File: clsyvt.tex

package info (click to toggle)
code-saturne 7.0.2%2Brepack-1~exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 62,868 kB
  • sloc: ansic: 395,271; f90: 100,755; python: 86,746; cpp: 6,227; makefile: 4,247; xml: 2,389; sh: 1,091; javascript: 69
file content (610 lines) | stat: -rw-r--r-- 22,592 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
%-------------------------------------------------------------------------------

% This file is part of Code_Saturne, a general-purpose CFD tool.
%
% Copyright (C) 1998-2021 EDF S.A.
%
% This program is free software; you can redistribute it and/or modify it under
% the terms of the GNU General Public License as published by the Free Software
% Foundation; either version 2 of the License, or (at your option) any later
% version.
%
% This program is distributed in the hope that it will be useful, but WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
% FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
% details.
%
% You should have received a copy of the GNU General Public License along with
% this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
% Street, Fifth Floor, Boston, MA 02110-1301, USA.

%-------------------------------------------------------------------------------

\programme{clsyvt}

\hypertarget{clsyvt}{}

\vspace{1cm}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Function}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

The aim of this subroutine is to fill the arrays of boundary conditions
 (\var{COEFA} and \var{COEFB}) of the velocity and of the Reynolds stress tensor,
for the symmetry boundary faces.
These conditions are express relatively naturally in the local coordinate system
of the boundary face. The function of \fort{clsyvt} is then to transform these
natural boundary conditions (expressed in the local coordinate sytem) in the
general coordinate sytem, and then to possibly partly implicit them.

It should be noted that the part of the subroutine  \fort{clptur} (for the wall
boundary conditions) relative to the writing in the local coordinate system and to
the rotation is totally identical.

See the \doxygenfile{clsyvt_8f90.html}{programmers reference of the dedicated subroutine}
for further details.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Discretisation}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Figure \ref{Base_Clsyvt_fig_facesym} presents the notations used at the face.
The local coordinate system is defined from the normal at the face and
the velocity at $I'$:\\
$\bullet\ \displaystyle\vect{t}
=\frac{1}{|\vect{u}_{I',\tau}|}\vect{u}_{I',\tau}$ is the first
vector of the local coordinate system.\\
$\bullet\ \vect{\tilde{n}}=-\vect{n}$ is the second
vector of the local coordinate system.\\
$\bullet\ \vect{b}=\vect{t}\wedge\vect{\tilde{n}}=\vect{n}\wedge\vect{t}$
is the third
vector of the local coordinate system.\\

\begin{figure}[h]
\centerline{\includegraphics[width=8cm]{facesym}}
\caption{\label{Base_Clsyvt_fig_facesym}Definition of the vectors forming the local coordinate system.}
\end{figure}

Here, $\vect{n}$ is the normalized normal vector to the boundary face
in the sense of  \CS ({\em i.e.}
directed towards the outside of the computational domain)
and $\vect{u}_{I',\tau}$ is the projection of the velocity at $I'$
in the plane of the face:
$\vect{u}_{I',\tau}=\vect{u}_{I'}-(\vect{u}_{I'}.\vect{n})\vect{n}$.\\
If $\vect{u}_{I',\tau}=\vect{0}$, the direction of $\vect{t}$ in the plane
normal to $\vect{n}$ is irrelevant. thus it is defined as:
$\displaystyle\vect{t}=\frac{1}{\sqrt{n_y^2+n_z^2}}(n_z\vect{e}_y-n_y\vect{e}_z)$
where
$\displaystyle\vect{t}=\frac{1}{\sqrt{n_x^2+n_z^2}}(n_z\vect{e}_x-n_x\vect{e}_z)$
along the non-zero components of $\vect{n}$ (components in the global
coordinate system $(\vect{e}_x,\vect{e}_y,\vect{e}_z)$).


For sake of clarity, the following notations will be used:\\
$\bullet\ $The general coordinate system will write
$\mathcal{R}=(\vect{e}_x,\vect{e}_y,\vect{e}_z)$.\\
$\bullet\ $The local coordinate system will write
$\hat{\mathcal{R}}=(\vect{t},-\vect{n},\vect{b})=(\vect{t},\vect{\tilde{n}},\vect{b})$.\\
$\bullet\ $The matrices of the components of a vector $\vect{u}$
in the coordinate systems
$\mathcal{R}$ and $\hat{\mathcal{R}}$ will write
$\mat{U}$ and $\hat{\mat{U}}$, respectively.\\
$\bullet\ $The matrices of the components of a tensor $\tens{R}$ (2$^{nd}$ order)
in the coordinate systems $\mathcal{R}$ and $\hat{\mathcal{R}}$ will write
 $\matt{R}$ and $\hat{\matt{R}}$, respectively.\\
$\bullet\ $ $\matt{P}$ refers to the (orthogonal) matrix transforming
 $\mathcal{R}$ into $\hat{\mathcal{R}}$.
\begin{equation}
\matt{P}=\left[
\begin{array}{ccc}
t_x & -n_x & b_x\\
t_y & -n_y & b_y\\
t_z & -n_z & b_z
\end{array}\right]
\end{equation}

($\matt{P}$ being orthogonal, $\matt{P}^{-1}=\,^t\matt{P}$).

In particular, we have for any vector $\vect{u}$
and for any second order tensor $\tens{R}$:\\
\begin{equation}
\left\{\begin{array}{l}
\mat{U} = \matt{P}\,.\,\hat{\mat{U}}\\
\matt{R}= \matt{P}\,.\,\hat{\matt{R}}\,.\,^t\matt{P}
\end{array}\right.
\end{equation}

\minititre{Treatment of the velocity}
In the local coordinate system, the boundary conditions for $\vect{u}$
naturally write:\\
\begin{equation}
\left\{\begin{array}{lcl}
u_{F,t} & = & u_{I',t}\\
u_{F,\tilde{n}} & = & 0\\
u_{F,b} & = & u_{I',b}
\end{array}\right.
\end{equation}
or
\begin{equation}
\mat{U}_F = \matt{P}\,.\,\hat{\mat{U}}_F
= \matt{P}\,.\,\left[
\begin{array}{ccc}
1 & 0 & 0\\
0 & 0 & 0\\
0 & 0 & 1
\end{array}
\right]\,.\,\hat{\mat{U}}_{I'}
=\matt{P}\,.\,\left[
\begin{array}{ccc}
1 & 0 & 0\\
0 & 0 & 0\\
0 & 0 & 1
\end{array}
\right]\,.\,^t\matt{P}\,.\,\mat{U}_{I'}
\end{equation}


Let's take
$\matt{A}=\matt{P}\,.\,\left[
\begin{array}{ccc}
1 & 0 & 0\\
0 & 0 & 0\\
0 & 0 & 1
\end{array}
\right]\,.\,^t\matt{P}\qquad$ (matrix in the coordinate system $\mathcal{R}$
of the projector orthogonal to the face).

The boundary conditions for  $\vect{u}$ thus write:
\begin{equation}
\mat{U}_F = \matt{A}\,.\,\mat{U}_{I'}
\end{equation}

Since the matrix $\matt{P}$ is orthogonal, it can be shown that
\begin{equation}
\matt{A}=\left[
\begin{array}{ccc}
1-\tilde{n}_x^2 & -\tilde{n}_x\tilde{n}_y & -\tilde{n}_x\tilde{n}_z\\
-\tilde{n}_x\tilde{n}_y & 1-\tilde{n}_y^2 & -\tilde{n}_y\tilde{n}_z\\
-\tilde{n}_x\tilde{n}_z & -\tilde{n}_y\tilde{n}_z & 1-\tilde{n}_z^2
\end{array}\right]
\end{equation}

The boundary conditions can then be partially implicited:
\begin{equation}
\label{Base_Clsyvt_eq_clU}
u_{F,x}^{(n+1)} = \underbrace{1-\tilde{n}_x^2}_{\var{COEFB}}u_{I',x}^{(n+1)}
\underbrace{-\tilde{n}_x\tilde{n}_y u_{I',y}^{(n)}
-\tilde{n}_x\tilde{n}_z u_{I',z}^{(n)}}_{\var{COEFA}}
\end{equation}

The other components have a similar treatment. Since only the coordinates
of $\vect{n}$ are useful, we do not need (for $\vect{u}$) to define
explicitly the vectors  $\vect{t}$ and $\vect{b}$.

\vspace{1cm}
\minititre{Treatment of the Reynolds stress tensor}
We saw that we have the following relation:
\begin{equation}
\label{Base_Clsyvt_eq_chgtrepR}
\matt{R}= \matt{P}\,.\,\hat{\matt{R}}\,.\,^t\matt{P}
\end{equation}

The boundary conditions we want to write are relations of the type:
\begin{equation}
\comp{R}_{F,ij}=\sum_{k,l}\alpha_{ijkl}\comp{R}_{I',kl}
\end{equation}
We are then naturally brought to introduce the column matrices of the
components of $\tens{R}$ in the different coordinate systems.

We write
\begin{equation}
\mat{S}=\,^t[\comp{R}_{11},\comp{R}_{12},\comp{R}_{13},
\comp{R}_{21},\comp{R}_{22},\comp{R}_{23},
\comp{R}_{31},\comp{R}_{32},\comp{R}_{33}]
\end{equation}
and
\begin{equation}
\hat{\mat{S}}=\,^t[\hat{\comp{R}}_{11},\hat{\comp{R}}_{12},\hat{\comp{R}}_{13},
\hat{\comp{R}}_{21},\hat{\comp{R}}_{22},\hat{\comp{R}}_{23},
\hat{\comp{R}}_{31},\hat{\comp{R}}_{32},\hat{\comp{R}}_{33}]
\end{equation}

Two functions $q$ and $r$ from $\{1,2,3,4,5,6,7,8,9\}$ to
$\{1,2,3\}$ are defined. Their values are given in the following table:
\begin{center}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline
$i$&1&2&3&4&5&6&7&8&9\\
\hline
$q(i)$&1&1&1&2&2&2&3&3&3\\
\hline
$r(i)$&1&2&3&1&2&3&1&2&3\\
\hline
\end{tabular}
\end{center}
$i\longmapsto (q(i),r(i))$ is then a bijection from $\{1,2,3,4,5,6,7,8,9\}$
to $\{1,2,3\}^2$, and we have:
\begin{equation}
\left\{\begin{array}{l}
\comp{R}_{ij}=\comp{S}_{3(i-1)+j}\\
\comp{S}_i=\comp{R}_{q(i)r(i)}
\end{array}\right.
\end{equation}

Using equation \ref{Base_Clsyvt_eq_chgtrepR}, we thus have:
\begin{eqnarray}
\comp{S}_{F,i} & = & \comp{R}_{F,q(i)r(i)} =
\sum_{(m,n)\in\{1,2,3\}^2}\comp{P}_{q(i)m}\hat{\comp{R}}_{F,mn}\comp{P}_{r(i)n}\nonumber\\
&=&\sum_{j=1}^9\comp{P}_{q(i)q(j)}\hat{\comp{R}}_{F,q(j)r(j)}\comp{P}_{r(i)r(j)}
\quad\text{(because $i->(q(i),r(i))$ is bijective)}\nonumber\\
&=&\sum_{j=1}^9\comp{P}_{q(i)q(j)}\comp{P}_{r(i)r(j)}\hat{\comp{S}}_{F,j}
\end{eqnarray}

Or
\begin{equation}
\mat{S}_{F}=\matt{A}\,.\,\hat{\mat{S}}_F\quad\text{ with }
\comp{A}_{ij}=\comp{P}_{q(i)q(j)}\comp{P}_{r(i)r(j)}
\end{equation}

It can be shown that $\matt{A}$ is an orthogonal matrix (see Annexe A).

In the local coordinate system, the boundary conditions of $\tens{R}$
write naturally\footnote{cf. Davroux A., Archambeau F., {\em Le
$R_{ij}-\varepsilon$ dans \CS (version $\beta$)}, HI-83/00/030/A}.
\begin{equation}
\label{Base_Clsyvt_eq_clRij}%
\left\{\begin{array}{lll}
\hat{\comp{R}}_{F,11}=\hat{\comp{R}}_{I',11} \qquad\qquad&
\hat{\comp{R}}_{F,21}=0 \qquad\qquad&
\hat{\comp{R}}_{F,31}=B\hat{\comp{R}}_{I',31} \\
\hat{\comp{R}}_{F,12}=0 \qquad\qquad&
\hat{\comp{R}}_{F,22}=\hat{\comp{R}}_{I',22} \qquad\qquad&
\hat{\comp{R}}_{F,32}=0 \\
\hat{\comp{R}}_{F,13}=B\hat{\comp{R}}_{I',13} \qquad\qquad&
\hat{\comp{R}}_{F,23}=0 \qquad\qquad&
\hat{\comp{R}}_{F,33}=\hat{\comp{R}}_{I',33}
\end{array}\right.
\end{equation}

or
\renewcommand{\arraystretch}{0.5}
\begin{equation}
\hat{\mat{S}}_F=\matt{B}\,.\,\hat{\mat{S}}_{I'}
\qquad\text{avec }\matt{B}=
\left[\begin{array}{ccccccccc}
1&0&\cdots&\cdots&\cdots&\cdots&\cdots&\cdots&0\\
0&0&\ddots&&&&&&\vdots\\
\vdots&\ddots&B&\ddots&&&&&\vdots\\
\vdots&&\ddots&0&\ddots&&&&\vdots\\
\vdots&&&\ddots&1&\ddots&&&\vdots\\
\vdots&&&&\ddots&0&\ddots&&\vdots\\
\vdots&&&&&\ddots&B&\ddots&\vdots\\
\vdots&&&&&&\ddots&0&0\\
0&\cdots&\cdots&\cdots&\cdots&\cdots&\cdots&0&1
\end{array}\right]
\end{equation}
\renewcommand{\arraystretch}{1.}


For the symmetry faces which are treated by \fort{clsyvt}, the
coefficient $B$ is 1. However a similar treatment is applied in
\fort{clptur} for the wall faces, and in this $B$ is zero. This
parameter has to be specified when \code{cs\_turbulence\_bc\_rij\_transform} is called
(see \S\ref{Base_Clsyvt_prg_meo}).

Back in the global coordinate system, the following formulae is
finally obtained:
\begin{equation}
\label{eq:base:clsyvt:cl_s}
\mat{S}_F=\matt{C}\,.\,\mat{S}_{I'}\qquad
\text{avec }\matt{C}=\matt{A}\,.\,\matt{B}\,.\,^t\matt{A}
\end{equation}

It can be shown that the components of the matrix $\matt{C}$ are:
\begin{equation}
\comp{C}_{ij}=\sum_{k=1}^9
\comp{P}_{q(i)q(k)}\comp{P}_{r(i)r(k)}\comp{P}_{q(j)q(k)}\comp{P}_{r(j)r(k)}
(\delta_{k1}+B\delta_{k3}+\delta_{k5}+B\delta_{k7}+\delta_{k9})
\end{equation}

To conclude, it can be noted thatthe tensor  $\tens{R}$ is symmetric.
Thus only the simplified matrices (stored by increasing diagonal)
$\mat{S}^\prime$ and $\hat{\mat{S}}^\prime$ will be used:
\begin{equation}
\mat{S}^\prime=\,^t[\comp{R}_{11},\comp{R}_{22},\comp{R}_{33},
\comp{R}_{12},\comp{R}_{23},\comp{R}_{13}]
\end{equation}
\begin{equation}
\hat{\mat{S}}^\prime=\,^t[\hat{\comp{R}}_{11},\hat{\comp{R}}_{22},\hat{\comp{R}}_{33},
\hat{\comp{R}}_{12},\hat{\comp{R}}_{23},\hat{\comp{R}}_{13}]
\end{equation}

By gathering different lines of matrix $\matt{C}$, equation
\eqref{eq:base:clsyvt:cl_s} is transformed into the final equation:
\begin{equation}
\mat{S}_F^\prime=\matt{D}\,.\,\mat{S}_{I'}^\prime
\end{equation}

The computation of the matrix $\matt{D}$ is performed in the subroutine
\code{cs\_turbulence\_bc\_rij\_transform}. The methodology is described in annexe B.

From $\matt{D}$, the coefficients of the boundary conditions can be
 partially implicited ($\var{ICLSYR}=1$) or totally explicited
($\var{ICLSYR}=0$).

$\bullet\ ${\sc Partial implicitation}\\
\begin{equation}
\label{Base_Clsyvt_eq_clRimp}
{\comp{S}_{F,i}^\prime}^{(n+1)} =
\underbrace{\comp{D}_{ii}}_{\var{COEFB}}{\comp{S}_{I',i}^\prime}^{(n+1)}
+\underbrace{\sum_{j\ne i}\comp{D}_{ij}{\comp{S}_{I',j}^\prime}^{(n)}}_{\var{COEFA}}
\end{equation}

$\bullet\ ${\sc Total explicitation}\\
\begin{equation}
\label{Base_Clsyvt_eq_clRexp}
{\comp{S}_{F,i}^\prime}^{(n+1)} =
\underbrace{\sum_j\comp{D}_{ij}{\comp{S}_{I',j}^\prime}^{(n)}}_{\var{COEFA}}
\qquad(\var{COEFB}=0)
\end{equation}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Implementation}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{Base_Clsyvt_prg_meo}%
\etape{Beginning of the loop}

Beginnning of the loop on all the boundary faces  \var{IFAC} with
symmetry conditions.
A face is considered as a symmetry face if
\var{ICODCL(IFAC,IU)} is 4. The tests in \fort{vericl} are designed
 for  \var{ICODCL} to be equal to 4 for \var{IU} if and only if it is equal
to 4 for the other components of the velocity and for the components of $\tens{R}$
(if necessary)\\.

The value 0 is given to  \var{ISYMPA}, which identifies the face as a
wall or symmetry face (a face where the mass flux will be set to zero as
explained in \fort{inimas}).

\etape{Calculation of the basis vectors}
The normal vector $\vect{n}$ is stored in \var{(RNX,RNY,RNZ)}.\\
$\vect{u}_{I'}$ is calculated in \fort{CONDLI}, passed {\em via} \var{COEFU},
and stored in \var{(UPX,UPY,UPZ)}.

\etape{Case with $R_{ij}-\varepsilon$}
With the $R_{ij}-\varepsilon$ model (\var{ITURB}=30 or 31), the vectors
 $\vect{t}$ and $\vect{b}$ must be calculated explicitly
(we use $\matt{P}$, not simply $\matt{A}$).
They are stored in \var{(TX,TY,TZ)} and
\var{(T2X,T2Y,T2Z)}, respectively.\\
The transform matrix $\matt{P}$ is then calculated and stored in the array \var{ELOGLO}.\\
The subroutine \code{cs\_turbulence\_bc\_rij\_transform} is then called to calculate the reduced
matrix $\matt{D}$. It is stored in \var{ALPHA}. \code{cs\_turbulence\_bc\_rij\_transform} is called
with a parameter \var{CLSYME} which is 1, and which corresponds to the parameter
$B$ of equation \ref{Base_Clsyvt_eq_clRij}.


\etape{Filling the arrays \var{COEFA} and \var{COEFB}}
The arrays \var{COEFA} and \var{COEFB} are filled following directly
equations \ref{Base_Clsyvt_eq_clU}, \ref{Base_Clsyvt_eq_clRimp} and \ref{Base_Clsyvt_eq_clRexp}.\\
\var{RIJIPB(IFAC,.)} corresponds to the vector $\mat{S}_{I'}^\prime$, computed in
\fort{condli}, and passed as an argument to \var{clsyvt}.

\etape{Filling the arrays \var{COEFAF} and \var{COEFBF}}
If they are defined, the arrays \var{COEFAF} and \var{COEFBF}
are filled. They contain the same values as \var{COEFA} and
\var{COEFB}, respectively.


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Annexe A}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\minititre{Proof of the orthogonality of matrix $\matt{A}$}

All the notations used in paragraphe 2 are kept. We have:
\begin{eqnarray}
(^t\matt{A}\,.\,\matt{A})_{ij}
& = & \sum_{k=1}^9\comp{A}_{ki}\comp{A}_{kj}\nonumber\\
& = & \sum_{k=1}^9
\comp{P}_{q(k)q(i)}\comp{P}_{r(k)r(i)}\comp{P}_{q(k)q(j)}\comp{P}_{r(k)r(j)}
\end{eqnarray}
When $k$ varies from 1 to 3, $q(k)$ remains equal to 1 and $r(k)$ varies from 1
to 3. We thus have:
\begin{eqnarray}
\sum_{k=1}^3
\comp{P}_{q(k)q(i)}\comp{P}_{r(k)r(i)}\comp{P}_{q(k)q(j)}\comp{P}_{r(k)r(j)}
&=&\comp{P}_{1q(i)}\comp{P}_{1q(j)}\sum_{k=1}^3
\comp{P}_{r(k)r(i)}\comp{P}_{r(k)r(j)}\nonumber\\
&=&\comp{P}_{1q(i)}\comp{P}_{1q(j)}\sum_{k=1}^3
\comp{P}_{kr(i)}\comp{P}_{kr(j)}\\
&=&\comp{P}_{1q(i)}\comp{P}_{1q(j)}\delta_{r(i)r(j)}\qquad\text{(by
orthogonality of $\matt{P}$)}\nonumber
\end{eqnarray}
Likewise for $k$ varying from 4 to 6 or from 7 to 9, $q(k)$ being 2 or 3, respectively,
 we obtain:
\begin{eqnarray}
(^t\matt{A}\,.\,\matt{A})_{ij}
&=&
\sum_{k=1}^9
\comp{P}_{q(k)q(i)}\comp{P}_{r(k)r(i)}\comp{P}_{q(k)q(j)}\comp{P}_{r(k)r(j)}
\nonumber\\
&=&
\sum_{k=1}^3\comp{P}_{kq(i)}\comp{P}_{kq(j)}\delta_{r(i)r(j)}\\
&=&\delta_{q(i)q(j)}\delta_{r(i)r(j)}\nonumber\\
&=&\delta_{ij}\qquad
\text{(by the bijectivity of $(q,r)$)}\nonumber
\end{eqnarray}

Thus $^t\matt{A}\,.\,\matt{A}=\matt{Id}$. Similarly, it can be shown that
$\matt{A}\,.\,^t\matt{A}=\matt{Id}$. Thus $\matt{A}$ is an orthogonal matrix.


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Annexe B}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\minititre{Calculation of the matrix $\matt{D}$}

The relation between the matrices of dimension $9\times1$
of the components of $\tens{R}$ in the coordinate system $\mathcal{R}$ at $F$ and at $I'$
(matrices $\mat{S}_F$ and $\mat{S}_{I'}$):
\begin{equation}
\mat{S}_F=\matt{C}\,.\,\mat{S}_{I'}
\end{equation}
with
\begin{equation}
\comp{C}_{ij}=\sum_{k=1}^9
\comp{P}_{q(i)q(k)}\comp{P}_{r(i)r(k)}\comp{P}_{q(j)q(k)}\comp{P}_{r(j)r(k)}
(\delta_{k1}+B \delta_{k3}+\delta_{k5}+B \delta_{k7}+\delta_{k9})
\end{equation}

To transform $\mat{S}$ into the matrix $6\times 1$ $\mat{S}^\prime$,
the function $s$ from $\{1,2,3,4,5,6,7,8,9\}$ to
$\{1,2,3,4,5,6\}$ is defined. It takes the following values:
\begin{center}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline
$i$&1&2&3&4&5&6&7&8&9\\
\hline
$s(i)$&1&4&6&4&2&5&6&5&3\\
\hline
\end{tabular}
\end{center}
By construction, we have $\comp{S}_i=\comp{S}^\prime_{s(i)}$ for all $i$ between 1
and 9.

To compute $\comp{D}_{ij}$, we can choose a value of $m$ to satisfy
$s(m)=i$ and sum all the $\comp{C}_{mn}$ to have $s(n)=j$. The choice of $m$
is irrelevent. We can also compute the sum over all $m$ so that  $s(m)=i$ and then
divide by the number of such values of $m$. We will use this method.

We define $N(i)$ the number of integers $m$ between 1 and 9 so that $s(m)=i$ ($N(i)$ is equal to $1$ or $2$).
According to what preceeds we have

\begin{eqnarray}
\comp{D}_{ij}&=&\frac{1}{N(i)}\sum_{s(m)=i \atop s(n)=j}\comp{C}_{mn}\\
&=&\frac{1}{N(i)}\sum_{{s(m)=i \atop s(n)=j}\atop 1\leqslant k\leqslant 9}
\comp{P}_{q(m)q(k)}\comp{P}_{r(m)r(k)}\comp{P}_{q(n)q(k)}\comp{P}_{r(n)r(k)}
(\delta_{k1}+B \delta_{k3}+\delta_{k5}+B\delta_{k7}+\delta_{k9})\nonumber
\end{eqnarray}

\vspace{1cm}
$\bullet\ ${\sc First case}: $i\leqslant 3$ and $j\leqslant 3$\\
In this case, we have $N(i)=N(j)=1$. Additionally, if $s(m)=i$ and $s(n)=j$,
then $q(m)=r(m)=i$ and $q(n)=r(n)=j$. Thus \\
\begin{equation}
\comp{D}_{ij}=\sum_{k=1}^9
\comp{P}_{iq(k)}\comp{P}_{ir(k)}\comp{P}_{jq(k)}\comp{P}_{jr(k)}
(\delta_{k1}+ B\delta_{k3}+\delta_{k5}+ B\delta_{k7}+\delta_{k9})
\end{equation}
When $k$ belongs to $\{1,5,9\}$, $q(k)=r(k)$ belongs to $\{1,2,3\}$. And for $k=3$ or
$k=7$, $q(k)=1$ and $r(k)=3$, or the inverse (and for $k$ even the
the sum of Kronecker symbol is zero). Finally we have:
\begin{equation}
\comp{D}_{ij}=\sum_{k=1}^3\comp{P}_{ik}^2\comp{P}_{jk}^2
+2 B\comp{P}_{j1}\comp{P}_{i3}\comp{P}_{i1}\comp{P}_{j3}
\end{equation}

\vspace{1cm}
$\bullet\ ${\sc Second case}: $i\leqslant 3$ and $j\geqslant 4$\\
Again we have $N(i)=1$, and if $s(m)=i$ then $q(m)=r(m)=i$.\\
On the contrary, we have $N(j)=2$, the two possibilities being $m_1$ and $m_2$.\\
\begin{itemize}
\item[-] if $j=4$, then $m_1=2$ and $m_2=4$,
$q(m_1)=r(m_2)=1$ and $r(m_1)=q(m_2)=2$. We then have
$m=1$ and $n=2$.

\item[-] if $j=5$, then $m_1=6$ and $m_2=8$,
$q(m_1)=r(m_2)=1$ and $r(m_1)=q(m_2)=3$. We then have
$m=1$ and $n=3$.

\item[-] if $j=6$, then $m_1=3$ and $m_2=7$,
$q(m_1)=r(m_2)=2$ and $r(m_1)=q(m_2)=3$. We then have
$m=2$ and $n=3$.
\end{itemize}

And we have:
\begin{equation}
\comp{D}_{ij}=\sum_{k=1}^9
\comp{P}_{iq(k)}\comp{P}_{ir(k)}\left[
\comp{P}_{mq(k)}\comp{P}_{nr(k)}+\comp{P}_{nq(k)}\comp{P}_{mr(k)}\right]
(\delta_{k1}+B \delta_{k3}+\delta_{k5}+B \delta_{k7}+\delta_{k9})
\end{equation}

But when $k$ is in $\{1,5,9\}$, $q(k)=r(k)$ is in $\{1,2,3\}$. Thus:
\begin{equation}
\comp{D}_{ij}=2\sum_{k=1}^3
\comp{P}_{ik}^2\comp{P}_{mk}\comp{P}_{nk}
+B \sum_{k=1}^9
\comp{P}_{iq(k)}\comp{P}_{ir(k)}\left[
\comp{P}_{mq(k)}\comp{P}_{nr(k)}+\comp{P}_{nq(k)}\comp{P}_{mr(k)}\right]
(\delta_{k3}+\delta_{k7})
\end{equation}

And for $k=3$ or $k=7$, $q(k)=1$ and $r(k)=3$, or the opposite. We finally have:
\begin{equation}
\comp{D}_{ij}=2\left[\sum_{k=1}^3
\comp{P}_{ik}^2\comp{P}_{mk}\comp{P}_{nk}
+B\comp{P}_{i1}\comp{P}_{i3}\left(
\comp{P}_{m1}\comp{P}_{n3}+\comp{P}_{n1}\comp{P}_{m3}\right)
\right]
\end{equation}
with $(m,n)=(1,2)$ if $j=4$, $(m,n)=(1,3)$ if $j=5$ and $(m,n)=(2,3)$ if
$j=6$.

\vspace{1cm}
$\bullet\ ${\sc Third case}: $i\geqslant 4$ and $j\leqslant 3$\\
By symmetry of $\matt{C}$, we obtain a result which is the symmetric of
the second case, except that $N(i)$ is now 2. Thus:
\begin{equation}
\comp{D}_{ij}=\sum_{k=1}^3
\comp{P}_{jk}^2\comp{P}_{mk}\comp{P}_{nk}
+B\comp{P}_{j1}\comp{P}_{j3}\left(
\comp{P}_{m1}\comp{P}_{n3}+\comp{P}_{n1}\comp{P}_{m3}\right)
\end{equation}
with $(m,n)=(1,2)$ if $i=4$, $(m,n)=(2,3)$ if $i=5$ and $(m,n)=(1,3)$ if
$i=6$.

\vspace{1cm}
$\bullet\ ${\sc Fourth case}: $i\geqslant 4$ and $j\geqslant 4$\\
Then $N(i)=N(j)=2$.\\
We have $(m,n)=(1,2)$ if $i=4$, $(m,n)=(2,3)$ if $i=5$ and
$(m,n)=(1,3)$ if $i=6$. Likewise we define $m^\prime$ and
$n^\prime$ as a function of $j$. We then obtain:
\begin{eqnarray}
\comp{D}_{ij}&=&\frac{1}{2}\sum_{k=1}^9
\left(\comp{P}_{mq(k)}\comp{P}_{nr(k)}+\comp{P}_{nq(k)}\comp{P}_{mr(k)}\right)
\left(\comp{P}_{m^\prime q(k)}\comp{P}_{n^\prime r(k)}
+\comp{P}_{n^\prime q(k)}\comp{P}_{m^\prime r(k)}\right)\nonumber\\
&&\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\times
(\delta_{k1}+B \delta_{k3}+\delta_{k5}+B \delta_{k7}+\delta_{k9})\nonumber\\
&=&\frac{1}{2}\left[
\sum_{k=1}^3 4\comp{P}_{mk}\comp{P}_{nk}
\comp{P}_{m^\prime k}\comp{P}_{n^\prime k}
+2 B \left(\comp{P}_{m1}\comp{P}_{n3}+\comp{P}_{n1}\comp{P}_{m3}\right)
\left(\comp{P}_{m^\prime 1}\comp{P}_{n^\prime 3}
+\comp{P}_{n^\prime 1}\comp{P}_{m^\prime 3}\right)\right]
\end{eqnarray}

and finally:
\begin{equation}
\comp{D}_{ij}=
2\sum_{k=1}^3  \comp{P}_{mk}\comp{P}_{nk}
\comp{P}_{m^\prime k}\comp{P}_{n^\prime k}
+B \left(\comp{P}_{m1}\comp{P}_{n3}+\comp{P}_{n1}\comp{P}_{m3}\right)
\left(\comp{P}_{m^\prime 1}\comp{P}_{n^\prime 3}
+\comp{P}_{n^\prime 1}\comp{P}_{m^\prime 3}\right)
\end{equation}
with $(m,n)=(1,2)$ if $i=4$, $(m,n)=(2,3)$ if $i=5$ and $(m,n)=(1,3)$ if
$i=6$\\
and $(m^\prime ,n^\prime )=(1,2)$ if $j=4$, $(m^\prime ,n^\prime )=(2,3)$
if $j=5$ and $(m^\prime ,n^\prime )=(1,3)$ if $j=6$.