $H_{at}=\left( 1-\alpha_{g} \right)S\downarrow +\varepsilon
_{g}(F\downarrow -\sigma T_{s}^{4})-\rho_{0}C_{p}Q_{0}-\rho_{0}LE_{0}$,
\newline
where $\rho_{0}\, $ is the air density at $z_{0}$, T$_{p}$ the deep soil temperature,
\newline
$S\downarrow $ the downward solar flux, $F\downarrow $ the downward infrared flux,
\newline
$\rho_{s}c_{s}$ the ground calorific capacity, $\nu_{s}$ the soil thermal conductibility,
\newline
$\tau_{\mathrm{1}}=86400\, s$, the force restore time constant for T$_{p}$,
\newline
$\alpha_{g}$ is the soil albedo, $\varepsilon_{g}$ the soil emissivity,
\newline
$C_{p}=$1005. J K$^{-1\, }$kg$^{-1}$ is the specific heat at constant pressure of air,
\newline
L$=$ 2.5 10$^{6}$ J kg$^{-1}$ is the latent heat of vaporization and
\newline
$\sigma =$5.67 10$^{-8}$ W m$^{-2}$ K$^{-4}$ the Stefan constant.

\subsubsection{Soil-humidity evolution}
The evolution of the soil liquid water content is deduced from the same
principles as the surface temperature:
\begin{equation}
\label{eq23}
\frac{dw_{1}}{dt}=\frac{P_{r}-\rho E_{0}}{C_{1}}-\frac{w_{1}-w_{2}}{\tau
_{1}},
\end{equation}

\begin{equation}
\label{eq24}
\frac{dw_{2}}{dt}=C_{2}\frac{w_{1}-w_{2}}{\tau_{1}},
\end{equation}
Where P$_{r}$ is the precipitation flux,
\newline
w$_{1\, }=$ w$_{s}$/w$_{smax}$ is a non-dimensional liquid water content with w$_{s}$ the liquid water content
for the surface reservoir and w$_{smax}$ its maximum value and
\newline
w$_{2\, }=$ w$_{p}$/w$_{pmax}$ is a non-dimensional liquid water content with w$_{p}$ the liquid water content
for the deep reservoir (which does not contain the surface reservoir) and w$_{pmax}$ its maximum value.

The constants C$_{1}$ an C$_{2}$ are given by:
\newline
C$_{1}=$ w$_{smax}$/C$_{ws}$ and C$_{2}=$w$_{smax}$/w$_{pmax}$,
\newline
where C$_{ws}$ is a non-dimensional constant tuning
the depth of the reservoirs and C$_{2}$ the ratio of these depth.

The surface specific humidity q$_{s}$ is computed as a function of w$_{1}$,
which varies according to the nature of the surface (bare soil or soil
covered by vegetation characterized by veg, the percentage of vegetation in
the mesh):
\begin{equation}
\label{eq25}
q_{s}=H_{u}q_{sat}\left( P_{s},T_{s} \right)+veg\, \left( 1-H_{u}
\right)q_{a}
\end{equation}
\newline
Where $H_{u}=0.5\left[ 1-cos\left( \pi w_{1} \right) \right]$,
\newline
q$_{sat}$ is the saturated value of q$_{s}$, $P_{s}$ is the surface pressure
\newline
and q$_{a}$ the specific humidity in the first level in the air in \CS.
\newline
Here H$_{u}$ will be equal to 1 when a dew flux is present.