1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
/*---------------------------------------------------------------------------*\
FILE........: tquant.c
AUTHOR......: David Rowe
DATE CREATED: 22/8/10
Generates quantisation curves for plotting on Octave.
\*---------------------------------------------------------------------------*/
/*
Copyright (C) 2010 David Rowe
All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License version 2.1, as
published by the Free Software Foundation. This program is
distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "defines.h"
#include "dump.h"
#include "quantise.h"
int test_Wo_quant();
int test_lsp_quant();
int test_lsp(int lsp_number, int levels, float max_error_hz);
int test_energy_quant(int levels, float max_error_dB);
int main() {
quantise_init();
test_Wo_quant();
test_lsp_quant();
test_energy_quant(E_LEVELS, 0.5*(E_MAX_DB - E_MIN_DB)/E_LEVELS);
return 0;
}
int test_lsp_quant() {
test_lsp( 1, 16, 12.5);
test_lsp( 2, 16, 12.5);
test_lsp( 3, 16, 25);
test_lsp( 4, 16, 50);
test_lsp( 5, 16, 50);
test_lsp( 6, 16, 50);
test_lsp( 7, 16, 50);
test_lsp( 8, 8, 50);
test_lsp( 9, 8, 50);
test_lsp(10, 4, 100);
return 0;
}
int test_energy_quant(int levels, float max_error_dB) {
FILE *fe;
float e,e_dec, error, low_e, high_e;
int index, index_in, index_out, i;
/* check 1:1 match between input and output levels */
for(i=0; i<levels; i++) {
index_in = i;
e = decode_energy(index_in, E_BITS);
index_out = encode_energy(e, E_BITS);
if (index_in != index_out) {
printf("edB: %f index_in: %d index_out: %d\n",
10.0*log10(e), index_in, index_out);
exit(0);
}
}
/* check error over range of quantiser */
low_e = decode_energy(0, E_BITS);
high_e = decode_energy(levels-1, E_BITS);
fe = fopen("energy_err.txt", "wt");
for(e=low_e; e<high_e; e +=(high_e-low_e)/1000.0) {
index = encode_energy(e, E_BITS);
e_dec = decode_energy(index, E_BITS);
error = 10.0*log10(e) - 10.0*log10(e_dec);
fprintf(fe, "%f\n", error);
if (fabs(error) > max_error_dB) {
printf("error: %f %f\n", error, max_error_dB);
exit(0);
}
}
fclose(fe);
return 0;
}
int test_lsp(int lsp_number, int levels, float max_error_hz) {
float lsp[LPC_ORD];
int indexes_in[LPC_ORD];
int indexes_out[LPC_ORD];
int indexes[LPC_ORD];
int i;
float lowf, highf, f, error;
char s[MAX_STR];
FILE *flsp;
float max_error_rads;
lsp_number--;
max_error_rads = max_error_hz*TWO_PI/FS;
for(i=0; i<LPC_ORD; i++)
indexes_in[i] = 0;
for(i=0; i<levels; i++) {
indexes_in[lsp_number] = i;
decode_lsps_scalar(lsp, indexes_in, LPC_ORD);
encode_lsps_scalar(indexes_out, lsp,LPC_ORD);
if (indexes_in[lsp_number] != indexes_out[lsp_number]) {
printf("freq: %f index_in: %d index_out: %d\n",
lsp[lsp_number]+1, indexes_in[lsp_number],
indexes_out[lsp_number]);
exit(0);
}
}
for(i=0; i<LPC_ORD; i++)
indexes[i] = 0;
indexes[lsp_number] = 0;
decode_lsps_scalar(lsp, indexes, LPC_ORD);
lowf = lsp[lsp_number];
indexes[lsp_number] = levels - 1;
decode_lsps_scalar(lsp, indexes, LPC_ORD);
highf = lsp[lsp_number];
sprintf(s,"lsp%d_err.txt", lsp_number+1);
flsp = fopen(s, "wt");
for(f=lowf; f<highf; f +=(highf-lowf)/1000.0) {
lsp[lsp_number] = f;
encode_lsps_scalar(indexes, lsp, LPC_ORD);
decode_lsps_scalar(lsp, indexes, LPC_ORD);
error = f - lsp[lsp_number];
fprintf(flsp, "%f\n", error);
if (fabs(error) > max_error_rads) {
printf("%d error: %f %f\n", lsp_number+1, error, max_error_rads);
exit(0);
}
}
fclose(flsp);
printf("OK\n");
return 0;
}
int test_Wo_quant() {
int c;
FILE *f;
float Wo,Wo_dec, error, step_size;
int index, index_in, index_out;
/* output Wo quant curve for plotting */
f = fopen("quant_pitch.txt","wt");
for(Wo=0.9*(TWO_PI/P_MAX); Wo<=1.1*(TWO_PI/P_MIN); Wo += 0.001) {
index = encode_Wo(Wo, WO_BITS);
fprintf(f, "%f %d\n", Wo, index);
}
fclose(f);
/* check for all Wo codes we get 1:1 match between encoder
and decoder Wo levels */
for(c=0; c<WO_LEVELS; c++) {
index_in = c;
Wo = decode_Wo(index_in, WO_BITS);
index_out = encode_Wo(Wo, WO_BITS);
if (index_in != index_out)
printf(" Wo %f index_in %d index_out %d\n", Wo,
index_in, index_out);
}
/* measure quantisation error stats and compare to expected. Also
plot histogram of error file to check. */
f = fopen("quant_pitch_err.txt","wt");
step_size = ((TWO_PI/P_MIN) - (TWO_PI/P_MAX))/WO_LEVELS;
for(Wo=TWO_PI/P_MAX; Wo<0.99*TWO_PI/P_MIN; Wo += 0.0001) {
index = encode_Wo(Wo, WO_BITS);
Wo_dec = decode_Wo(index, WO_BITS);
error = Wo - Wo_dec;
if (fabs(error) > (step_size/2.0)) {
printf("error: %f step_size/2: %f\n", error, step_size/2.0);
exit(0);
}
fprintf(f,"%f\n",error);
}
printf("OK\n");
fclose(f);
return 0;
}
|