File: vqtrain.c

package info (click to toggle)
codec2 0.9.2-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 113,072 kB
  • sloc: ansic: 412,877; python: 4,004; sh: 1,540; objc: 817; asm: 683; makefile: 588
file content (380 lines) | stat: -rw-r--r-- 10,454 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
/*--------------------------------------------------------------------------*\

	FILE........: VQTRAIN.C
	AUTHOR......: David Rowe
	DATE CREATED: 23/2/95

	This program trains vector quantisers using K dimensional Lloyd-Max
	method.

\*--------------------------------------------------------------------------*/

/*
  Copyright (C) 2009 David Rowe

  All rights reserved.

  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU Lesser General Public License version 2.1, as
  published by the Free Software Foundation.  This program is
  distributed in the hope that it will be useful, but WITHOUT ANY
  WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
  License for more details.

  You should have received a copy of the GNU Lesser General Public License
  along with this program; if not, see <http://www.gnu.org/licenses/>.
*/

/*-----------------------------------------------------------------------*\

				INCLUDES

\*-----------------------------------------------------------------------*/

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <ctype.h>
#include <getopt.h>

/*-----------------------------------------------------------------------*\

				DEFINES

\*-----------------------------------------------------------------------*/

#define	DELTAQ 	0.005		/* quiting distortion			*/
#define	MAX_STR	80		/* maximum string length		*/

/*-----------------------------------------------------------------------*\

			FUNCTION PROTOTYPES

\*-----------------------------------------------------------------------*/

void zero(float v[], int k);
void acc(float v1[], float v2[], int k);
void norm(float v[], int k, long n);
long quantise(float cb[], float vec[], int k, int m, float *beste, float *se);

/*-----------------------------------------------------------------------* \

				MAIN

\*-----------------------------------------------------------------------*/

int main(int argc, char *argv[]) {
    long   k,m;		/* dimension and codebook size			*/
    float  *vec;	/* current vector 				*/
    float  *cb;		/* vector codebook				*/
    float  *cent;	/* centroids for each codebook entry		*/
    long   *n;		/* number of vectors in this interval		*/
    long   J;		/* number of vectors in training set		*/
    long   i,j;
    long   ind;	     	/* index of current vector			*/
    float  e;           /* sqaured error for current vector             */
    float  se;		/* squared error for this iteration		*/
    float  var,var_1;	/* current and previous iterations distortion	*/
    float  delta;	/* improvement in distortion 			*/
    long   noutliers[3];/* number of vectors quantisers with > 3*sd     */
    FILE   *ftrain;	/* file containing training set			*/
    FILE   *fvq;	/* file containing vector quantiser		*/
    int     ret;
    float   deltaq_stop = DELTAQ;
    FILE   *fres = NULL;
    
    int o = 0;
    int opt_idx = 0;
    while( o != -1 ) {
        static struct option long_opts[] = {
            {"help",     no_argument,       0, 'h'},
            {"residual", required_argument, 0, 'r'},
            {"stop",     required_argument, 0, 's'},
            {0, 0, 0, 0}
        };
        
        o = getopt_long(argc,argv,"hr:s:",long_opts,&opt_idx);
        
        switch(o) {
        case 'r':
            fres = fopen(optarg,"wb"); assert(fres != NULL);
            //fprintf(stderr, "writing res to : %s \n", optarg);
            break;
        case 's':
            deltaq_stop = atof(optarg);
            //fprintf(stderr, "deltaq_stop :%f\n", deltaq_stop);
            break;
        case 'h':
        case '?':
            goto helpmsg;
            break;
        }
    }
    int dx = optind;

    //fprintf(stderr, "argc: %d dx: %d\n", argc, dx);
    if ((argc - dx) < 4) {
        fprintf(stderr, "Too few arguments\n");
    helpmsg:
        fprintf(stderr, "usage: %s [Options] TrainFile.f32 K(dimension) M(codebook size) VQFile.f32\n", argv[0]);
        fprintf(stderr, "  -r --residual VQResidualErrorFile.f32usage\n");
        fprintf(stderr, "  -s --stop StopDelta\n");
        exit(1);
    }

    /* Open training file */

    ftrain = fopen(argv[dx],"rb");
    if (ftrain == NULL) {
	printf("Error opening training database file: %s\n",argv[dx]);
	exit(1);
    }

    /* determine k and m, and allocate arrays */

    k = atol(argv[dx+1]);
    m = atol(argv[dx+2]);
    printf("vector dimension K=%ld  codebook size M=%ld ", k, m);
    vec = (float*)malloc(sizeof(float)*k);
    cb = (float*)malloc(sizeof(float)*k*m);
    cent = (float*)malloc(sizeof(float)*k*m);
    n = (long*)malloc(sizeof(long)*m);
    if (cb == NULL || cb == NULL || cent == NULL || vec == NULL) {
	printf("Error in malloc.\n");
	exit(1);
    }

    /* determine size of training set */

    J = 0; zero(cent, k);
    while(fread(vec, sizeof(float), k, ftrain) == (size_t)k) {
        J++;
        acc(cent, vec, k);
    }
    printf("J=%ld vectors in training set\n", J);

    /* Interation is a 0 bit VQ (i.e. mean of training set) as starting point */
    
    norm(cent, k, J);
    memcpy(cb, cent, k*sizeof(float));
    se = 0.0;
    rewind(ftrain);
    for(i=0; i<J; i++) {
        ret = fread(vec, sizeof(float), k, ftrain);
        assert(ret == k);
        quantise(cb, vec, k, 1, &e, &se);
    }
    var = se/(J*k);
    printf("\r  Iteration 0, var = %f, sd = %f\n", var, sqrt(var));

    /* set up initial codebook state from samples of training set */

    for(i=0; i<m; i++) {
        j = i*(J/m);
        fseek(ftrain, j*k*sizeof(float), SEEK_SET);
        ret = fread(&cb[i*k], sizeof(float), k, ftrain);
        assert(ret == k);
    }

    /* main loop */

    j = 1;
    do {
	var_1 = var;

	/* zero centroids */

	for(i=0; i<m; i++) {
	    zero(&cent[i*k], k);
	    n[i] = 0;
	}

	/* quantise training set */

	se = 0.0; noutliers[0] = noutliers[1] = noutliers[2] = 0;
	rewind(ftrain);
	for(i=0; i<J; i++) {
	    ret = fread(vec, sizeof(float), k, ftrain);
            assert(ret == k);
	    ind = quantise(cb, vec, k, m, &e, &se);
	    n[ind]++;
	    acc(&cent[ind*k], vec, k);
            //if (i < 100)
            //    printf("e: %f sqrt(e/k): %f sd: %f noutliers: %ld\n", e, sqrt(e/k), sd, noutliers[0]);
            if (sqrt(e/k) > 1.0) noutliers[0]++;
            if (sqrt(e/k) > 2.0) noutliers[1]++;
            if (sqrt(e/k) > 3.0) noutliers[2]++;
	}
	var = se/(J*k);
	delta = (var_1-var)/var;

	printf("\r  Iteration %ld, var = %4.2f, sd = %4.2f outliers > 1/2/3 dB = %3.2f/%f3.2/%3.2f Delta = %5.4f\n", j, var, sqrt(var),
               (float)noutliers[0]/J, (float)noutliers[1]/J, (float)noutliers[2]/J, delta);
	j++;

	/* determine new codebook from centroids */

	if (delta > deltaq_stop)
	    for(i=0; i<m; i++) {
		if (n[i] != 0) {
		    norm(&cent[i*k], k, n[i]);
		    memcpy(&cb[i*k], &cent[i*k], k*sizeof(float));
		}
	    }

    } while (delta > deltaq_stop);

    /* save VQ to disk */

    fvq = fopen(argv[dx+3],"wt");
    if (fvq == NULL) {
	printf("Error opening VQ file: %s\n",argv[dx+3]);
	exit(1);
    }

    fwrite(cb, sizeof(float), m*k, fvq);
    
    /* optionally output residual error for next stage VQ */

    if (fres != NULL) {
        float res[k];
	rewind(ftrain);
	for(j=0; j<J; j++) {
	    ret = fread(vec, sizeof(float), k, ftrain);
	    ind = quantise(cb, vec, k, m, &e, &se);
            for(i=0; i<k; i++) {
                res[i] = vec[i] - cb[k*ind+i];
            }
            fwrite(res, sizeof(float), k, fres);
	}
        fclose(fres);
    }
    
    fclose(fvq);
    fclose(ftrain);
    free(vec);
    free(n);

    return 0;
}

/*-----------------------------------------------------------------------*\

				FUNCTIONS

\*-----------------------------------------------------------------------*/

/*---------------------------------------------------------------------------*\

	FUNCTION....: zero()

	AUTHOR......: David Rowe
	DATE CREATED: 23/2/95

	Zeros a vector of length k.

\*---------------------------------------------------------------------------*/

void zero(float v[], int k)
/*  float  v[];		ptr to start of vector		*/
/*  int    k;		lngth of vector			*/
{
    int	i;

    for(i=0; i<k; i++)
	v[i] = 0.0;
}

/*---------------------------------------------------------------------------*\

	FUNCTION....: acc()

	AUTHOR......: David Rowe
	DATE CREATED: 23/2/95

	Adds k dimensional vectors v1 to v2 and stores the result back in v1.

\*---------------------------------------------------------------------------*/

void acc(float v1[], float v2[], int k)
/*  float  v1[];	ptr to start of vector to accumulate	*/
/*  float  v2[];	ptr to start of vector to add		*/
/*  int	   k;		dimension of vectors			*/
{
    int	   i;

    for(i=0; i<k; i++)
	v1[i] += v2[i];
}

/*---------------------------------------------------------------------------*\

	FUNCTION....: norm()

	AUTHOR......: David Rowe
	DATE CREATED: 23/2/95

	Divides each element in k dimensional vector v by n.

\*---------------------------------------------------------------------------*/

void norm(float v[], int k, long n)
/*  float  v[];		ptr to start of vector		*/
/*  int	   k;		dimension of vectors		*/
/*  int	   n;		normalising factor		*/
{
    int	   i;

    assert(n != 0);
    for(i=0; i<k; i++)
	v[i] /= n;
}

/*---------------------------------------------------------------------------*\

	FUNCTION....: quantise()

	AUTHOR......: David Rowe
	DATE CREATED: 23/2/95

	Quantises vec by choosing the nearest vector in codebook cb, and
	returns the vector index.  The squared error of the quantised vector
	is added to se.

\*---------------------------------------------------------------------------*/

long quantise(float cb[], float vec[], int k, int m, float *beste, float *se)
/* float   cb[][K];	current VQ codebook		*/
/* float   vec[];	vector to quantise		*/
/* int	   k;		dimension of vectors		*/
/* int     m;		size of codebook		*/
/* float   beste;	current squared error		*/
/* float   *se;		accumulated squared error 	*/
{
   long	   besti;	/* best index so far		*/
   long	   j;
   int     i;
   float   diff,e;

   besti = 0;
   *beste = 1E32;
   for(j=0; j<m; j++) {
	e = 0.0;
	for(i=0; i<k; i++) {
	    diff = cb[j*k+i]-vec[i];
	    e += diff*diff;
	}
	if (e < *beste) {
	    *beste = e;
	    besti = j;
	}
   }

   *se += *beste;
   
   return(besti);
}