1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
|
%-------------------------------------------------------------------------------
% This file is part of Code_Saturne, a general-purpose CFD tool.
%
% Copyright (C) 1998-2021 EDF S.A.
%
% This program is free software; you can redistribute it and/or modify it under
% the terms of the GNU General Public License as published by the Free Software
% Foundation; either version 2 of the License, or (at your option) any later
% version.
%
% This program is distributed in the hope that it will be useful, but WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
% FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
% details.
%
% You should have received a copy of the GNU General Public License along with
% this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
% Street, Fifth Floor, Boston, MA 02110-1301, USA.
%-------------------------------------------------------------------------------
%-------------------------------------------------------------------------------
\section{Introduction}
%-------------------------------------------------------------------------------
\subsection{Definition and notations}\label{sec:spadis:notations}
Within the framework of the finite volume approach, the equations are
integrated over each cell of the mesh (or \emph{control volume} $\vol{\celli}$).
\nomenclature[gomegai]{$\vol{\celli}$}{the cell $\celli$}
This section is limited to a brief description of the way $0^{th}$-order, convection, diffusion and gradient terms appearing in
the equations are integrated using the budget methodology. Specific attention is devoted to the
calculation of gradients, since it is a major characteristic of the
co-located finite volume method (all the variables are associated with the
same point, namely the cell centre\footnote{%
The centre of a cell is a geometric point associated with the cell and
located preferably inside the cell. Nevertheless, the word \emph{centre} shall
not be taken literally,
especially in the case of polyhedral cells that do not have a regular shape.}%
).
Let $\ncell$ be the number of cells, then each discretized field $\varia$ has $\ncell$ degrees of freedom,
which are denoted by $\varia_\celli$, $\celli \in \left[ 1 , \, \cdots , \, \ncell \right]$ given by definition by:
\begin{equation}\label{eq:spadis:variai_def}
\varia_\celli \equiv \dfrac{1}{\norm{\vol{\celli}}}\int_{\vol{\celli}} \varia \dd \vol{}.
\end{equation}
As each discretized field $\varia$ is supposed to be linear in every single cell, $\varia_\celli$ can be identified
by the value of the field in $\centi$, the cell center of $\vol{\celli}$:
\begin{equation}\label{eq:spadis:variai_id}
\varia_\centi = \varia_\celli.
\end{equation}
%-------------------------
\paragraph{$0^{th}$-order terms:}
Then, terms of \textbf{order $0$} (\emph{i.e.} terms that are not space
derivatives) are integrated to introduce their average over the cell. For
example, $\rho \vect{g}$ becomes $\norm{\vol{\celli}} \rho_{\celli} \vect{g}$.
\nomenclature[gomegaiv]{$\norm{\vol{\celli}}$}{volume of the cell $\celli$ \nomunit{$m^{3}$}}
In this expression, $\norm{\vol{\celli}}$ is the measure of cell volume $\vol{\celli}$ and
$\rho_{\celli}$ denotes the average of $\rho $ over the control volume
(the cell) $\vol{\celli}$ applying \eqref{eq:spadis:variai_def}.
\nomenclature[riu]{$\centi$}{centre of $\vol{\celli}$}
%-----------------------------------------
\paragraph{Divergence operator--conservative gradient terms:}
The \textbf{divergence} terms (or \emph{flux} terms, or again \emph{conservative}
terms) are integrated using the Green relation to introduce cell faces
values so that \emph{fluxes} appear naturally. For example, a term such as
$\divv \left( \varia \tens{1}\right)$ becomes\footnote{%
in $\divv \left( \varia \tens{1}\right)$, $\varia$ might be the pressure field $P$, this term then corresponds to the pressure gradient
in the momentum equation.
}%
%\footnote{%
%If the cell $\celli$ is at the domain boundary, the sum becomes
%$\sum\limits_{\fij \in \Facei{\celli}} P_{\fij} \vect{S}_{\ij}+\sum\limits_{\fib \in \Faceb{\celli}} P_{\fib} \vect{S}_{\ib}$,
%with $\fib$ referring to the faces
%of the cell $\celli$ which are at the domain boundary.
%} %
\begin{equation}\label{eq:spadis:green_relation}
\int_{\vol{\celli}} \divv \left( \varia \tens{1}\right) \dd \vol{} = \sum\limits_{\face \in \Face{\celli}} \varia_{\face}\vect{S}_{\iface}.
\end{equation}
\nomenclature[rface]{$\face$}{interior or boundary cell face \nomunit{}}
\nomenclature[rfacei]{$\Face{\celli}$}{group of all faces of the cell $\celli$ \nomunit{}}
\nomenclature[rsifacei]{$\vect{S}_{\iface}$}{outward normal vector of the face $\face$ of the cell $\celli$, normalized by the surface $\norm{\vect{S}}$ \nomunit{}}
In expression \eqref{eq:spadis:green_relation}, face values of the field $\varia$ appear. They are defined as:
\begin{equation}\label{eq:spadis:variaf_def}
\varia_\face \equiv \dfrac{1}{\norm{\vect{S}}_\face} \int_{\face} \varia \dd S,
\end{equation}
%
so that the relationship \eqref{eq:spadis:green_relation} is exact. As the field $\varia$ is linear over the face $\face$,
$\varia_\face$ can be associated to the face centre $\centf$:
\begin{equation}\label{eq:spadis:variaf_id}
\varia_\centf = \varia_\face.
\end{equation}
In the following sections, faces $\Face{\celli}$ are usually split into two categories: the interior faces $\fij \in \Facei{\celli}$ separating
two neighbouring cells $\celli$ and $\cellj$; and the boundary faces $\fib \in \Faceb{\celli}$.
Outward (with respect to the cell $\celli$) normals are respectively denoted $\vect{S}_\ij$ and $\vect{S}_\ib$,
which means that $\vect{S}_\ij$ is oriented from $\celli$ toward $\cellj$.
Then $\varia_{\centf}$ is expressed as an average of the degree of freedom, which are for the interface $\fij$ the value of $\varia_\celli$
and $\varia_\cellj$ but also the gradients in these cells. The use of gradients to reach an higher order in space is called \emph{reconstruction}
in the following sections. The detailed computation of $\int_{\vol{\celli}} \divv \left( \varia \tens{1}\right) \dd \Omega $ is given in
\S~\ref{sec:spadis:iteratif_gradient}.
%
\nomenclature[rpij]{$P_{\fij}$}{average of the pressure field on the interface between the neighbouring cells $\celli$ and $\cellj$ \nomunit{$Pa$}}
\nomenclature[rfu]{$\centf$}{center of the face $\fij$ between cells $\celli$ and $\cellj$}
%-----------------------------------------------
\paragraph{Convection operator--mass flux terms:}
Let us now focus on the convective term $\dive \left( \varia \rho \vect{u}\right)$. This term and the
unsteady term $ \der{ \left( \rho \varia \right) }{ t} $ will be treated
together. As a matter of fact, if the field $\varia$ is transported by the convective field $\rho \vect{u}$, the balance
of the quantity $\rho \varia$ over a cell $\celli$ is written using Leibniz theorem as:
%
\begin{equation}\label{eq:spadis:leibnitz_th}
\begin{array}{r c l}
\displaystyle \DP{} \left( \int_{\vol{\celli}} \rho \varia \dd \vol{}\right) &=&
\displaystyle \int_{\vol{\celli}} \der{\rho \varia}{t} \dd \vol{} + \int_{\partial \vol{\celli}} \varia \rho \vect{u} \cdot \dd \vect{S}, \\
\displaystyle &=&
\displaystyle \int_{\vol{\celli}} \der{\rho \varia}{t} + \dive \left( \varia \rho \vect{u} \right) \dd \vol{},
\end{array}
\end{equation}
the second line is obtained using Green's relation.
Moreover, the unsteady and convection terms are usually written in a \emph{non-conservative} form that is in continuous formalism:
\begin{equation}\label{eq:spadis:non_conservative}
\der{ \left( \rho\varia \right)}{t} + \dive \left( \varia \rho \vect{u}\right) = \rho \der{\varia }{t} + \grad \varia \cdot \left( \rho \vect{u}\right) + \Gamma \varia.
\end{equation}
Note that for \eqref{eq:spadis:non_conservative} to hold, the continuity equation \eqref{eq:goveqn:mass} must be fulfilled.
If \eqref{eq:spadis:non_conservative} is required even for discrete volumes, the convection term must be defined as:
%
\begin{equation}\label{eq:spadis:convection_def}
\begin{array}{r c l}
\displaystyle \int_{\vol{\celli}} \grad \varia \cdot \left( \rho \vect{u} \right) \dd \vol{} &\equiv &
\displaystyle \int_{\vol{\celli}} \dive \left( \varia \rho \vect{u} \right) \dd \vol{} - \varia_\celli \int_{\vol{\celli}} \dive \left(\rho \vect{u} \right) \dd \vol{}, \\
&=&
\displaystyle \int_{ \partial \vol{\celli}} \varia \rho \vect{u} \cdot \dd \vect{S} - \varia_\celli \int_{ \partial \vol{\celli}} \rho \vect{u} \cdot \dd \vect{S}, \\
&=&
\displaystyle \sum_{\face \in \Face{\celli}} \left(\varia_\face - \varia_\celli \right) \left(\rho \vect{u}\right)_\face \cdot \vect{S}_{\iface},
\end{array}
\end{equation}
the second line is obtained using once again Green's formula. In formula \eqref{eq:spadis:convection_def}, one still has to express the face value
$\varia_\face$ and also the value of the mass flux $\left(\rho \vect{u}\right)_\face\cdot \vect{S}_{\iface}$: all the available convective schemes (\emph{upwind, centred, SOLU, etc.}) are presented in \S~\ref{sec:spadis:convection}. Let $\dot{m}_\iface$ be the outgoing
mass flux from cell $\celli$ through the face $\face$:
%
\begin{equation}\label{eq:spadis:massflux_def}
\dot{m}_\iface \equiv \left(\rho \vect{u}\right)_\face \cdot \vect{S}_{\iface},
\end{equation}
note that this convective flux is naturally defined at cell faces and thus is stored over there in the code. In the following, the convection term is denoted as follows:
\begin{equation}\label{eq:spadis:convection_notation}
\displaystyle \int_{\vol{\celli}} \grad \varia \cdot \left( \rho \vect{u} \right) \dd \vol{}
=
\displaystyle \sum_{\face \in \Face{\celli}} C_\iface \left( \dot{m}_\iface , \, \varia \right),
\end{equation}
where $C_\iface \left( \dot{m}_\iface , \, \varia\right)$ is defined by:
\begin{equation}\label{eq:spadis:convection_flux}
C_\iface \left(\dot{m}_\face , \, \varia \right) \equiv \left(\varia_\face - \varia_\celli \right) \dot{m}_\iface.
\end{equation}
%----------------------------------------------
\paragraph{Laplacian operator--diffusive terms:}
Let us discretize the diffusive term $\dive \left( K \grad \varia \right) $:
%
\begin{equation}\label{eq:spadis:diffusion_def}
\begin{array}{r c l}
\displaystyle \int_{\vol{\celli}} \dive \left( K \grad \varia\right) \dd \vol{} &\equiv &
\displaystyle \sum_{\face \in \Face{\celli}} K_\face \grad_\face \varia \cdot \vect{S}_{\iface},
\end{array}
\end{equation}
where $K_\face$ is the face diffusivity, and $\grad_\face \varia$ is the face gradient, their computation will be detailed in \S~\ref{sec:spadis:diffusion}. In the following, the diffusive term is denoted as follows:
%
\begin{equation}\label{eq:spadis:diffusion_notation}
\int_{\vol{\celli}} \dive \left( K \grad \varia\right) \dd \vol{}
=
\sum_{\face \in \Face{\celli}} D_\iface \left( K_\face \, \varia \right),
\end{equation}
where the diffusive flux $D_\iface \left( K_\face \, \varia \right)$ over the face $\face$ is defined by:
\begin{equation}\label{eq:spadis:diffusion_flux}
D_\iface \left( K_\face , \, \varia\right) \equiv K_\face \grad_\face \varia \cdot \vect{S}_{\iface}.
\end{equation}
Note that the diffusive flux $D_\ij \left( K_\fij , \, \varia\right) $ over the interior face $\fij$ lost by the cell $\celli$
is gained by $\cellj$, in other words:
\begin{equation}\label{eq:spadis:diffusion_flux_symmetry}
D_\ij \left( K_\fij , \, \varia\right) = - D_\ji \left( K_\fij , \, \varia\right) .
\end{equation}
\begin{remark}
The diffusion operator can be extended to anisotropic tensor diffusivity $\tens{K}$.
\end{remark}
%---------------------------------------
\paragraph{More geometrical quantities:}
To end up the general description of the discretized operators, let us introduce some geometrical
quantities which will be used during the approximation process of linking face fluxes to
cell centred quantities.
% fa modification : reconstruction is compulsory for consistence
For consistency and to reach a higher order in space, the values of the
variables at points $\centip$ and $\centjp$ are used.
These points are respectively the projection of the centres $\centi$ and $\centj$
along the orthogonal line to the interior face $\fij$ passing through $\centf$.
When considering a boundary face $\fib$, $\centip$ is defined as the projection of $\centi$
on the normal to the boundary face $\fib$ passing through $\centf$. All the geometrical
definitions are recalled in \figurename~\ref{fig:sketch_internal_external_faces}.
%
Using Taylor series from the values at $\centi$ and $\centj$ and from the \emph{cell gradient}
in the respective cells, one can write for any field $\varia$:
\begin{equation}\label{eq:spadis:reconstruction_ip_jp}
\left\lbrace
\begin{array}{r c l c l}
\varia_\centip &\simeq & \varia_\centi + \grad_\celli \varia \cdot \vect{\centi \centip} &=& \varia_\celli + \grad_\celli \varia \cdot \vect{\centi \centip}, \\
\varia_\centjp &\simeq & \varia_\centj + \grad_\cellj \varia \cdot \vect{\centj \centjp} & =& \varia_\cellj + \grad_\cellj \varia \cdot \vect{\centj \centjp}.
\end{array}
\right.
\end{equation}
Note that for orthogonal meshes (where $\centip = \centi$ for all faces of all cells),
no \emph{reconstruction} \eqref{eq:spadis:reconstruction_ip_jp} is needed,
and therefore the distance $\norm{\vect{\centi \centip}}$ measures the \emph{non-orthogonality} of the mesh.
The computation of $\grad_\celli \varia$ is presented in \S~\ref{sec:spadis:iteratif_gradient} and \S~\ref{ap:gradrc}.
Furthermore, the intersection between \vect{\centi \centj} and the corresponding interior face $\fij$ is denoted by $\cento$.
The distance $\norm{\vect{\cento \centf}}$ measures the \emph{offset} of the mesh.
Eventually, a weighting factor $\alpha_\ij$ is defined to measure the distance of the cell center $\centi$ to the face $\fij$ relatively
to the other cell center $\centj$:
\begin{equation}\label{eq:spadis:pond_def}
\alpha_{\ij}=\dfrac{\overline{\centf \centjp}}{\overline{\centip \centjp}}.
\end{equation}
Note that the distances $\overline{\centip \centjp}$ and $\overline{\centf \centjp}$ are defined algebraically, that is:
\begin{equation}
\begin{array}{r c l}
\overline{\centip \centjp} & \equiv & \dfrac{\vect{\centip \centjp} \cdot \vect{S}_\ij}{\norm{\vect{S}_\ij}}, \\
\overline{\centf \centjp} & \equiv & \dfrac{\vect{\centf \centjp} \cdot \vect{S}_\ij}{\norm{\vect{S}_\ij}},
\end{array}
\end{equation}
and are supposed to be positive if the mesh is \emph{star-shaped}. Note also that $\alpha_\ij$ is oriented from $\celli$ to $\cellj$ and
%
\begin{equation}
\alpha_\ij + \alpha_\ji = 1.
\end{equation}
\begin{figure}[t]
\centering
\mbox{
\subfigure[Internal face]{
\includegraphics[width=0.45 \textwidth]{facette}
} \,
\subfigure[Boundary face]{
\includegraphics[width=0.45 \textwidth]{facebord}
}
}%end mbox
\caption{Sketch of geometric entities.}
\label{fig:sketch_internal_external_faces}
\end{figure}
See the \doxygenfile{cs__convection__diffusion_8c.html}{programmers reference of the dedicated subroutine}
for more informations on the convective and diffusive terms in \CS.
\hypertarget{conv-diff}{}
%-------------------------------------------------------------------------------
\section{Convective term}\label{sec:spadis:convection}
Using the notations adopted in \S~\ref{sec:spadis:notations},
the explicit budget corresponding to the integration over a cell
$\vol{\celli}$ of the convective part $\grad_\celli \varia \cdot \left(\rho \vect{u} \right) $
has been written as a sum of the
numerical fluxes $C_\ij \left( \dot{m}_\ij , \, \varia \right)$ calculated at the interior faces,
and the numerical fluxes $C_\ib \left( \dot{m}_\ib , \, \varia \right)$ calculated at the
boundary faces of the computational domain $\Omega$ defined by Equation~\eqref{eq:spadis:convection_flux}.
Note that $C_\ib \left( \dot{m}_\ib , \, \varia \right)$ involves the boundary conditions of the field $\varia$
and are described in detail in \chaptername~\ref{chapter:bndcnd}. The value of $\varia_\fib$ is expressed as follows:
%
\begin{equation}%TODO use recall
\varia_\fib \equiv A_\fib^g + B_\fib^g \varia_\centip.
\end{equation}
The value of the convective flux $ C_\ij \left(\dot{m}_\fij , \, \varia \right) $ depends on the numerical scheme. Three different types of convection schemes are available in \CS.
%-------------------------------------------------------------------------------
\subsection{Upwind}
For a $1^{st}$-order upwind scheme, the convective flux reads:
\begin{equation}
C_\ij^{upwind} \left( \dot{m}_\ij , \, \varia \right) \equiv \left(\varia_\fij^{upwind} - \varia_\celli \right) \dot{m}_\ij,
\end{equation}
with
\begin{equation}
\varia_\fij^{upwind} =
\left\lbrace\begin{array}{l}
\varia_\celli \text{ if } \dot{m}_\ij \geqslant 0,\\
\varia_\cellj \text{ if } \dot{m}_\ij < 0.
\end{array}\right.
\end{equation}
%-------------------------------------------------------------------------------
\subsection{Centred}
For a centred scheme, the convective flux reads:
\begin{equation}
C_\ij^{centred} \left( \dot{m}_\ij , \, \varia \right) \equiv \left(\varia_\fij^{centred} - \varia_\celli \right) \dot{m}_\ij ,
\end{equation}
with
\begin{equation}
\varia_\fij^{centred} = \alpha_\ij \varia_\centip + \left( 1 - \alpha_\ij \right) \varia_\centjp.
\end{equation}
\begin{remark}
We actually write
%
\begin{equation}
\varia_\fij^{centred} = \alpha_\ij \varia_\celli + \left( 1 - \alpha_\ij \right) \varia_\cellj
+
\dfrac{1}{2} \left[ \grad_\celli \varia + \grad_\cellj \varia \right] \cdot \vect{OF},
\end{equation}
%
which ensures the second-order discretization in space for $\varia$.
The factor $ \frac{1}{2}$ is used for numerical stability reasons.
\end{remark}
%-------------------------------------------------------------------------------
\subsection{Second Order Linear Upwind (SOLU)}
For a $2^{nd}$-order linear upwind scheme\footnotetext{%
Extrapolation of the upwind value at the faces centre.}%
, the convective flux reads:
\begin{equation}
C_\ij^{SOLU} \left( \dot{m}_\ij , \, \varia \right) \equiv \left(\varia_\fij^{SOLU} - \varia_\celli \right) \dot{m}_\ij ,
\end{equation}
with
\begin{equation}
\varia_\fij^{SOLU} =
\left\lbrace\begin{array}{l l}
\varia_\celli +\grad_\celli \varia \cdot \vect{IF} & \text{ if } \dot{m}_\ij \geqslant 0,\\
\varia_\cellj +\grad_\cellj \varia \cdot\vect{JF} & \text{ if } \dot{m}_\ij < 0 .
\end{array}\right.
\end{equation}
The boundary value of $C_\ib^{SOLU}$ is calculated as:
\begin{equation}
\varia_\fib^{SOLU} =
\left\lbrace\begin{array}{l l}
\varia_\celli +\grad_\celli \varia \cdot \vect{IF} & \text{ if } \dot{m}_\ib \geqslant 0,\\
A^g_\fib + B^g_\fib \varia_\centip & \text{ if } \dot{m}_\ib < 0.
\end{array}\right.
\end{equation}
\begin{remark}
A slope test (which may introduce non-linearities in the convection operator) allows to switch from
the centred or SOLU scheme to the first-order upwind scheme (without blending). Additionally, the default option to deal with $\varia_\fij$ is
computed as a weighted average between the upstream value and the centred value (blending), according to users' choice.
\end{remark}
%-------------------------------------------------------------------------------
\section{Diffusive term}\label{sec:spadis:diffusion}
Using the notations adopted in \S~\ref{sec:spadis:notations},
the explicit budget corresponding to the integration over a cell
$\vol{\celli}$ of the diffusive term $\dive \left( K \grad \varia \right) $
has been written as a sum of the
numerical fluxes $D_\ij \left( K_\fij , \, \varia \right)$ calculated at the internal faces,
and the numerical fluxes $D_\ib \left( K_\fib , \, \varia \right)$ calculated at the
boundary faces of the computational domain $\Omega$ defined by Equation~\eqref{eq:spadis:diffusion_flux}.
Note that $D_\ib \left( K_\fib , \, \varia \right)$ includes the \textbf{diffusion} boundary conditions of the field $\varia$
and are described in detail in \chaptername~\ref{chapter:bndcnd}. The value of the flux $D_\ib $ of $\varia_\fib$ is expressed as follows:
%
\begin{equation}\label{eq:spadis:boundary_flux}%TODO use recall
\dfrac{D_\ib}{\norm{\vect{S}}_\fib} \equiv -\left(A_\ib^f + B_\ib^f \varia_\centip\right).
\end{equation}
The value of the diffusive flux $D_\ij $ depends on the \emph{reconstruction} of the field $\varia$ and also on the interpolation at the face of the diffusivity $K$ from the cell values. Two interpolations are available:
%
\begin{enumerate}[ label=\roman{*}/, ref=(\roman{*})]
\item a \emph{harmonic} interpolation which reads:
\begin{equation}\label{eq:spadis:harmonic_viscosity}
K_\fij^{harmonic} \equiv \dfrac{K_\celli K_\cellj}{\alpha_\ij K_\celli + \left( 1 - \alpha_\ij\right)K_\cellj}
\end{equation}
\item an \emph{arithmetic} interpolation which reads:
\begin{equation}
K_\fij^{arithmetic} \equiv \dfrac{1}{2} \left( K_\celli + K_\cellj\right)
\end{equation}
\end{enumerate}
Note that to ensure flux continuity at the internal faces $\fij$, one should use the \emph{harmonic} mean,
whereas the \emph{arithmetic} mean is set as the default option because it has been proven to be more robust numerically.
%-------------------------------------------------------------------------------
\subsection{Without reconstruction}
For a \emph{non-reconstructed} field, the diffusive flux reads:
\begin{equation}
D_\ij^{NRec} \left( K_\fij , \, \varia \right) = - \dfrac{K_\fij \norm{\vect{S}_\ij}}{\overline{\centip \centjp} } \left( \varia_\celli - \varia_\cellj\right).
\end{equation}
%-------------------------------------------------------------------------------
\subsection{Reconstructed}
For a \emph{reconstructed} field, the diffusive flux reads:
\begin{equation}
D_\ij^{Rec} \left( K_\fij , \, \varia \right) = - \dfrac{K_\fij \norm{\vect{S}_\ij}}{\overline{\centip \centjp} } \left( \varia_\centip - \varia_\centjp \right).
\end{equation}
\begin{remark}
In fact, it is actually written as
%
\begin{equation}
\begin{array}{r c l}
D_\ij^{Rec} \left( K_\fij , \, \varia \right) &=& - \dfrac{K_\fij \norm{\vect{S}_\ij}}{\overline{\centip \centjp} } \left( \varia_\celli - \varia_\cellj \right) \\
&-& \dfrac{K_\fij \norm{\vect{S}_\ij}}{\overline{\centip \centjp} } \dfrac{1}{2}\left( \grad_\celli \varia + \grad_\cellj \varia \right) \cdot \left( \vect{\centi \centip} - \vect{\centj \centjp} \right),
\end{array}
\end{equation}
%
which ensures the second-order discretization in space for $\varia$.
The factor $ \frac{1}{2}$ is used for numerical stability reasons.
\end{remark}
%-------------------------------------------------------------------------------
\section{Gradient calculation}
\hypertarget{gradreco}{}
The aim of the present section is to describe the algorithms available in \CS
to compute the cell gradient for scalar or vector fields. The first one uses an
iterative process to handle with non-orthogonalities. It is robust but requires
computational effort. The second one, the least square method, minimizes a
function. It is quick, but less accurate.
For both methods, the adaptation to gradients of vectorial fields is also presented.
Please refer to the \doxygenfile{cs__gradient_8c.html}{programmers reference of the
dedicated subroutine} for further details.
%-------------------------------------------------------------------------------
\subsection{Standard method: iterative process}\label{sec:spadis:iteratif_gradient}
\subsubsection{General description}
\begin{figure}[!htbp]
\centering
\mbox{
\subfigure[Internal face]{
\includegraphics[width=0.4\textwidth]{facette}
} \,
\subfigure[Boundary face]{
\includegraphics[width=0.4\textwidth]{facebord}
}
}
\caption{\label{fig:geom_gradrc}
Sketch of geometrical quantities.
}
\end{figure}
Notations of the geometrical quantities are recalled in \figurename~\ref{fig:geom_gradrc}.
To compute the cell gradient $\grad_{\celli} \varia $ of the scalar field $\varia$ let us
start by its definition:
\begin{equation}
\norm{\vol{\celli}} \grad_{\celli} \varia \equiv \displaystyle \int_{\vol{\celli}}{\grad \varia \, \dd \vol{} } = \int_{\partial \vol{\celli}} \varia \dd \vect{S}.
\end{equation}
In order to take the mesh non-orthogonality into account, a Taylor series ($1^{st}$-order) of $\grad_{\celli} \varia$ is used as follows:
\begin{equation}\label{eq:compute_gradrc1}
\begin{array}{r c l}
\norm{\vol{\celli}} \grad_{\celli} \varia &
\equiv & \displaystyle
\int_{\vol{\celli}}{\grad \varia \, \dd \vol{} }
= \sum\limits_{ \fij \in \Facei{\celli}}
\varia_{\fij}\,{\vect S_{\ij }}
+\sum\limits_{ \fib \in \Faceb{\celli}}
\varia_{\fib}\,{\vect S_{\ib }}, \\
&=& \displaystyle
\sum\limits_{ \fij \in \Facei{\celli}}
\varia_{\centf}\,{\vect S_{\ij }}
+\sum\limits_{ \fib \in \Faceb{\celli}}
\varia_{\centf}\,{\vect S_{\ib }}, \\
&\simeq & \displaystyle
\sum\limits_{ \fij \in \Facei{\celli}} \left[ \varia_{\cento}+ \grad_{\cento} \varia \cdot \vect{\cento \centf} \right] \vect{S}_{\ij}+
\sum\limits_{ \fib \in \Faceb{\celli}} \left[ \epsilon_{\delta \varia} A_{\fib} + B_{\fib} \varia_{\ipf} \right] \vect{S}_{\ib} ,\\
& = &\displaystyle
\sum\limits_{ \fij \in \Facei{\celli}}
\left[
\left( \alpha_{\ij} \varia_\centi +
(1 - \alpha_{\ij}) \varia_\centj \right) \right] \vect{S}_{\ij} +
\sum\limits_{ \fij \in \Facei{i}} \left[
\grad_{\fij} \varia \cdot \vect{\cento \centf} \right] \vect{S}_{\ij} \\
&+&\displaystyle
\sum\limits_{ \fib \in \Faceb{\celli}} \left[ \epsilon_{\delta \varia} A_{\fib} + B_{\fib} \varia_{\ipf} \right] \vect{S}_{\ib} .
\end{array}
\end{equation}
The variable $\epsilon_{\delta \varia}$ is set to $0$ for an increment of a variable\footnote{
Then a homogeneous condition has to be imposed.
},
to $1$ for the variable itself in order to take
correctly the boundary condition into account.
Using the following $1^{st}$-order in space approximation
\begin{equation}\notag
\left\{\begin{array}{r c l}
\grad_{\fij} \varia & = & \displaystyle \dfrac{1}{2}\left[ \grad_{\centi} \varia + \grad_{\centj} \varia \right],\\
\varia_{\ipf} &= & \varia_{\centi} + \grad_{\centi} \varia \cdot \vect{\centi \centip } .
\end{array}\right .
\end{equation}
Equation \eqref{eq:compute_gradrc1} becomes:
%
\begin{equation*}
\begin{array}{r c l}
\norm{\vol{\celli}} \grad_{\celli} \varia &=&
\displaystyle
\sum\limits_{\fij \in \Facei{\celli}}
\left[\alpha_{\ij} \varia_\celli
+ (1 - \alpha_{\ij}) \varia_\cellj + \frac{1}{2}
\left( \grad_\celli \varia +\grad_\cellj \varia\right) \cdot \vect{\cento \centf } \right] {\vect S_{\ij}}\\
&+& \displaystyle
\sum\limits_{\fib \in \Faceb{\celli}}
\left[ \epsilon_{\delta \varia}A_{\fib} +
B_{\fib} \varia_{\celli} + B_{\fib} \grad_{\celli} \varia \cdot \vect{\centi \centip}
\right] \vect{S}_{\ib}.
\end{array}
\end{equation*}
Bringing $\grad_\celli \varia$ terms all together on the left hand side, we have:
%
\begin{equation}\label{eq:gradrc_recontruit}
\begin{array}{r c l}
\displaystyle
\norm{\vol{\celli}} \grad_{\celli} \varia -
\sum\limits_{ \fij \in \Facei{\celli}} \frac{1}{2} \grad_\celli \varia \cdot \left( \vect{\cento \centf} \otimes \vect{S}_{\ij} \right)-
\sum\limits_{ \fib \in \Faceb{\celli}} B_{\fib} \grad_\celli \varia \cdot \left( \vect{\centi \centip} \otimes \vect{S}_{\ib} \right)
&=&
\displaystyle
\sum\limits_{\fij \in \Facei{\celli}}\left[
(\alpha_{\ij} \varia_\celli + (1 - \alpha_{\ij}) \varia_\cellj)\right] \vect{S}_{\ij} \\
&+&
\displaystyle
\sum\limits_{\fij \in \Facei{\celli}} \frac{1}{2} \grad_\cellj \varia \cdot \left( \vect{\cento \centf} \otimes \vect{S}_{\ij} \right) \\
&+&
\displaystyle
\sum\limits_{\fib \in \Faceb{\celli}}\left[ \epsilon_{\delta \varia} A_{\fib} + B_{\fib} \varia_\celli \right] \vect{S}_{\ib}.
\end{array}
\end{equation}
\subsubsection{Without reconstruction}
On an orthogonal mesh, or if this option is chosen, only $0^{th}$-order contributions are considered.
Everything is as if
$\vect{\centi \centip} = \vect{0}$ and $\vect{\cento \centf} = \vect{0}$ in the previous calculation:
\begin{equation}\notag
\begin{array}{r c l}
\norm{\vol{\celli}} \grad_\celli \varia &\equiv & \displaystyle
\int_{\vol{\celli}} \grad \varia\, \dd \vol{} =\sum\limits_{\fij \in \Facei{\celli}} \varia_{\fij} \vect S_{\ij} + \sum\limits_{\fib \in \Faceb{\celli}} \varia_{\fib} \vect{S}_{\ib}, \\
&=& \displaystyle
\sum\limits_{ \fij \in \Facei{\celli}}
\left[ \alpha_{\ij} \varia_\centi +
(1 - \alpha_{\ij}) \varia_\centj \right] \vect S_{\ij}
+ \sum\limits_{ \fib \in \Faceb{\celli}} \left[ \epsilon_{\delta \varia} A_{\fib} + B_{\fib}\varia_\centi \right] \vect{S}_{\ib},
\end{array}
\end{equation}
hence
\begin{equation}\label{eq:spadis:gradrc_nonrecontruit}
\grad_\celli^{NRec} \varia= \dfrac{1}{\norm{\vol{\celli}}} \left[
\sum\limits_{\fij \in \Facei{\celli}} \left[\alpha_{\ij} \varia_\centi + (1 - \alpha_{\ij}) \varia_\centj) \right] \vect S_{\ij}
+\sum\limits_{\fib \in \Faceb{\celli}}(\epsilon_{\delta \varia} A_{\fib} + B_{\fib} \varia_\centi
) \vect{S}_{\ib} \right].
\end{equation}
\begin{remark}
The non-reconstructed gradient is denoted by $ \grad_\celli^{NRec} \varia $, and is then
very easy to compute thanks to the Equation \eqref{eq:spadis:gradrc_nonrecontruit}.
However, it is neither accurate nor consistent on a non-orthogonal mesh.
\end{remark}
\subsubsection{Handling with reconstruction: iterative process}
In order to solve system (\ref{eq:gradrc_recontruit}), all terms containing $\grad_\celli \varia$ are implicit, whereas
all terms with $\grad_\cellj \varia$ are explicit, we then use the series $\left( \delta \grad_\celli^k \varia \right)_{k \in \mathbb{N}}$ defined by:
%
\begin{equation}
\left\{\begin{array}{r c l}
\delta \grad_\celli^0 \varia &=& \grad_\celli^{NRec} \varia, \\
\delta \grad_\celli^{k+1} \varia &= &\grad_\celli^{k+1} \varia - \grad_\celli^k \varia ,
\end{array}\right.
\end{equation}
%
and the associated system is:
\begin{equation}\label{eq:gradrc_recontruit_comp2}
\begin{array}{r c l}
\displaystyle
\grad_{\celli}^{k+1} \varia \cdot \left[\norm{\vol{\celli}} \tens{1} -
\sum\limits_{ \fij \in \Facei{\celli}} \frac{1}{2} \vect{\cento \centf} \otimes \vect{S}_{\ij} -
\sum\limits_{ \fib \in \Faceb{\celli}} B_{\fib} \vect{\centi \centip} \otimes \vect{S}_{\ib} \right]
&=&
\displaystyle
\sum\limits_{\fij \in \Facei{\celli}}\left[
(\alpha_{\ij} \varia_\celli + (1 - \alpha_{\ij}) \varia_\cellj)\right] \vect{S}_{\ij} \\
&+&
\displaystyle
\sum\limits_{\fij \in \Facei{\celli}} \frac{1}{2} \grad_\cellj^k \varia \cdot \left( \vect{\cento \centf} \otimes \vect{S}_{\ij} \right) \\
&+&
\displaystyle
\sum\limits_{\fib \in \Faceb{\celli}}\left[ \epsilon_{\delta \varia} A_{\fib} + B_{\fib} \varia_\celli \right] \vect{S}_{\ib},
\end{array}
\end{equation}
%
or, as the following relationship stands:
\begin{equation*}
\grad_\celli^{k+1} \varia = \grad_\celli^k \varia+ \delta \grad_\celli^{k+1} \varia ,
\end{equation*}
\begin{equation}\label{eq:gradrc_recontruit_increment}
\begin{array}{r c l}
\displaystyle
\delta \grad_{\celli}^{k+1} \varia \cdot \left[\norm{\vol{\celli}} \tens{1} -
\sum\limits_{ \fij \in \Facei{\celli}} \frac{1}{2} \vect{\cento \centf} \otimes \vect{S}_{\ij} -
\sum\limits_{ \fib \in \Faceb{\celli}} B_{\fib} \vect{\centi \centip} \otimes \vect{S}_{\ib} \right]
&=&
\displaystyle
-\norm{\vol{\celli}} \grad_{\celli}^{k} \varia +
\sum\limits_{\fij \in \Facei{\celli}}\left[
(\alpha_{\ij} \varia_\celli + (1 - \alpha_{\ij}) \varia_\cellj)\right] \vect{S}_{\ij} \\
&+&
\displaystyle
\sum\limits_{\fij \in \Facei{\celli}} \frac{1}{2}
\left(\grad_\celli^k \varia + \grad_\cellj^k \varia \right) \cdot \left( \vect{\cento \centf} \otimes \vect{S}_{\ij} \right) \\
&+&
\displaystyle
\sum\limits_{\fib \in \Faceb{\celli}}\left[ \epsilon_{\delta \varia} A_{\fib}
+ B_{\fib} \left( \varia_\celli + \grad_\celli^k \varia \cdot \vect{\centi \centip} \right) \right] \vect{S}_{\ib}.
\end{array}
\end{equation}
The Equation (\ref{eq:gradrc_recontruit_increment}) is a local $3 \times 3$ matrix which unknowns are each of the three components of
the vector $\delta \grad_\celli^{k+1} \varia$. Finally, for each cell $\celli$ we get:
%
\begin{equation}\label{eq:eq_systeme_matriciel_gradrc}
\underbrace{
\left[\begin{array}{c}
\delta \grad_{\celli ,x}^{k+1} \varia\\
\delta \grad_{\celli ,y}^{k+1} \varia\\
\delta \grad_{\celli ,z}^{k+1} \varia
\end{array}\right]
}_{\delta \grad_\celli^{k+1} \varia }
\cdot
\underbrace{
\left[\begin{array}{ccc}
\displaystyle
C_{\celli , xx}
& C_{\celli , xy}
& C_{\celli , xz}\\
\displaystyle
C_{\celli , yx}
& C_{\celli , yy}
& C_{\celli , yz}\\
\displaystyle
C_{\celli , zx}
& C_{\celli , zy}
& C_{\celli , zz}
\end{array}\right]
}_{\tens{C}_{\celli}}
=
\underbrace{
\left[\begin{array}{c}
\displaystyle
R^{k+1}_{\celli ,x}\\
\displaystyle
R^{k+1}_{\celli ,y}\\
\displaystyle
R^{k+1}_{\celli ,z}
\end{array}\right]
}_{\vect{R}^{k+1}_{\celli}} ,
\end{equation}
%
with:
%
\begin{equation}\label{eq:eq_second_membre_gradrc}
\left\{\begin{array}{rcl}
\tens{C}_\celli &=&
\displaystyle
\norm{\vol{\celli}} \tens{1} -
\sum\limits_{ \fij \in \Facei{\celli}} \frac{1}{2} \vect{\cento \centf} \otimes \vect{S}_{\ij} -
\sum\limits_{ \fib \in \Faceb{\celli}} B_{\fib} \vect{\centi \centip} \otimes \vect{S}_{\ib} ,\\
\vect{R}^{k+1}_{\celli} &=&
\displaystyle
-\norm{\vol{\celli}} \grad_{\celli}^{k} \varia +
\sum\limits_{\fij \in \Facei{\celli}}\left[
(\alpha_{\ij} \varia_\celli + (1 - \alpha_{\ij}) \varia_\cellj)\right] \vect{S}_{\ij} \\
&+& \displaystyle
\sum\limits_{\fij \in \Facei{\celli}} \frac{1}{2}
\left(\grad_\celli^k \varia + \grad_\cellj^k \varia \right) \cdot \left( \vect{\cento \centf} \otimes \vect{S}_{\ij} \right) \\
&+& \displaystyle
\sum\limits_{\fib \in \Faceb{\celli}}\left[ \epsilon_{\delta \varia} A_{\fib}
+ B_{\fib} \left( \varia_\celli + \grad_\celli^k \varia \cdot \vect{\centi \centip} \right) \right] \vect{S}_{\ib} .
\end{array}\right.
\end{equation}
The inverse of the matrix $\tens{C}_{\celli}$ is used to compute $\left( \delta \grad_\celli^{k+1} \varia \right)$
and so $\left( \grad^{k+1}_{\celli} \varia \right)$. The iterative process stops as soon as the Euclidean norm of the right-hand-side $\vect{R}^{k+1}_{\celli}$ becomes smaller than a chosen threshold (\emph{i.e.} when the Euclidean norm
of $\left( \delta \grad^{k}_{\celli} \varia \right)$ falls under a threshold) or when the number of iterations reaches the maximal number of iterations.
%-------------------------------------------------------------------------------
\subsection{Standard method: iterative process for vectorial fields}\label{sec:spadis:iteratif_gradient_vectors}
In this section, the adaptation of the calculation presented in \S~\ref{sec:spadis:iteratif_gradient} is adapted to
vectorial fields. Some minor modifications are required, especially for the boundary condition treatment, but the core of the
formulae are the very similar. The notations of the geometrical quantities are recalled in \figurename~\ref{fig:geom_gradrc}.
The definition of $\gradt_{\celli} \variav $ reads:
\begin{equation}
\norm{\vol{\celli}} \gradt_{\celli} \variav \equiv \displaystyle \int_{\vol{\celli}}{\gradt \, \variav \, \dd \vol{} } = \int_{\partial \vol{\celli}} \variav \otimes \dd \vect{S}.
\end{equation}
The same Taylor series as \eqref{eq:compute_gradrc1} of $\gradt_{\celli} \variav$ is used:
\begin{equation}\label{eq:compute_gradrv1}
\begin{array}{r c l}
\norm{\vol{\celli}} \gradt_{\celli} \variav &
\equiv & \displaystyle
\int_{\vol{\celli}}{\gradt \, \variav \, \dd \vol{} }
= \sum\limits_{ \fij \in \Facei{\celli}}
\variav_{\fij} \otimes {\vect S_{\ij }}
+\sum\limits_{ \fib \in \Faceb{\celli}}
\variav_{\fib} \otimes {\vect S_{\ib }}, \\
&=& \displaystyle
\sum\limits_{ \fij \in \Facei{\celli}}
\variav_{\centf} \otimes {\vect S_{\ij }}
+\sum\limits_{ \fib \in \Faceb{\celli}}
\variav_{\centf} \otimes {\vect S_{\ib }}, \\
&\simeq & \displaystyle
\sum\limits_{ \fij \in \Facei{\celli}} \left[ \variav_{\cento}+ \gradt_{\cento} \variav \cdot \vect{\cento \centf} \right] \otimes \vect{S}_{\ij}+
\sum\limits_{ \fib \in \Faceb{\celli}} \left[ \epsilon_{\delta \variav} \vect{A}_{\fib} + \tens{B}_{\fib} \cdot \variav_{\ipf} \right] \otimes\vect{S}_{\ib} ,\\
& = &\displaystyle
\sum\limits_{ \fij \in \Facei{\celli}}
\left[
\left( \alpha_{\ij} \variav_\centi +
(1 - \alpha_{\ij}) \variav_\centj \right) \right] \otimes \vect{S}_{\ij} +
\sum\limits_{ \fij \in \Facei{i}} \left[
\gradt_{\fij} \variav \cdot \vect{\cento \centf} \right] \otimes \vect{S}_{\ij} \\
&+&\displaystyle
\sum\limits_{ \fib \in \Faceb{\celli}} \left[ \epsilon_{\delta \variav} \vect{A}_{\fib} + \tens{B}_{\fib} \cdot \variav_{\ipf} \right] \otimes \vect{S}_{\ib} .
\end{array}
\end{equation}
Once again, the variable $\epsilon_{\delta \variav}$ is set to $0$ for an increment of a variable,
to $1$ for the variable itself in order to correctly account for the boundary condition.
The same $1^{st}$-order in space approximation as in the scalar gradient calculation is used:
\begin{equation*}
\left\{\begin{array}{r c l}
\gradt_{\fij} \variav & = & \displaystyle \dfrac{1}{2}\left[ \gradt_{\centi} \variav + \gradt_{\centj} \variav \right],\\
\variav_{\ipf} &= & \variav_{\centi} + \gradt_{\centi} \variav \cdot \vect{\centi \centip } .
\end{array}\right .
\end{equation*}
Equation \eqref{eq:compute_gradrv1} becomes:
%
\begin{equation*}
\begin{array}{r c l}
\norm{\vol{\celli}} \gradt_{\celli} \variav &=&
\displaystyle
\sum\limits_{\fij \in \Facei{\celli}}
\left[\alpha_{\ij} \variav_\celli
+ (1 - \alpha_{\ij}) \variav_\cellj + \frac{1}{2}
\left( \gradt_\celli \variav +\gradt_\cellj \variav \right) \cdot \vect{\cento \centf } \right] \otimes {\vect S_{\ij}}\\
&+& \displaystyle
\sum\limits_{\fib \in \Faceb{\celli}}
\left[ \epsilon_{\delta \variav}\vect{A}_{\fib} +
\tens{B}_{\fib} \cdot \variav_{\celli} + \tens{B}_{\fib} \cdot \left( \gradt_{\celli} \variav \cdot \vect{\centi \centip} \right)
\right] \otimes \vect{S}_{\ib}.
\end{array}
\end{equation*}
Note that, there is no simple possibility here to bring
$\gradt_\celli \variav$ terms all together on the left hand side, because the term
$ \tens{B}_{\fib} \cdot \left( \gradt_{\celli} \variav \right) \cdot \left( \vect{\centi \centip}
\otimes \vect{S}_{\ib} \right)$ cannot be factorised easily, and thus will be explicit:
%
\begin{equation}\label{eq:gradrv_recontruit}
\begin{array}{r c l}
\displaystyle
\norm{\vol{\celli}} \gradt_{\celli} \variav -
\sum\limits_{ \fij \in \Facei{\celli}} \frac{1}{2} \gradt_\celli \variav \cdot \left( \vect{\cento \centf} \otimes \vect{S}_{\ij} \right)
&=&
\displaystyle
\sum\limits_{\fij \in \Facei{\celli}}\left[
(\alpha_{\ij} \variav_\celli + (1 - \alpha_{\ij}) \variav_\cellj)\right] \otimes \vect{S}_{\ij} \\
&+&
\displaystyle
\sum\limits_{\fij \in \Facei{\celli}} \frac{1}{2} \gradt_\cellj \variav \cdot \left( \vect{\cento \centf} \otimes \vect{S}_{\ij} \right) \\
&+&
\displaystyle
\sum\limits_{\fib \in \Faceb{\celli}}\left[ \epsilon_{\delta \variav} \vect{A}_{\fib} + \tens{B}_{\fib} \cdot \variav_\celli \right] \otimes \vect{S}_{\ib}
+
\sum\limits_{ \fib \in \Faceb{\celli}} \tens{B}_{\fib} \gradt_\celli \variav \cdot \left( \vect{\centi \centip} \otimes \vect{S}_{\ib} \right)
.
\end{array}
\end{equation}
\subsubsection{Without reconstruction}
Without reconstruction, the vectorial gradient reads:
\begin{equation}\label{eq:spadis:gradrv_nonrecontruit}
\gradt_\celli^{NRec} \variav= \dfrac{1}{\norm{\vol{\celli}}} \left[
\sum\limits_{\fij \in \Facei{\celli}} \left[\alpha_{\ij} \variav_\centi + (1 - \alpha_{\ij}) \variav_\centj) \right] \otimes \vect S_{\ij}
+\sum\limits_{\fib \in \Faceb{\celli}}(\epsilon_{\delta \variav} \vect{A}_{\fib} + \tens{B}_{\fib} \cdot \variav_\centi
)\otimes \vect{S}_{\ib} \right].
\end{equation}
\subsubsection{Handling with reconstruction: iterative process}
The series $\left( \delta \gradt_\celli^k \variav \right)_{k \in \mathbb{N}}$ is defined by:
%
\begin{equation}
\left\{\begin{array}{r c l}
\delta \gradt_\celli^0 \variav &=& \gradt_\celli^{NRec} \variav, \\
\delta \gradt_\celli^{k+1} \variav &= &\gradt_\celli^{k+1} \variav - \gradt_\celli^k \variav ,
\end{array}\right.
\end{equation}
A system similar to Equation \eqref{eq:gradrc_recontruit_increment} is obtained
for each cell $\celli$
%
\begin{equation}\label{eq:eq_systeme_matriciel_gradrv}
\delta \gradt_\celli^{k+1} \variav
\cdot
\tens{C}_{\celli}
=
\tens{R}^{k+1}_{\celli}
\end{equation}
%
with:
%
\begin{equation}\label{eq:eq_second_membre_gradrv}
\left\{\begin{array}{rcl}
\tens{C}_\celli &=&
\displaystyle
\tens{1} -
\dfrac{1}{\norm{\vol{\celli}}}\sum\limits_{ \fij \in \Facei{\celli}} \frac{1}{2} \vect{\cento \centf} \otimes \vect{S}_{\ij}
,\\
\tens{R}^{k+1}_{\celli} &=&
\displaystyle
- \gradt_{\celli}^{k} \variav
+ \dfrac{1}{\norm{\vol{\celli}}}
\sum\limits_{\fij \in \Facei{\celli}}\left[
(\alpha_{\ij} \variav_\celli + (1 - \alpha_{\ij}) \variav_\cellj)\right] \otimes \vect{S}_{\ij} \\
&+& \displaystyle
\dfrac{1}{\norm{\vol{\celli}}}
\sum\limits_{\fij \in \Facei{\celli}} \frac{1}{2}
\left(\gradt_\celli^k \variav + \gradt_\cellj^k \variav \right) \cdot \left( \vect{\cento \centf} \otimes \vect{S}_{\ij} \right) \\
&+& \displaystyle
\dfrac{1}{\norm{\vol{\celli}}}
\sum\limits_{\fib \in \Faceb{\celli}}\left[ \epsilon_{\delta \variav} \vect{A}_{\fib}
+ \tens{B}_{\fib} \left( \variav_\celli + \gradt_\celli^k \variav \cdot \vect{\centi \centip} \right) \right] \otimes \vect{S}_{\ib} .
\end{array}\right.
\end{equation}
\begin{remark}
Note that the matrix $\tens{C}_{\celli}$ in \eqref{eq:eq_second_membre_gradrv} is not the same as in \eqref{eq:eq_second_membre_gradrc}. First of all,
there is no boundary term and thus its inverse does not need to be recomputed at each iteration (except if the mesh is modified). This matrix thus only
measures the quality of the mesh (if the mesh is orthogonal, $\tens{C}_{\celli} = \tens{1}$ for all cells).
Secondly, this matrix is dimensionless, whereas in \eqref{eq:eq_second_membre_gradrc} $\tens{C}_\celli$ has the dimension of a volume. This choice has
been motivated to minimize truncation errors.
\end{remark}
%-------------------------------------------------------------------------------
\subsection{Least-square method}\label{sec:spadis:least_square_gradient}
%
Notations of the geometrical quantities are recalled in \figurename~\ref{fig:geom_gradrc}.
The aim of the present algorithm is to compute the cell gradient $\grad_{\celli} \varia $ of the scalar field $\varia$
using a least square method.
The idea is to evaluate the gradient of the variable at the cell faces using the value of the gradient at the cell centres.
The method is not expected to be as robust as the \emph{iterative} process presented in \S~\ref{sec:spadis:iteratif_gradient},
but much more efficient.
Let us introduce $\grad_\fij \varia \cdot \vect{d}_\ij$ an estimation at the internal face $\fij$
of the gradient projected in the direction $\vect{d}_{ij}$ (which will be chosen afterwards).
Let us also define the analogous quantity for boundary faces $\fib$: $\grad_\fib \varia \cdot \vect{d}_\ib$
($\vect{d}_\ib$ will also be chosen afterwards).
The goal would be to find $\grad_{\celli} \varia $ such that, for all faces
the following relationships hold:
\begin{equation}
\left\{\begin{array}{r c l}
\grad_{\celli} \varia \cdot \vect{d}_\ij &=& \grad_\fij \varia \cdot \vect{d}_\ij , \\
\grad_{\celli} \varia \cdot \vect{d}_\ib &=& \grad_\fib \varia \cdot \vect{d}_\ib .
\end{array}\right.
\end{equation}
The previous equality is generally not reachable for all the faces, so the
problem is reformulated as the minimisation of the $\mathcal{F}_\celli$ function:
%
\begin{equation}\label{eq:spadis:gradmc_function}
\mathcal{F}_\celli
\left( \variav \right) =
\dfrac{1}{2}\sum\limits_{\cellj \in \Neigh{\celli} }\left[
\variav \cdot \vect{d}_\ij - \grad_{\fij} \varia \cdot \vect{d}_\ij
\right]^2+
\dfrac{1}{2}\sum\limits_{ \fib \in \Faceb{\celli}}\left[
\variav \cdot \vect{d}_\ib - \grad_{\fib} \varia \cdot \vect{d}_\ib
\right]^2,
\end{equation}
where $\cellj \in \Neigh{\celli} $ is the neighbourhood of the cell $\celli$. By default, the neighbourhood is composed of
cells which share at least a face with $\celli$. But \emph{extended} neighbouring can be used.
To minimize $\mathcal{F}_\celli$, derivatives with respect to the components of the
vector $\variav $ are computed, the resulting system is solved and $\grad_\celli \varia$ is defined
as $\variav_{\min}$ such that $\mathcal{F}_\celli \left( \variav_{\min}\right)$ is minimum.
In order to solve the systems for each cell $\celli$ separately from one to an other,
vectors $\vect{d}_\ij$ and $\vect{d}_\ib$ are chosen so that the quantities
$\grad_{\fij} \varia \cdot \vect{d}_\ij $ and $\grad_{\fib} \varia \cdot \vect{d}_\ib $
do not depend on neighbour cell gradients $\grad_{\cellj} \varia $.
The following choice makes it possible:
\begin{equation}\label{eq:spadis:gradmc_scalar_d_choice}
\begin{array}{r c l}
\vect{d}_\ij &=& \dfrac{\vect{\centi \centj}}{\norm{\vect{\centi \centj}}}, \\
\vect{d}_\ib &=& \dfrac{\vect{\centip \centf}}{\norm{\vect{\centip \centf}}}= \vect{n}_\ib .
\end{array}
\end{equation}
Thus, for internal faces $\fij$, $\vect{d}_\ij$ is the normalized vector joining
the centres $\centi$ and $\centj$ oriented from cell $\celli$ to $\cellj$.
The quantity $\grad_{\fij} \varia \cdot \vect{d}_\ij$ is given by:
\begin{equation}
\grad_{\fij} \varia \cdot \vect{d}_\ij =\dfrac{\varia_\cellj - \varia_\celli }{\norm{\vect{\centi \centj}}}.
\end{equation}
For boundary faces, the choice $\vect{d}_\ib$ to be the outward normal implies:
\begin{equation}
\grad_{\fib} \varia \cdot \vect{d}_\ib =\dfrac{\varia_\fib - \varia_\centip }{\norm{\vect{\centip \centf}}},
\end{equation}
where $\varia_\fib$ is expressed thanks to the boundary conditions (see \chaptername~\ref{chapter:bndcnd}) and
the value $\varia_\centip $ is given by formula \eqref{eq:spadis:reconstruction_ip_jp} recalled hereafter:
%
\begin{equation}\label{eq:spadis:gradmc_bound_value}
\left\{\begin{array}{r c l}
\varia_\centip &=&\varia_\celli +\grad_\celli \varia \cdot \vect{\centi \centip}\\
\varia_\fib &=& A^g_\fib +B^g_\fib \varia_\centip = A^g_\fib +B^g_\fib \left( \varia_\celli + \grad_\celli \varia \cdot \vect{\centi \centip} \right)
\end{array}\right.
\end{equation}
Eventually we get:
\begin{equation}\label{eq:spadis:gradmc_bound_gradient}
\grad_{\fib} \varia \cdot \vect{d}_\ib =
\dfrac{
A^g_\fib +\left(B^g_\fib -1 \right) \left( \varia_\celli + \grad_\celli \varia \cdot \vect{\centi \centip} \right)
}{
\norm{\vect{\centip \centf}}
},
\end{equation}
Equation \eqref{eq:spadis:gradmc_bound_gradient} contains a term in $\grad_\celli \varia$
and thus should be injected into Equation
\eqref{eq:spadis:gradmc_function} before deriving it. Thus \eqref{eq:spadis:gradmc_function} becomes:
\begin{equation}\label{eq:spadis:gradmc_function2}
\begin{array}{r c l}
\mathcal{F}_\celli
\left( \variav \right)& =&
\displaystyle
\dfrac{1}{2}\sum\limits_{ \cellj \in \Neigh{\celli} }\left[
\variav \cdot \vect{d}_\ij - \grad_{\fij} \varia \cdot \vect{d}_\ij
\right]^2 \\
&+&
\displaystyle
\dfrac{1}{2}\sum\limits_{ \fib \in \Faceb{\celli}}\left[
\variav \cdot
\left( \vect{d}_\ib - \dfrac{B^g_\fib -1 }{\norm{\vect{\centip \centf}}} \vect{\centi \centip} \right)
-
\dfrac{
A^g_\fib +\left(B^g_\fib -1 \right) \varia_\celli
}{
\norm{\vect{\centip \centf}}
}
\right]^2.
\end{array}
\end{equation}
Then we cancel the derivatives of
$\mathcal{F}_\celli \left( \variav \right)$ with respect to the $ \variav$ components:
\begin{equation}\label{eq:spadis:gradmc_function_derivative}
\begin{array}{r c l}
\der{\mathcal{F}_\celli}{\variav }
\left( \variav \right)& =&
\displaystyle
\sum\limits_{ \cellj \in \Neigh{\celli} }\left[
\left(\variav \cdot \vect{d}_\ij \right) \vect{d}_\ij
- \left(\grad_{\fij} \varia \cdot \vect{d}_\ij \right) \vect{d}_\ij
\right] \\
&+&
\displaystyle
\sum\limits_{ \fib \in \Faceb{\celli}}\left[
\left( \variav \cdot
\left( \vect{d}_\ib - \dfrac{B^g_\fib -1 }{\norm{\vect{\centip \centf}}} \vect{\centi \centip} \right) \right)
\left( \vect{d}_\ib - \dfrac{B^g_\fib -1 }{\norm{\vect{\centip \centf}}} \vect{\centi \centip} \right)
-
\dfrac{
A^g_\fib +\left(B^g_\fib -1 \right) \varia_\celli
}{
\norm{\vect{\centip \centf}}
}
\left( \vect{d}_\ib - \dfrac{B^g_\fib -1 }{\norm{\vect{\centip \centf}}} \vect{\centi \centip} \right)
\right].
\end{array}
\end{equation}
A $3\times 3$ system for each cell $\celli$
is obtained by writing $\der{\mathcal{F}_\celli}{\variav }
\left( \grad_\celli \varia \right)= \vect{0}$:
%
\begin{equation}\label{eq:spadis:gradmc_matrix}
\grad_\celli \varia \cdot \tens{C}_\celli = \vect{R}_\celli ,
\end{equation}
with
%
\begin{equation}
\left\{
\begin{array}{r c l}
\tens{C}_\celli &=&
\displaystyle
\sum\limits_{\cellj \in \Neigh{\celli} }
\vect{d}_\ij \otimes \vect{d}_\ij
+
\sum\limits_{\fib \in \Faceb{\celli}}
\left( \vect{d}_\ib -\dfrac{ B^g_\fib -1}{\norm{\vect{\centip \centf}}} \vect{\centi \centip } \right)
\otimes
\left( \vect{d}_\ib -\dfrac{ B^g_\fib -1}{\norm{\vect{\centip \centf}}} \vect{\centi \centip } \right),
\\
\vect{R}_\celli &=&
\displaystyle
\sum\limits_{ \cellj \in \Neigh{\celli} }
\left( \grad_{\fij} \varia \cdot \vect{d}_\ij \right) \vect{d}_\ij
+
\sum\limits_{ \fib \in \Faceb{\celli}}
\dfrac{
A^g_\fib +\left(B^g_\fib -1 \right) \varia_\celli
}{
\norm{\vect{\centip \centf}}
}
\left( \vect{d}_\ib - \dfrac{B^g_\fib -1 }{\norm{\vect{\centip \centf}}} \vect{\centi \centip} \right),
\end{array}\right.
\end{equation}
%
using \eqref{eq:spadis:gradmc_scalar_d_choice} this gives:
\begin{equation}
\left\lbrace
\begin{array}{r c l}
\tens{C}_\celli &=&
\displaystyle
\sum\limits_{\cellj \in \Neigh{\celli} }
\dfrac{\vect{\centi \centj} \otimes \vect{\centi \centj}}{\norm{\vect{\centi \centj}}^2}
+
\sum\limits_{\fib \in \Faceb{\celli}}
\left( \vect{n}_\ib -\dfrac{ B^g_\fib -1}{\norm{\vect{\centip \centf}}} \vect{\centi \centip } \right)
\otimes
\left( \vect{n}_\ib -\dfrac{ B^g_\fib -1}{\norm{\vect{\centip \centf}}} \vect{\centi \centip } \right),
\\
\vect{R}_\celli &=&
\displaystyle
\sum\limits_{ \cellj \in \Neigh{\celli} }
\left( \varia_\cellj - \varia_\celli \right) \dfrac{ \vect{\centi \centj}}{\norm{\vect{\centi \centj}}^2}
+
\sum\limits_{ \fib \in \Faceb{\celli}}
\dfrac{
A^g_\fib +\left(B^g_\fib -1 \right) \varia_\celli
}{
\norm{\vect{\centip \centf}}
}
\left( \vect{n}_\ib - \dfrac{B^g_\fib -1 }{\norm{\vect{\centip \centf}}} \vect{\centi \centip} \right).
\end{array}\right.
\end{equation}
\begin{remark}
\begin{enumerate}[ label=\roman{*}/, ref=(\roman{*})]
\item Note that the $3\times3$ $\tens{C}_\celli$ tensor is symmetric.
\item For cells $\celli$ having at least a boundary face $\fib$, the tensor $\tens{C}_\celli$ must be recomputed at each time step,
for the other, the tensor $\tens{C}_\celli$ only needs to be recomputed when the mesh is updated (in ALE for instance).
\item If the user chooses not to reconstruct the gradients (which introduces a lack of consistency on non-orthogonal meshes),
then the gradient is computed thanks to formula \eqref{eq:spadis:gradrc_nonrecontruit}.
\item For highly non-orthogonal meshes, an extended stencil\footnote{
the stencil is the set of neighbour cells used in the cell gradient computation.
} can be used (see different support in \figurename~\ref{fig:spadis:gradmc_support}) and can drastically improve the results when using tetrahedral meshes.
\end{enumerate}
\end{remark}
\begin{figure}[!htp]
\centerline{\includegraphics[height=8cm]{support}}
\caption{Available stencils for computing the gradient with the least square method.\label{fig:spadis:gradmc_support}}
\end{figure}
%-------------------------------------------------------------------------------
\subsection{Least-square method for vectorial fields}\label{sec:spadis:least_square_gradient_vectors}
%
In this section, the adaptation of the calculation presented in \S~\ref{sec:spadis:least_square_gradient} is adapted to
vectorial fields. Some minor modifications are required, especially for the boundary condition treatment, but the core of the
formulae are the very similar. The notations of the geometrical quantities are recalled in \figurename~\ref{fig:geom_gradrc}.
The functional to be minimized is defined by
%
\begin{equation}\label{eq:spadis:gradmv_function}
\mathcal{F}_\celli
\left( \variat \right) =
\dfrac{1}{2}\sum\limits_{\cellj \in \Neigh{\celli} }
\norm{
\variat \cdot \vect{d}_\ij - \gradt_{\fij} \variav \cdot \vect{d}_\ij
}^2+
\dfrac{1}{2}\sum\limits_{ \fib \in \Faceb{\celli}}
\norm{
\variat \cdot \vect{d}_\ib - \gradt_{\fib} \variav \cdot \vect{d}_\ib
}^2,
\end{equation}
To minimize $\mathcal{F}_\celli$, derivatives with respect to the components of the
vector $\variat $ are computed, the resulting system is solved and $\gradt_\celli \variav$ is defined
as $\variat_{\min}$ such that $\mathcal{F}_\celli \left( \variat_{\min}\right)$ is minimum.
In order to obtain a simple system, the same choice as in \eqref{eq:spadis:gradmc_scalar_d_choice} is made on $\vect{d}_\ij$.
Concerning $\vect{d}_\ib$, an other choice ensuring that $\grad_{\fib} \varia \cdot \vect{d}_\ib $ does not
depend on $\grad_{\celli} \varia $ is made:
%
\begin{equation}\label{eq:spadis:gradmv_scalar_d_choice}
\begin{array}{r c l}
\vect{d}_\ij &=& \dfrac{\vect{\centi \centj}}{\norm{\vect{\centi \centj}}}, \\
\vect{d}_\ib &=& \dfrac{\vect{\centi \centf}}{\norm{\vect{\centi \centf}}} .
\end{array}
\end{equation}
Thus, for internal faces $\fij$, $\vect{d}_\ij$ is still the normalized vector joining
the centres $\centi$ and $\centj$ oriented from cell $\celli$ to $\cellj$.
The quantity $\gradt_{\fij} \variav \cdot \vect{d}_\ij$ is given by:
\begin{equation}
\gradt_{\fij} \variav \cdot \vect{d}_\ij =\dfrac{\variav_\cellj - \variav_\celli }{\norm{\vect{\centi \centj}}}.
\end{equation}
For boundary faces, the choice $\vect{d}_\ib$ implies:
\begin{equation}
\gradt_{\fib} \variav \cdot \vect{d}_\ib =\dfrac{\variav_\fib - \variav_\celli }{\norm{\vect{\centi \centf}}},
\end{equation}
where $\variav_\fib$ is expressed thanks to the boundary conditions (see \chaptername~\ref{chapter:bndcnd}).
Then we cancel the derivatives of
$\mathcal{F}_\celli \left( \variat \right)$ with respect to the $ \variat$ components:
A $3\times 3$ system for each cell $\celli$
is obtained by writing $\der{\mathcal{F}_\celli}{\variat }
\left( \gradt_\celli \variav \right)= \tens{0}$:
%
\begin{equation}\label{eq:spadis:gradmv_matrix}
\gradt_\celli \variav \cdot \tens{C}_\celli = \tens{R}_\celli ,
\end{equation}
with
%
\begin{equation}
\left\{
\begin{array}{r c l}
\tens{C}_\celli &=&
\displaystyle
\sum\limits_{\cellj \in \Neigh{\celli} }
\vect{d}_\ij \otimes \vect{d}_\ij
+
\sum\limits_{\fib \in \Faceb{\celli}}
\vect{d}_\ib \otimes \vect{d}_\ib ,
\\
\tens{R}_\celli &=&
\displaystyle
\sum\limits_{ \cellj \in \Neigh{\celli} }
\gradt_{\fij} \variav \cdot \left( \vect{d}_\ij \otimes \vect{d}_\ij \right)
+
\sum\limits_{ \fib \in \Faceb{\celli}}
\dfrac{
\vect{A}^g_\fib +\left(\tens{B}^g_\fib -\tens{1} \right) \cdot \variav_\celli
}{
\norm{\vect{\centi \centf}}
}
\otimes
\vect{d}_\ib .
\end{array}\right.
\end{equation}
%
\begin{remark}
Note that the $3\times3$ $\tens{C}_\celli$ tensor is slightly different from \eqref{eq:spadis:gradmc_matrix} and does not depend
on boundary condition coefficients (and thus does not require re-computation if the mesh is not modified).
\end{remark}
%-------------------------------------------------------------------------------
\section{Advanced topic}
%-------------------------------------------------------------------------------
\subsection{Rhie \& Chow filter}
\hypertarget{arak}{}
Please refer to the \doxygenanchor{structcs__stokes__model__t.html\#arak}{programmers
reference of the dedicated keyword \texttt{arak}}.
%-------------------------------------------------------------------------------
\subsection{Handling of the hydrostatic pressure}
\hypertarget{iphydr}{}
Please refer to the \doxygenanchor{structcs__stokes__model__t.html\#iphydr}{programmers
reference of the dedicated keyword \texttt{iphydr}}.
|