File: pdfencrypt.cpp

package info (click to toggle)
codeblocks 16.01%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 85,352 kB
  • sloc: cpp: 665,947; ansic: 48,306; sh: 32,198; xml: 29,690; makefile: 6,054; asm: 3,827; python: 3,251; f90: 1,202; pascal: 839; yacc: 291; perl: 261; sed: 16
file content (817 lines) | stat: -rw-r--r-- 21,035 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
///////////////////////////////////////////////////////////////////////////////
// Name:        pdfencrypt.cpp
// Purpose:     
// Author:      Ulrich Telle
// Modified by:
// Created:     2005-08-17
// RCS-ID:      $$
// Copyright:   (c) Ulrich Telle
// Licence:     wxWindows licence
///////////////////////////////////////////////////////////////////////////////

/// \file pdfencrypt.cpp Implementation of the wxPdfEncrypt class

// For compilers that support precompilation, includes <wx.h>.
#include <wx/wxprec.h>

#ifdef __BORLANDC__
#pragma hdrstop
#endif

#ifndef WX_PRECOMP
#include <wx/wx.h>
#endif

// includes
#include <wx/log.h>

#include "wx/pdfencrypt.h"
#include "wx/pdfrijndael.h"
#include "wx/pdfutility.h"

#define MD5_HASHBYTES 16

/*
 * This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
 * MD5 Message-Digest Algorithm (RFC 1321).
 *
 * Homepage:
 * http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
 *
 * Author:
 * Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
 *
 * This software was written by Alexander Peslyak in 2001.  No copyright is
 * claimed, and the software is hereby placed in the public domain.
 * In case this attempt to disclaim copyright and place the software in the
 * public domain is deemed null and void, then the software is
 * Copyright (c) 2001 Alexander Peslyak and it is hereby released to the
 * general public under the following terms:
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted.
 *
 * There's ABSOLUTELY NO WARRANTY, express or implied.
 *
 * (This is a heavily cut-down "BSD license".)
 *
 * This differs from Colin Plumb's older public domain implementation in that
 * no exactly 32-bit integer data type is required (any 32-bit or wider
 * unsigned integer data type will do), there's no compile-time endianness
 * configuration, and the function prototypes match OpenSSL's.  No code from
 * Colin Plumb's implementation has been reused; this comment merely compares
 * the properties of the two independent implementations.
 *
 * The primary goals of this implementation are portability and ease of use.
 * It is meant to be fast, but not as fast as possible.  Some known
 * optimizations are not included to reduce source code size and avoid
 * compile-time configuration.
 */

#include <string.h>

/* Any 32-bit or wider unsigned integer data type will do */
typedef unsigned int MD5_u32plus;

typedef struct {
  MD5_u32plus lo, hi;
  MD5_u32plus a, b, c, d;
  unsigned char buffer[64];
  MD5_u32plus block[16];
} MD5_CTX;

static void MD5_Init(MD5_CTX *ctx);
static void MD5_Update(MD5_CTX *ctx, const void *data, unsigned long size);
static void MD5_Final(unsigned char *result, MD5_CTX *ctx);

/*
 * The basic MD5 functions.
 *
 * F and G are optimized compared to their RFC 1321 definitions for
 * architectures that lack an AND-NOT instruction, just like in Colin Plumb's
 * implementation.
 */
#define F(x, y, z)			((z) ^ ((x) & ((y) ^ (z))))
#define G(x, y, z)			((y) ^ ((z) & ((x) ^ (y))))
#define H(x, y, z)			(((x) ^ (y)) ^ (z))
#define H2(x, y, z)			((x) ^ ((y) ^ (z)))
#define I(x, y, z)			((y) ^ ((x) | ~(z)))

/*
 * The MD5 transformation for all four rounds.
 */
#define STEP(f, a, b, c, d, x, t, s) \
	(a) += f((b), (c), (d)) + (x) + (t); \
	(a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \
	(a) += (b);

/*
 * SET reads 4 input bytes in little-endian byte order and stores them
 * in a properly aligned word in host byte order.
 *
 * The check for little-endian architectures that tolerate unaligned
 * memory accesses is just an optimization.  Nothing will break if it
 * doesn't work.
 */
#if defined(__i386__) || defined(__x86_64__) || defined(__vax__)
#define SET(n) \
	(*(MD5_u32plus *)&ptr[(n) * 4])
#define GET(n) \
	SET(n)
#else
#define SET(n) \
	(ctx->block[(n)] = \
	(MD5_u32plus)ptr[(n) * 4] | \
	((MD5_u32plus)ptr[(n) * 4 + 1] << 8) | \
	((MD5_u32plus)ptr[(n) * 4 + 2] << 16) | \
	((MD5_u32plus)ptr[(n) * 4 + 3] << 24))
#define GET(n) \
	(ctx->block[(n)])
#endif

/*
 * This processes one or more 64-byte data blocks, but does NOT update
 * the bit counters.  There are no alignment requirements.
 */
static const void *body(MD5_CTX *ctx, const void *data, unsigned long size)
{
	const unsigned char *ptr;
	MD5_u32plus a, b, c, d;
	MD5_u32plus saved_a, saved_b, saved_c, saved_d;

	ptr = (const unsigned char *)data;

	a = ctx->a;
	b = ctx->b;
	c = ctx->c;
	d = ctx->d;

	do {
		saved_a = a;
		saved_b = b;
		saved_c = c;
		saved_d = d;

/* Round 1 */
		STEP(F, a, b, c, d, SET(0), 0xd76aa478, 7)
		STEP(F, d, a, b, c, SET(1), 0xe8c7b756, 12)
		STEP(F, c, d, a, b, SET(2), 0x242070db, 17)
		STEP(F, b, c, d, a, SET(3), 0xc1bdceee, 22)
		STEP(F, a, b, c, d, SET(4), 0xf57c0faf, 7)
		STEP(F, d, a, b, c, SET(5), 0x4787c62a, 12)
		STEP(F, c, d, a, b, SET(6), 0xa8304613, 17)
		STEP(F, b, c, d, a, SET(7), 0xfd469501, 22)
		STEP(F, a, b, c, d, SET(8), 0x698098d8, 7)
		STEP(F, d, a, b, c, SET(9), 0x8b44f7af, 12)
		STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17)
		STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22)
		STEP(F, a, b, c, d, SET(12), 0x6b901122, 7)
		STEP(F, d, a, b, c, SET(13), 0xfd987193, 12)
		STEP(F, c, d, a, b, SET(14), 0xa679438e, 17)
		STEP(F, b, c, d, a, SET(15), 0x49b40821, 22)

/* Round 2 */
		STEP(G, a, b, c, d, GET(1), 0xf61e2562, 5)
		STEP(G, d, a, b, c, GET(6), 0xc040b340, 9)
		STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14)
		STEP(G, b, c, d, a, GET(0), 0xe9b6c7aa, 20)
		STEP(G, a, b, c, d, GET(5), 0xd62f105d, 5)
		STEP(G, d, a, b, c, GET(10), 0x02441453, 9)
		STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14)
		STEP(G, b, c, d, a, GET(4), 0xe7d3fbc8, 20)
		STEP(G, a, b, c, d, GET(9), 0x21e1cde6, 5)
		STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9)
		STEP(G, c, d, a, b, GET(3), 0xf4d50d87, 14)
		STEP(G, b, c, d, a, GET(8), 0x455a14ed, 20)
		STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5)
		STEP(G, d, a, b, c, GET(2), 0xfcefa3f8, 9)
		STEP(G, c, d, a, b, GET(7), 0x676f02d9, 14)
		STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20)

/* Round 3 */
		STEP(H, a, b, c, d, GET(5), 0xfffa3942, 4)
		STEP(H2, d, a, b, c, GET(8), 0x8771f681, 11)
		STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16)
		STEP(H2, b, c, d, a, GET(14), 0xfde5380c, 23)
		STEP(H, a, b, c, d, GET(1), 0xa4beea44, 4)
		STEP(H2, d, a, b, c, GET(4), 0x4bdecfa9, 11)
		STEP(H, c, d, a, b, GET(7), 0xf6bb4b60, 16)
		STEP(H2, b, c, d, a, GET(10), 0xbebfbc70, 23)
		STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4)
		STEP(H2, d, a, b, c, GET(0), 0xeaa127fa, 11)
		STEP(H, c, d, a, b, GET(3), 0xd4ef3085, 16)
		STEP(H2, b, c, d, a, GET(6), 0x04881d05, 23)
		STEP(H, a, b, c, d, GET(9), 0xd9d4d039, 4)
		STEP(H2, d, a, b, c, GET(12), 0xe6db99e5, 11)
		STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16)
		STEP(H2, b, c, d, a, GET(2), 0xc4ac5665, 23)

/* Round 4 */
		STEP(I, a, b, c, d, GET(0), 0xf4292244, 6)
		STEP(I, d, a, b, c, GET(7), 0x432aff97, 10)
		STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15)
		STEP(I, b, c, d, a, GET(5), 0xfc93a039, 21)
		STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6)
		STEP(I, d, a, b, c, GET(3), 0x8f0ccc92, 10)
		STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15)
		STEP(I, b, c, d, a, GET(1), 0x85845dd1, 21)
		STEP(I, a, b, c, d, GET(8), 0x6fa87e4f, 6)
		STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10)
		STEP(I, c, d, a, b, GET(6), 0xa3014314, 15)
		STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21)
		STEP(I, a, b, c, d, GET(4), 0xf7537e82, 6)
		STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10)
		STEP(I, c, d, a, b, GET(2), 0x2ad7d2bb, 15)
		STEP(I, b, c, d, a, GET(9), 0xeb86d391, 21)

		a += saved_a;
		b += saved_b;
		c += saved_c;
		d += saved_d;

		ptr += 64;
	} while (size -= 64);

	ctx->a = a;
	ctx->b = b;
	ctx->c = c;
	ctx->d = d;

	return ptr;
}

void MD5_Init(MD5_CTX *ctx)
{
	ctx->a = 0x67452301;
	ctx->b = 0xefcdab89;
	ctx->c = 0x98badcfe;
	ctx->d = 0x10325476;

	ctx->lo = 0;
	ctx->hi = 0;
}

void MD5_Update(MD5_CTX *ctx, const void *data, unsigned long size)
{
	MD5_u32plus saved_lo;
	unsigned long used, available;

	saved_lo = ctx->lo;
	if ((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo)
		ctx->hi++;
	ctx->hi += size >> 29;

	used = saved_lo & 0x3f;

	if (used) {
		available = 64 - used;

		if (size < available) {
			memcpy(&ctx->buffer[used], data, size);
			return;
		}

		memcpy(&ctx->buffer[used], data, available);
		data = (const unsigned char *)data + available;
		size -= available;
		body(ctx, ctx->buffer, 64);
	}

	if (size >= 64) {
		data = body(ctx, data, size & ~(unsigned long)0x3f);
		size &= 0x3f;
	}

	memcpy(ctx->buffer, data, size);
}

void MD5_Final(unsigned char *result, MD5_CTX *ctx)
{
	unsigned long used, available;

	used = ctx->lo & 0x3f;

	ctx->buffer[used++] = 0x80;

	available = 64 - used;

	if (available < 8) {
		memset(&ctx->buffer[used], 0, available);
		body(ctx, ctx->buffer, 64);
		used = 0;
		available = 64;
	}

	memset(&ctx->buffer[used], 0, available - 8);

	ctx->lo <<= 3;
	ctx->buffer[56] = ctx->lo;
	ctx->buffer[57] = ctx->lo >> 8;
	ctx->buffer[58] = ctx->lo >> 16;
	ctx->buffer[59] = ctx->lo >> 24;
	ctx->buffer[60] = ctx->hi;
	ctx->buffer[61] = ctx->hi >> 8;
	ctx->buffer[62] = ctx->hi >> 16;
	ctx->buffer[63] = ctx->hi >> 24;

	body(ctx, ctx->buffer, 64);

	result[0] = ctx->a;
	result[1] = ctx->a >> 8;
	result[2] = ctx->a >> 16;
	result[3] = ctx->a >> 24;
	result[4] = ctx->b;
	result[5] = ctx->b >> 8;
	result[6] = ctx->b >> 16;
	result[7] = ctx->b >> 24;
	result[8] = ctx->c;
	result[9] = ctx->c >> 8;
	result[10] = ctx->c >> 16;
	result[11] = ctx->c >> 24;
	result[12] = ctx->d;
	result[13] = ctx->d >> 8;
	result[14] = ctx->d >> 16;
	result[15] = ctx->d >> 24;

	memset(ctx, 0, sizeof(*ctx));
}


// ---------------------------
// wxPdfEncrypt implementation
// ---------------------------

static unsigned char padding[] =
  "\x28\xBF\x4E\x5E\x4E\x75\x8A\x41\x64\x00\x4E\x56\xFF\xFA\x01\x08\x2E\x2E\x00\xB6\xD0\x68\x3E\x80\x2F\x0C\xA9\xFE\x64\x53\x69\x7A";

wxPdfEncrypt::wxPdfEncrypt(int revision, int keyLength)
{
  switch (revision)
  {
    case 4:
      m_rValue = 4;
      m_keyLength = 128 / 8;
      m_aes = new wxPdfRijndael();
      break;
    case 3:
      keyLength = keyLength - keyLength % 8;
      keyLength = (keyLength >= 40) ? ((keyLength <= 128) ? keyLength : 128) : 40;
      m_rValue = 3;
      m_keyLength = keyLength / 8;
      break;
    case 2:
    default:
      m_rValue = 2;
      m_keyLength = 40 / 8;
      break;
  }

  int j;
  for (j = 0; j < 16; j++)
  {
    m_rc4key[j] = 0;
  }
}

wxPdfEncrypt::~wxPdfEncrypt()
{
  if (m_rValue == 4)
  {
    delete m_aes;
  }
}

void
wxPdfEncrypt::PadPassword(const wxString& password, unsigned char pswd[32])
{
  unsigned int m = (unsigned int) password.Length();
  if (m > 32) m = 32;

  unsigned int j;
  unsigned int p = 0;
  wxString::const_iterator ch = password.begin();
  for (j = 0; j < m; j++)
  {
    pswd[p++] = (unsigned char) ((unsigned int) (*ch) & 0xff);
    ++ch;
  }
  for (j = 0; p < 32 && j < 32; j++)
  {
    pswd[p++] = padding[j];
  }
}

void
wxPdfEncrypt::GenerateEncryptionKey(const wxString& userPassword,
                                    const wxString& ownerPassword,
                                    int protection,
                                    const wxString& documentId)
{
  unsigned char userpswd[32];
  unsigned char ownerpswd[32];

  // Pad passwords
  PadPassword(userPassword, userpswd);
  PadPassword(ownerPassword, ownerpswd);

  // Compute P value
  m_pValue = -((protection ^ 255) + 1);

  // Compute O value
  ComputeOwnerKey(userpswd, ownerpswd, m_keyLength*8, m_rValue, false, m_oValue);

  // Compute encryption key and U value
  if (documentId.IsEmpty())
  {
    m_documentId = CreateDocumentId();
  }
  else
  {
    m_documentId = documentId;
  }
  ComputeEncryptionKey(m_documentId, userpswd,
                       m_oValue, m_pValue, m_keyLength*8, m_rValue, m_uValue);
}

bool
wxPdfEncrypt::Authenticate(const wxString& documentID, const wxString& password,
                           const wxString& uValue, const wxString& oValue,
                           int pValue, int lengthValue, int rValue)
{
  unsigned char userKey[32];
  bool ok = false;
  int j;
  wxString::const_iterator uChar = uValue.begin();
  wxString::const_iterator oChar = oValue.begin();
  for (j = 0; j < 32; j++)
  {
    m_uValue[j] = (unsigned char) ((unsigned int) (*uChar) & 0xff);
    m_oValue[j] = (unsigned char) ((unsigned int) (*oChar) & 0xff);
    ++uChar;
    ++oChar;
  }
  m_pValue = pValue;
  m_keyLength = lengthValue / 8;

  // Pad password
  unsigned char pswd[32];
  PadPassword(password, pswd);

  // Check password: 1) as user password, 2) as owner password
  ComputeEncryptionKey(documentID, pswd, m_oValue, pValue, lengthValue, rValue, userKey);
  ok = CheckKey(userKey, m_uValue);
  if (!ok)
  {
    unsigned char userpswd[32];
    ComputeOwnerKey(m_oValue, pswd, lengthValue, rValue, true, userpswd);
    ComputeEncryptionKey(documentID, userpswd, m_oValue, pValue, lengthValue, rValue, userKey);
    ok = CheckKey(userKey, m_uValue);
  }
  return ok;
}

void
wxPdfEncrypt::ComputeOwnerKey(unsigned char userPad[32], unsigned char ownerPad[32],
                              unsigned int keyLength, int revision, bool authenticate,
                              unsigned char ownerKey[32])
{
  unsigned char mkey[MD5_HASHBYTES];
  unsigned char digest[MD5_HASHBYTES];
  unsigned int length = keyLength / 8;

  MD5_CTX ctx;
  MD5_Init(&ctx);
  MD5_Update(&ctx, ownerPad, 32);
  MD5_Final(digest,&ctx);

  if (revision == 3 || revision == 4)
  {
    // only use for the input as many bit as the key consists of
    unsigned int k;
    for (k = 0; k < 50; ++k)
    {
      MD5_Init(&ctx);
      MD5_Update(&ctx, digest, length);
      MD5_Final(digest,&ctx);
    }
    memcpy(ownerKey, userPad, 32);
    unsigned int i;
    unsigned int j;
    for (i = 0; i < 20; ++i)
    {
      for (j = 0; j < length ; ++j)
      {
        if (authenticate)
        {
          mkey[j] = (digest[j] ^ (19-i));
        }
        else
        {
          mkey[j] = (digest[j] ^ i);
        }
      }
      RC4(mkey, length, ownerKey, 32, ownerKey);
    }
  }
  else
  {
    RC4(digest, 5, userPad, 32, ownerKey);
  }
}

void
wxPdfEncrypt::ComputeEncryptionKey(const wxString& documentId,
                                   unsigned char userPad[32], unsigned char ownerKey[32],
                                   int pValue, unsigned int keyLength, int revision,
                                   unsigned char userKey[32])
{
  unsigned int k;
  m_keyLength = keyLength / 8;

  MD5_CTX ctx;
  MD5_Init(&ctx);
  MD5_Update(&ctx, userPad, 32);
  MD5_Update(&ctx, ownerKey, 32);

  unsigned char ext[4];
  ext[0] = (unsigned char) ( pValue        & 0xff);
  ext[1] = (unsigned char) ((pValue >>  8) & 0xff);
  ext[2] = (unsigned char) ((pValue >> 16) & 0xff);
  ext[3] = (unsigned char) ((pValue >> 24) & 0xff);
  MD5_Update(&ctx, ext, 4);

  unsigned int docIdLength = (unsigned int) documentId.Length();
  unsigned char* docId = NULL;
  if (docIdLength > 0)
  {
    docId = new unsigned char[docIdLength];
    unsigned int j;
    wxString::const_iterator dChar = documentId.begin();
    for (j = 0; j < docIdLength; j++)
    {
      docId[j] = (unsigned char) ((unsigned int) (*dChar) & 0xff);
      ++dChar;
    }
    MD5_Update(&ctx, docId, docIdLength);
  }
  
  // TODO: (Revision 3 or greater) If document metadata is not being encrypted,
  //       pass 4 bytes with the value 0xFFFFFFFF to the MD5 hash function.

  unsigned char digest[MD5_HASHBYTES];
  MD5_Final(digest,&ctx);

  // only use the really needed bits as input for the hash
  if (revision == 3 || revision == 4)
  {
    for (k = 0; k < 50; ++k)
    {
      MD5_Init(&ctx);
      MD5_Update(&ctx, digest, m_keyLength);
      MD5_Final(digest, &ctx);
    }
  }

  memcpy(m_encryptionKey, digest, m_keyLength);

  // Setup user key
  if (revision == 3 || revision == 4)
  {
    MD5_Init(&ctx);
    MD5_Update(&ctx, padding, 32);
    if (docId != NULL)
    {
      MD5_Update(&ctx, docId, docIdLength);
    }
    MD5_Final(digest, &ctx);
    memcpy(userKey, digest, 16);
    for (k = 16; k < 32; ++k)
    {
      userKey[k] = 0;
    }
    for (k = 0; k < 20; k++)
    {
      unsigned int j;
      for (j = 0; j < m_keyLength; ++j)
      {
        digest[j] = (unsigned char)(m_encryptionKey[j] ^ k);
      }
      RC4(digest, m_keyLength, userKey, 16, userKey);
    }
  }
  else
  {
    RC4(m_encryptionKey, m_keyLength, padding, 32, userKey);
  }
  if (docId != NULL)
  {
    delete [] docId;
  }
}

bool
wxPdfEncrypt::CheckKey(unsigned char key1[32], unsigned char key2[32])
{
  // Check whether the right password had been given
  bool ok = true;
  int k;
  int kmax = (m_rValue == 3) ? 16 : 32;
  for (k = 0; ok && k < kmax; k++)
  {
    ok = ok && (key1[k] == key2[k]);
  }
  return ok;
}

void
wxPdfEncrypt::Encrypt(int n, int g, wxString& str)
{
  unsigned int len = (unsigned int) str.Length();
  unsigned char* data = new unsigned char[len];
  unsigned int j;
  for (j = 0; j < len; j++)
  {
    data[j] = (unsigned char) str.GetChar(j);
  }
  Encrypt(n, g, data, len);
  for (j = 0; j < len; j++)
  {
    str.SetChar(j, data[j]);
  }
  delete [] data;
}

void
wxPdfEncrypt::Encrypt(int n, int g, unsigned char* str, unsigned int len)
{
  unsigned char objkey[MD5_HASHBYTES];
  unsigned char nkey[MD5_HASHBYTES+5+4];
  unsigned int nkeylen = m_keyLength + 5;
  unsigned int j;
  for (j = 0; j < m_keyLength; j++)
  {
    nkey[j] = m_encryptionKey[j];
  }
  nkey[m_keyLength+0] = 0xff &  n;
  nkey[m_keyLength+1] = 0xff & (n >> 8);
  nkey[m_keyLength+2] = 0xff & (n >> 16);
  nkey[m_keyLength+3] = 0xff &  g;
  nkey[m_keyLength+4] = 0xff & (g >> 8);

  if (m_rValue == 4)
  {
    // AES encryption needs some 'salt'
    nkeylen += 4;
    nkey[m_keyLength+5] = 0x73;
    nkey[m_keyLength+6] = 0x41;
    nkey[m_keyLength+7] = 0x6c;
    nkey[m_keyLength+8] = 0x54;
  }

  GetMD5Binary(nkey, nkeylen, objkey);
  int keylen = (m_keyLength <= 11) ? m_keyLength+5 : 16;
  switch (m_rValue)
  {
    case 4:
      AES(objkey, keylen, str, len, str);
      break;
    case 3:
    case 2:
    default:
      RC4(objkey, keylen, str, len, str);
      break;
  }
}

/**
* RC4 is the standard encryption algorithm used in PDF format
*/

void
wxPdfEncrypt::RC4(unsigned char* key, unsigned int keylen,
                  unsigned char* textin, unsigned int textlen,
                  unsigned char* textout)
{
  unsigned int i;
  unsigned int j;
  int t;
  unsigned char rc4[256];

  if (memcmp(key,m_rc4key,keylen) != 0)
  {
    for (i = 0; i < 256; i++)
    {
      rc4[i] = i;
    }
    j = 0;
    for (i = 0; i < 256; i++)
    {
      t = rc4[i];
      j = (j + t + key[i % keylen]) % 256;
      rc4[i] = rc4[j];
      rc4[j] = t;
    }
    memcpy(m_rc4key,key,keylen);
    memcpy(m_rc4last,rc4,256);
  }
  else
  {
    memcpy(rc4,m_rc4last,256);
  }

  int a = 0;
  int b = 0;
  unsigned char k;
  for (i = 0; i < textlen; i++)
  {
    a = (a + 1) % 256;
    t = rc4[a];
    b = (b + t) % 256;
    rc4[a] = rc4[b];
    rc4[b] = t;
    k = rc4[(rc4[a] + rc4[b]) % 256];
    textout[i] = textin[i] ^ k;
  }
}

void
wxPdfEncrypt::GetMD5Binary(const unsigned char* data, unsigned int length, unsigned char* digest)
{
  MD5_CTX ctx;
  MD5_Init(&ctx);
  MD5_Update(&ctx, data, length);
  MD5_Final(digest,&ctx);
}

void
wxPdfEncrypt::AES(unsigned char* key, unsigned int keylen,
                  unsigned char* textin, unsigned int textlen,
                  unsigned char* textout)
{
  wxUnusedVar(keylen);
  GenerateInitialVector(textout);
  m_aes->init(wxPdfRijndael::CBC, wxPdfRijndael::Encrypt, key, wxPdfRijndael::Key16Bytes, textout);
  size_t offset = CalculateStreamOffset();
  int len = m_aes->padEncrypt(&textin[offset], textlen, &textout[offset]);
  
  // It is a good idea to check the error code
  if (len < 0)
  {
    wxLogError(wxString(wxT("wxPdfEncrypt::AES: ")) +
               wxString(_("Error on encrypting.")));
  }
}

void
wxPdfEncrypt::GenerateInitialVector(unsigned char iv[16])
{
  wxString keyString = wxPdfUtility::GetUniqueId();
#if wxUSE_UNICODE
  wxCharBuffer cb(keyString.ToAscii());
  const char* key = (const char*) cb;
#else
  const char* key = (const char*) keyString.c_str();
#endif
  GetMD5Binary((const unsigned char*) key, (unsigned int) keyString.Length(), iv);
}

size_t
wxPdfEncrypt::CalculateStreamLength(size_t length)
{
  size_t realLength = length;
  if (m_rValue == 4)
  {
//    realLength = (length % 0x7ffffff0) + 32;
    realLength = ((length + 15) & ~15) + 16;
    if (length % 16 == 0)
    {
      realLength += 16;
    }
  }
  return realLength;
}

size_t
wxPdfEncrypt::CalculateStreamOffset()
{
  size_t offset = 0;
  if (m_rValue == 4)
  {
    offset = 16;
  }
  return offset;
}

wxString
wxPdfEncrypt::CreateDocumentId()
{
  wxString documentId;
  unsigned char id[16];
  GenerateInitialVector(id);
  int k;
  for (k = 0; k < 16; k++)
  {
    documentId.Append(wxChar(id[k]));
  }
  return documentId;
}