1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
|
% ofdm_dev.m
% David Rowe April 2017
%
% Simulations used for development and testing of Rate Fs BPSK/QPSK
% OFDM modem.
ofdm_lib;
gp_interleaver;
ldpc;
#{
TODO:
[ ] run_sim neeeds to be refactored for coded operation at Nc=17 with UW
#}
function [sim_out rx states] = run_sim(sim_in)
% set up core modem constants
states = ofdm_init(sim_in.bps, sim_in.Rs, sim_in.Tcp, sim_in.Ns, sim_in.Nc);
ofdm_load_const;
Nbitspervocframe = 28;
% simulation parameters and flags
woffset = 2*pi*sim_in.foff_hz/Fs;
dwoffset = 0;
if isfield(sim_in, "dfoff_hz_per_sec")
dwoffset = 2*pi*sim_in.dfoff_hz_per_sec/(Fs*Fs);
end
EbNodB = sim_in.EbNodB;
verbose = states.verbose = sim_in.verbose;
hf_en = sim_in.hf_en;
timing_en = states.timing_en = sim_in.timing_en;
states.foff_est_en = foff_est_en = sim_in.foff_est_en;
states.phase_est_en = phase_est_en = sim_in.phase_est_en;
if hf_en
assert(phase_est_en == 1, "\nNo point running HF simulation without phase est!!\n");
end
if isfield(sim_in, "high_doppler")
states.high_doppler = sim_in.high_doppler;
end
if isfield(sim_in, "diversity_en")
diversity_en = sim_in.diversity_en;
else
diversity_en = 0;
end
if verbose == 2
printf("Rs:..........: %4.2f\n", Rs);
printf("M:...........: %d\n", M);
printf("Ncp:.........: %d\n", Ncp);
printf("bps:.........: %d\n", bps);
printf("Nbitsperframe: %d\n", Nbitsperframe);
printf("Nrowsperframe: %d\n", Nrowsperframe);
printf("Nsamperframe.: %d\n", Nsamperframe);
end
% Important to define run time in seconds so HF model will evolve the same way
% for different pilot insertion rates. So lets work backwards from approx
% seconds in run to get Nbits, the total number of payload data bits
Nrows = sim_in.Nsec*Rs;
Nframes = floor((Nrows-1)/Ns);
% if we are interleaving over multiple frames, adjust Nframes so we have an integer number
% of interleaver frames in simulation
interleave_en = 0;
if isfield(sim_in, "interleave_frames")
interleave_frames = sim_in.interleave_frames;
Nframes = interleave_frames*round(Nframes/interleave_frames);
interleave_en = 1;
end
Nbits = Nframes * Nbitsperframe; % number of payload data bits
Nr = Nbits/(Nc*bps); % Number of data rows to get Nbits total
% double check if Nbits fit neatly into carriers
assert(Nbits/(Nc*bps) == floor(Nbits/(Nc*bps)), "Nbits/(Nc*bps) must be an integer");
Nrp = Nr + Nframes + 1; % number of rows once pilots inserted
% extra row of pilots at end
if verbose == 2
printf("Nc...........: %d\n", Nc);
printf("Ns...........: %d (step size for pilots, Ns-1 data symbols between pilots)\n", Ns);
printf("Nr...........: %d\n", Nr);
printf("Nbits........: %d\n", Nbits);
printf("Nframes......: %d\n", Nframes);
if interleave_en
printf("Interleave fr: %d\n", interleave_frames);
end
printf("Nrp..........: %d (number of rows including pilots)\n", Nrp);
end
% Optional LPDC code -----------------------------------------------
ldpc_en = states.ldpc_en = sim_in.ldpc_en;
if sim_in.ldpc_en
assert(bps == 2, "Only QPSK supported for LDPC so far.....");
HRA = sim_in.ldpc_code;
[aNr aNc] = size(HRA);
rate = states.rate = (aNc-aNr)/aNc;
Ndatabitsperframe = Nbitsperframe;
assert(aNc == Ndatabitsperframe, "Dude: Num cols of LDPC HRA must == Nbitsperframe");
[H_rows, H_cols] = Mat2Hrows(HRA);
code_param.H_rows = H_rows;
code_param.H_cols = H_cols;
code_param.P_matrix = [];
code_param.data_bits_per_frame = length(code_param.H_cols) - length( code_param.P_matrix );
code_param.code_bits_per_frame = aNc;
assert(aNr == Ndatabitsperframe*rate);
modulation = states.ldpc_modulation = 'QPSK';
mapping = states.ldpc_mapping = 'gray';
demod_type = states.ldpc_demod_type = 0;
decoder_type = states.ldpc_decoder_type = 0;
max_iterations = states.ldpc_max_iterations = 100;
code_param.S_matrix = CreateConstellation( modulation, 4, mapping );
states.code_param = code_param;
elseif diversity_en
rate = 0.5;
else
rate = 1;
end
% set up HF model ---------------------------------------------------------------
if hf_en
% some typical values, or replace with user supplied
dopplerSpreadHz = 1.0; path_delay_ms = 1;
if isfield(sim_in, "dopplerSpreadHz")
dopplerSpreadHz = sim_in.dopplerSpreadHz;
end
if isfield(sim_in, "path_delay_ms")
path_delay_ms = sim_in.path_delay_ms;
end
path_delay_samples = path_delay_ms*Fs/1000;
printf("Doppler Spread: %3.2f Hz Path Delay: %3.2f ms %d samples\n", dopplerSpreadHz, path_delay_ms, path_delay_samples);
% generate same fading pattern for every run
randn('seed',1);
spread1 = doppler_spread(dopplerSpreadHz, Fs, Nrp*(M+Ncp)*1.1);
spread2 = doppler_spread(dopplerSpreadHz, Fs, Nrp*(M+Ncp)*1.1);
% sometimes doppler_spread() doesn't return exactly the number of samples we need
assert(length(spread1) >= Nrp*(M+Ncp), "not enough doppler spreading samples");
assert(length(spread2) >= Nrp*(M+Ncp), "not enough doppler spreading samples");
end
% ------------------------------------------------------------------
% simulate for each Eb/No point
% ------------------------------------------------------------------
for nn=1:length(EbNodB)
rand('seed',1);
randn('seed',1);
EsNo = rate * bps * (10 .^ (EbNodB(nn)/10));
variance = 1/(M*EsNo/2);
Nsam = Nrp*(M+Ncp);
% generate tx bits, optionaly LDPC encode, and modulate as QPSK symbols
% note for reasons unknown LdpcEncode() returns garbage if we use > 0.5 rather than round()
%tx_data_bits = round(rand(1,Nbits*rate));
% std test frame so we can x-check
tx_data_bits = create_ldpc_test_frame(states, ldpc_en);
tx_bits = []; tx_symbols = [];
for f=1:Nframes
st = (f-1)*Nbitsperframe*rate+1; en = st + Nbitsperframe*rate - 1;
if ldpc_en
codeword = LdpcEncode(tx_data_bits(st:en), code_param.H_rows, code_param.P_matrix);
elseif diversity_en
% Nc carriers, so Nc*bps bits/row coded, or Nc*bps*rate data bits that we repeat
codeword = [];
for rr=1:Ns-1
st1 = st + (rr-1)*Nc*bps*rate; en1 = st1 + Nc*bps*rate - 1;
codeword = [codeword tx_data_bits(st1:en1) tx_data_bits(st1:en1)];
end
assert(length(codeword) == Nbitsperframe);
else
% uncoded mode
codeword = tx_data_bits;
if isfield(sim_in, "uw_debug")
codeword(states.uw_ind) = states.tx_uw;
end
end
tx_bits = [tx_bits codeword];
for b=1:2:Nbitsperframe
tx_symbols = [tx_symbols qpsk_mod(codeword(b:b+1))];
end
end
% optional interleaving over multiple frames
if interleave_en
for f=1:interleave_frames:Nframes
st = (f-1)*Nbitsperframe/bps+1; en = st + Nbitsperframe*interleave_frames/bps - 1;
tx_symbols(st:en) = gp_interleave(tx_symbols(st:en));
end
end
% OFDM transmitter
tx = [];
for f=1:Nframes
st = (f-1)*Nbitsperframe/bps+1; en = st + Nbitsperframe/bps - 1;
tx = [tx ofdm_txframe(states, tx_symbols(st:en))];
end
% add extra row of pilots at end, to allow one frame simulations,
% useful for development
st = Nsamperframe*(Nframes-1)+1; en = st+Ncp+M-1;
tx = [tx tx(st:en)];
assert(length(tx) == Nsam);
% channel simulation ---------------------------------------------------------------
if isfield(sim_in, "sample_clock_offset_ppm")
% todo: this only works for large ppm like 500, runs out of memory
% for small ppm
if sim_in.sample_clock_offset_ppm
timebase = floor(abs(1E6/sim_in.sample_clock_offset_ppm));
if sim_in.sample_clock_offset_ppm > 0
tx = resample(tx, timebase+1, timebase);
else
tx = resample(tx, timebase, timebase+1);
end
% make sure length is correct for rest of simulation
tx = [tx zeros(1,Nsam-length(tx))];
tx = tx(1:Nsam);
end
end
rx = tx;
if hf_en
rx = tx(1:Nsam) .* spread1(1:Nsam);
rx += [zeros(1,path_delay_samples) tx(1:Nsam-path_delay_samples)] .* spread2(1:Nsam);
% normalise rx power to same as tx
nom_rx_pwr = 2/(Ns*(M*M)) + Nc/(M*M);
rx_pwr = var(rx);
rx *= sqrt(nom_rx_pwr/rx_pwr);
end
phase_offset = woffset*(1:Nsam) + 0.5*dwoffset*((1:Nsam).^2);
rx = rx .* exp(j*phase_offset);
if isfield(sim_in, "initial_noise_sams")
rx = [zeros(1, sim_in.initial_noise_sams) rx];
Nsam = length(rx);
end
noise = sqrt(variance)*(0.5*randn(1,Nsam) + j*0.5*randn(1,Nsam));
snrdB = 10*log10(var(rx)/var(noise)) + 10*log10(8000) - 10*log10(3000);
rx += noise;
% interfering carrier
% rx += 0.04*cos((1:length(rx))*states.w(10));
% gain
rx *= sim_in.gain;
% some spare samples at end to avoid overflow as est windows may poke into the future a bit
rx = [rx zeros(1,Nsamperframe)];
% optional save raw file
if 1
sraw = real(rx*5000);
fraw = fopen("ofdm_dev.raw", "wb");
fwrite(fraw, sraw, "short");
fclose(fraw);
end
% bunch of logs
phase_est_pilot_log = [];
delta_t_log = [];
timing_est_log = [];
foff_est_hz_log = [];
Nerrs_log = []; Nerrs_coded_log = [];
rx_bits = []; rx_np = []; rx_amp = [];
sig_var_log = []; noise_var_log = [];
uw_errors_log = [];
% reset some states for each EbNo simulation point
states.sample_point = states.timing_est = 1;
if timing_en == 0
states.sample_point = Ncp;
end
states.nin = Nsamperframe;
states.foff_est_hz = 0;
% for this simulation we "prime" buffer to allow one frame runs during development
prx = 1;
states.rxbuf(M+Ncp+2*Nsamperframe+1:Nrxbuf) = rx(prx:Nsamperframe+2*(M+Ncp));
prx += Nsamperframe+2*(M+Ncp);
for f=1:Nframes
% insert samples at end of buffer, set to zero if no samples
% available to disable phase estimation on future pilots on last
% frame of simulation
lnew = min(Nsam-prx,states.nin);
rxbuf_in = zeros(1,states.nin);
if lnew
rxbuf_in(1:lnew) = rx(prx:prx+lnew-1);
end
prx += states.nin;
[arx_bits states aphase_est_pilot_log arx_np arx_amp] = ofdm_demod(states, rxbuf_in);
rx_bits = [rx_bits arx_bits]; rx_np = [rx_np arx_np]; rx_amp = [rx_amp arx_amp];
% note: only supported in ldpc_en = 0 Nc=17 atm, see debug_false_sync()
if isfield(sim_in, "uw_debug")
rx_uw = arx_bits(states.uw_ind);
uw_errors = sum(xor(states.tx_uw,rx_uw));
if verbose
printf("f: %d uw_errors: %d\n", f, uw_errors);
end
uw_errors_log = [uw_errors_log uw_errors];
end
timing_est_log = [timing_est_log states.timing_est];
delta_t_log = [delta_t_log states.delta_t];
foff_est_hz_log = [foff_est_hz_log states.foff_est_hz];
phase_est_pilot_log = [phase_est_pilot_log; aphase_est_pilot_log];
sig_var_log = [sig_var_log states.sig_var];
noise_var_log = [noise_var_log states.noise_var];
end
assert(length(rx_bits) == Nbits);
% Optional de-interleave on rx QPSK symbols
if interleave_en
for f=1:interleave_frames:Nframes
st = (f-1)*Nbitsperframe/bps+1; en = st + Nbitsperframe*interleave_frames/bps - 1;
rx_np(st:en) = gp_deinterleave(rx_np(st:en));
rx_amp(st:en) = gp_deinterleave(rx_amp(st:en));
end
end
% Calculate raw BER/PER stats, after pilots extracted. As we may
% have used interleaving, we qpsk_demod() here rather than using
% rx_bits from ofdm_demod()
rx_bits = zeros(1, Nbits);
for s=1:Nbits/bps
rx_bits(2*(s-1)+1:2*s) = qpsk_demod(rx_np(s));
end
errors = xor(tx_bits, rx_bits);
Terrs = sum(errors);
Tpackets = Tpacketerrs = 0;
Nvocframes = floor(Nbits/Nbitspervocframe);
for fv=1:Nvocframes
st = (fv-1)*Nbitspervocframe + 1;
en = st + Nbitspervocframe - 1;
Nvocpacketerrs = sum(xor(tx_bits(st:en), rx_bits(st:en)));
if Nvocpacketerrs
Tpacketerrs++;
end
Tpackets++;
end
% Per-modem frame error log and optional LDPC/diversity error stats
Terrs_coded = 0; Tpackets_coded = 0; Tpacketerrs_coded = 0; sim_out.error_positions = [];
for f=1:Nframes
st = (f-1)*Nbitsperframe+1; en = st + Nbitsperframe - 1;
Nerrs_log(f) = sum(xor(tx_bits(st:en), rx_bits(st:en)));
st = (f-1)*Nbitsperframe/bps + 1;
en = st + Nbitsperframe/bps - 1;
r = rx_np(st:en); fade = rx_amp(st:en);
% optional LDPC decode
if ldpc_en
% scale based on amplitude ests
mean_amp = states.mean_amp;
rx_codeword = ldpc_dec(code_param, max_iterations, demod_type, decoder_type, r/mean_amp, min(EsNo,30), fade/mean_amp);
end
% optional diversity demod
if diversity_en
rx_codeword = [];
for rr=1:Ns-1
for c=1:Nc/2
s = (rr-1)*Nc + c;
rx_codeword = [rx_codeword qpsk_demod(r(s)+r(s+Nc/2))];
end
end
assert(length(rx_codeword) == Nbitsperframe*rate);
end
% running coded BER calcs
if ldpc_en || diversity_en
st = (f-1)*Nbitsperframe*rate + 1;
en = st + Nbitsperframe*rate - 1;
errors = xor(tx_data_bits(st:en), rx_codeword(1:Nbitsperframe*rate));
Nerrs_coded = sum(errors);
Nerrs_coded_log(f) = Nerrs_coded;
Terrs_coded += Nerrs_coded;
sim_out.error_positions = [sim_out.error_positions errors];
% PER based on vocoder packet size, not sure it makes much
% difference compared to using all bits in LDPC code for
% packet
atx_data_bits = tx_data_bits(st:en);
Nvocframes = Nbitsperframe*rate/Nbitspervocframe;
for fv=1:Nvocframes
st = (fv-1)*Nbitspervocframe + 1;
en = st + Nbitspervocframe - 1;
Nvocpacketerrs = sum(xor(atx_data_bits(st:en), rx_codeword(st:en)));
if Nvocpacketerrs
Tpacketerrs_coded++;
end
Tpackets_coded++;
end
end
end
% print results of this simulation point to the console
if verbose
if ldpc_en || diversity_en
printf("Coded EbNodB: % -4.1f BER: %5.4f Tbits: %5d Terrs: %5d PER: %5.4f Tpackets: %5d Tpacket_errs: %5d\n",
EbNodB(nn), Terrs_coded/(Nbits*rate), Nbits*rate, Terrs_coded,
Tpacketerrs_coded/Tpackets_coded, Tpackets_coded, Tpacketerrs_coded);
end
EbNodB_raw = EbNodB(nn) + 10*log10(rate);
printf("Raw EbNodB..: % -4.1f BER: %5.4f Tbits: %5d Terrs: %5d PER: %5.4f Tpackets: %5d Tpacket_errs: %5d\n",
EbNodB_raw, Terrs/Nbits, Nbits, Terrs,
Tpacketerrs/Tpackets, Tpackets, Tpacketerrs);
EsNo = mean(sig_var_log)/mean(noise_var_log);
%printf("Es/No est dB: % -4.1f\n", 10*log10(EsNo));
sim_out.snrdB(nn) = snrdB;
sim_out.snr_estdB(nn) = 10*log10(EsNo) + 10*log10(Nc*Rs/3000);
% returns results for plotting curves
if ldpc_en || diversity_en
sim_out.ber(nn) = Terrs_coded/(Nbits*rate);
sim_out.per(nn) = Tpacketerrs_coded/Tpackets_coded;
else
sim_out.ber(nn) = Terrs/Nbits;
sim_out.per(nn) = Tpacketerrs/Tpackets;
end
end
sim_out.uw_errors_log = uw_errors_log;
% Optional plots, mostly used with run-single
if verbose
figure(1); clf;
plot(rx_np,'+');
%axis([-2 2 -2 2]);
title('Scatter');
figure(2); clf;
plot(phase_est_pilot_log,'g+', 'markersize', 5);
title('Phase est');
axis([1 Nrp -pi pi]);
figure(3); clf;
subplot(211)
stem(delta_t_log)
title('delta t');
subplot(212)
plot(timing_est_log);
title('timing est');
figure(4); clf;
plot(foff_est_hz_log)
axis([1 max(Nframes,2) -3 3]);
title('Fine Freq');
figure(5); clf;
if ldpc_en
subplot(211)
stem(Nerrs_log/Nbitsperframe);
title("Uncoded BER/frame");
subplot(212)
stem(Nerrs_coded_log/(Nbitsperframe*rate));
title("Coded BER/frame");
else
title("BER/frame");
stem(Nerrs_log/Nbitsperframe);
end
figure(6)
Tx = abs(fft(rx(1:Nsam).*hanning(Nsam)'));
Tx_dB = 20*log10(Tx);
dF = Fs/Nsam;
plot((1:Nsam)*dF, Tx_dB);
mx = max(Tx_dB);
axis([0 Fs/2 mx-60 mx])
figure(7); clf;
plot(10*log10(sig_var_log),'b;Es;');
hold on;
plot(10*log10(noise_var_log),'r;No;');
snr_estdB = 10*log10(sig_var_log) - 10*log10(noise_var_log) + 10*log10(Nc*Rs/3000);
snr_est_smoothed_dB = filter(0.1,[1 -0.9],snr_estdB);
plot(snr_estdB,'g;SNR3k;');
plot(snr_est_smoothed_dB,'c;SNR3k smooth;');
hold off;
title('Signal and Noise Power estimates');
#{
if hf_en
figure(4); clf;
subplot(211)
plot(abs(spread1(1:Nsam)));
%hold on; plot(abs(spread2(1:Nsam)),'g'); hold off;
subplot(212)
plot(angle(spread1(1:Nsam)));
title('spread1 amp and phase');
end
#}
#{
% todo, work out a way to plot rate Fs hf model phase
if sim_in.hf_en
plot(angle(hf_model(:,2:Nc+1)));
end
#}
end
end
endfunction
function run_single(EbNodB = 100, error_pattern_filename);
Ts = 0.018; sim_in.Tcp = 0.002;
sim_in.Rs = 1/Ts; sim_in.bps = 2; sim_in.Nc = 16; sim_in.Ns = 8;
sim_in.high_doppler = 0;
sim_in.Nsec = (sim_in.Ns+1)/sim_in.Rs; % one frame, make sure sim_in.interleave_frames = 1
sim_in.Nsec = 120;
sim_in.EbNodB = 20;
sim_in.verbose = 1;
sim_in.dopplerSpreadHz = 1;
sim_in.path_delay_ms = 1;
sim_in.hf_en = 1;
sim_in.foff_hz = 0;
sim_in.dfoff_hz_per_sec = 0.00;
sim_in.sample_clock_offset_ppm = 0;
sim_in.gain = 1;
sim_in.timing_en = 0;
sim_in.foff_est_en = 0;
sim_in.phase_est_en = 1;
load HRA_112_112.txt
sim_in.ldpc_code = HRA_112_112;
sim_in.ldpc_en = 0;
sim_in.interleave_frames = 1;
%sim_in.diversity_en = 1;
sim_out = run_sim(sim_in);
if nargin == 2
fep = fopen(error_pattern_filename, "wb");
fwrite(fep, sim_out.error_positions, "short");
fclose(fep);
end
end
% Plot BER and PER curves for AWGN and HF:
%
% i) BER/PER against Eb/No for various coding schemes
% ii) BER/PER against Eb/No showing Pilot/CP overhead
% iii) BER/PER against SNR, with pilot/CP overhead, comparing 700C
function run_curves
% waveform
Ts = 0.018; sim_in.Tcp = 0.002;
sim_in.Rs = 1/Ts; sim_in.bps = 2; sim_in.Nc = 16; sim_in.Ns = 8;
pilot_overhead = (sim_in.Ns-1)/sim_in.Ns;
cp_overhead = Ts/(Ts+sim_in.Tcp);
overhead_dB = -10*log10(pilot_overhead*cp_overhead);
% simulation parameters
sim_in.verbose = 0;
sim_in.foff_hz = 0;
sim_in.gain = 1;
sim_in.timing_en = 1;
sim_in.foff_est_en = 1;
sim_in.phase_est_en = 1;
load HRA_112_112.txt
sim_in.ldpc_code = HRA_112_112;
sim_in.ldpc_en = 0;
sim_in.hf_en = 0;
sim_in.Nsec = 20;
sim_in.EbNodB = 0:8;
awgn_EbNodB = sim_in.EbNodB;
awgn_theory = 0.5*erfc(sqrt(10.^(sim_in.EbNodB/10)));
awgn = run_sim(sim_in);
sim_in.ldpc_en = 1; awgn_ldpc = run_sim(sim_in);
% Note for HF sim you really need >= 60 seconds (at Rs-50) to get sensible results c.f. theory
sim_in.hf_en = 1; sim_in.ldpc_en = 0;
sim_in.Nsec = 60;
sim_in.EbNodB = 4:2:14;
EbNoLin = 10.^(sim_in.EbNodB/10);
hf_theory = 0.5.*(1-sqrt(EbNoLin./(EbNoLin+1)));
hf = run_sim(sim_in);
sim_in.diversity_en = 1; hf_diversity = run_sim(sim_in); sim_in.diversity_en = 0;
sim_in.ldpc_en = 1; hf_ldpc = run_sim(sim_in);
% try a few interleavers
sim_in.interleave_frames = 1; hf_ldpc_1 = run_sim(sim_in);
sim_in.interleave_frames = 8; hf_ldpc_8 = run_sim(sim_in);
sim_in.interleave_frames = 16; hf_ldpc_16 = run_sim(sim_in);
sim_in.interleave_frames = 32; hf_ldpc_32 = run_sim(sim_in);
% Rate Fs modem BER curves of various coding schemes
figure(1); clf;
semilogy(awgn_EbNodB, awgn_theory,'b+-;AWGN theory;');
hold on;
semilogy(sim_in.EbNodB, hf_theory,'b+-;HF theory;');
semilogy(awgn_EbNodB, awgn.ber,'r+-;AWGN;');
semilogy(sim_in.EbNodB, hf.ber,'r+-;HF;');
semilogy(sim_in.EbNodB, hf_diversity.ber,'ro-;HF diversity;');
semilogy(awgn_EbNodB, awgn_ldpc.ber,'c+-;AWGN LDPC (224,112);');
semilogy(sim_in.EbNodB, hf_ldpc.ber,'c+-;HF LDPC (224,112);');
semilogy(sim_in.EbNodB, hf_ldpc_1.ber,'m+-;HF LDPC (224,112) interleave 1;');
semilogy(sim_in.EbNodB, hf_ldpc_8.ber,'g+-;HF LDPC (224,112) interleave 8;');
semilogy(sim_in.EbNodB, hf_ldpc_16.ber,'k+-;HF LDPC (224,112) interleave 16;');
semilogy(sim_in.EbNodB, hf_ldpc_32.ber,'k+-;HF LDPC (224,112) interleave 32;');
hold off;
axis([0 14 1E-3 2E-1])
xlabel('Eb/No (dB)');
ylabel('BER');
grid; grid minor on;
legend('boxoff');
legend("location", "southwest");
title('Rate Fs modem BER for various FEC coding schemes');
print('-deps', '-color', "ofdm_dev_ber_coding.eps")
awgn_per_theory = 1 - (1-awgn_theory).^28;
hf_per_theory = 1 - (1-hf_theory).^28;
% Rate Fs modem PER curves of various coding schemes
figure(2); clf;
semilogy(awgn_EbNodB, awgn_per_theory,'b+-;AWGN theory;');
hold on;
semilogy(sim_in.EbNodB, hf_per_theory,'b+-;HF theory;');
semilogy(awgn_EbNodB, awgn.per,'r+-;AWGN;');
semilogy(sim_in.EbNodB, hf.per,'r+-;HF sim;');
semilogy(sim_in.EbNodB, hf_diversity.per,'ro-;HF diversity;');
semilogy(awgn_EbNodB, awgn_ldpc.per,'c+-;AWGN LDPC (224,112);');
semilogy(sim_in.EbNodB, hf_ldpc.per,'c+-;HF LDPC (224,112);');
semilogy(sim_in.EbNodB, hf_ldpc_1.per,'m+-;HF LDPC (224,112) interleave 1;');
semilogy(sim_in.EbNodB, hf_ldpc_8.per,'g+-;HF LDPC (224,112) interleave 8;');
semilogy(sim_in.EbNodB, hf_ldpc_16.per,'ko-;HF LDPC (224,112) interleave 16;');
semilogy(sim_in.EbNodB, hf_ldpc_32.per,'k+-;HF LDPC (224,112) interleave 32;');
hold off;
axis([0 14 1E-2 1])
xlabel('Eb/No (dB)');
ylabel('PER');
grid; grid minor on;
legend('boxoff');
legend("location", "southwest");
title('Rate Fs modem PER for various FEC coding schemes');
print('-deps', '-color', "ofdm_dev_per_coding.eps")
% Rate Fs modem pilot/CP overhead BER curves
figure(3); clf;
semilogy(awgn_EbNodB, awgn_theory,'b+-;AWGN theory;');
hold on;
semilogy(sim_in.EbNodB, hf_theory,'b+-;HF theory;');
semilogy(awgn_EbNodB+overhead_dB, awgn_theory,'g+-;AWGN lower bound pilot + CP;');
semilogy(sim_in.EbNodB+overhead_dB, hf_theory,'g+-;HF lower bound pilot + CP;');
semilogy(awgn_EbNodB+overhead_dB, awgn.ber,'r+-;AWGN sim;');
semilogy(sim_in.EbNodB+overhead_dB, hf.ber,'r+-;HF sim;');
hold off;
axis([0 14 1E-3 2E-1])
xlabel('Eb/No (dB)');
ylabel('BER');
grid; grid minor on;
legend('boxoff');
legend("location", "southwest");
title('Rate Fs modem BER Pilot/Cyclic Prefix overhead');
print('-deps', '-color', "ofdm_dev_ber_overhead.eps")
% Rate Fs modem pilot/CP overhead PER curves
figure(4); clf;
semilogy(awgn_EbNodB, awgn_per_theory,'b+-;AWGN theory;','markersize', 10, 'linewidth', 2);
hold on;
semilogy(sim_in.EbNodB, hf_per_theory,'b+-;HF theory;','markersize', 10, 'linewidth', 2);
semilogy(awgn_EbNodB+overhead_dB, awgn_per_theory,'g+-;AWGN lower bound pilot + CP;','markersize', 10, 'linewidth', 2);
semilogy(sim_in.EbNodB+overhead_dB, hf_per_theory,'g+-;HF lower bound pilot + CP;','markersize', 10, 'linewidth', 2);
semilogy(awgn_EbNodB+overhead_dB, awgn.per,'r+-;AWGN sim;','markersize', 10, 'linewidth', 2);
semilogy(sim_in.EbNodB+overhead_dB, hf.per,'r+-;HF sim;','markersize', 10, 'linewidth', 2);
hold off;
axis([0 14 1E-2 1])
xlabel('Eb/No (dB)');
ylabel('PER');
grid; grid minor on;
legend('boxoff');
legend("location", "southwest");
title('Rate Fs modem PER Pilot/Cyclic Prefix overhead');
print('-deps', '-color', "ofdm_dev_per_overhead.eps")
% SNR including pilots, CP, and 700C est
snr_awgn_theory = awgn_EbNodB + 10*log10(700/3000);
snr_hf_theory = sim_in.EbNodB + 10*log10(700/3000);
snr_awgn = snr_awgn_theory + overhead_dB;
snr_hf = sim_in.EbNodB + 10*log10(700/3000) + overhead_dB;
% est 700C: 2/6 symbols are pilots, 1dB implementation loss
snr_awgn_700c = awgn_EbNodB + 10*log10(700/3000) + 10*log10(6/4) + 1;
snr_hf_700c = sim_in.EbNodB + 10*log10(700/3000) + 10*log10(6/4) + 1;
figure(5); clf;
semilogy(snr_awgn_theory, awgn_theory,'b+-;AWGN theory;','markersize', 10, 'linewidth', 2);
hold on;
semilogy(snr_awgn_700c, awgn_theory,'g+-;AWGN 700C;','markersize', 10, 'linewidth', 2);
semilogy(snr_hf_700c, hf_diversity.ber,'go-;HF 700C;','markersize', 10, 'linewidth', 2);
semilogy(snr_hf_theory, hf_theory,'b+-;HF theory;','markersize', 10, 'linewidth', 2);
semilogy(snr_awgn, awgn_ldpc.ber,'c+-;AWGN LDPC (224,112);','markersize', 10, 'linewidth', 2);
semilogy(snr_hf, hf_ldpc.ber,'c+-;HF LDPC (224,112);','markersize', 10, 'linewidth', 2);
semilogy(snr_hf, hf_diversity.ber,'bo-;HF diversity;','markersize', 10, 'linewidth', 2);
semilogy(snr_hf, hf_ldpc_16.ber,'k+-;HF LDPC (224,112) interleave 16;','markersize', 10, 'linewidth', 2);
hold off;
axis([-5 8 1E-3 2E-1])
xlabel('SNR (3000Hz noise BW) (dB)');
ylabel('BER');
grid; grid minor on;
legend('boxoff');
legend("location", "southwest");
title('Rate Fs modem BER versus SNR including pilot/CP overhead');
print('-deps', '-color', "ofdm_dev_ber_snr.eps")
end
% Plot BER and PER curves for AWGN and HF with various estimators
function run_curves_estimators
Nsec_awgn = 20;
Nsec_hf = 60;
% waveform
Ts = 0.018; sim_in.Tcp = 0.002;
sim_in.Rs = 1/Ts; sim_in.bps = 2; sim_in.Nc = 16; sim_in.Ns = 8;
% simulation parameters
sim_in.verbose = 0; sim_in.foff_hz = 0; sim_in.ldpc_en = 0;
sim_in.phase_est_en = 1;
sim_in.timing_en = sim_in.foff_est_en = 0;
% AWGN simulations
sim_in.hf_en = 0; sim_in.Nsec = Nsec_awgn; sim_in.EbNodB = 0:2:6;
sim_in.timing_en = sim_in.foff_est_en = 0;
awgn_EbNodB = sim_in.EbNodB;
awgn_theory = 0.5*erfc(sqrt(10.^(sim_in.EbNodB/10)));
awgn = run_sim(sim_in);
sim_in.timing_en = 1; awgn_timing = run_sim(sim_in);
sim_in.foff_est_en = 1; awgn_foff_est = run_sim(sim_in);
sim_in.dfoff_hz_per_sec = 0.02; awgn_dfoff = run_sim(sim_in);
% HF simulations
sim_in.hf_en = 1; sim_in.Nsec = Nsec_hf; sim_in.EbNodB = 4:2:8;
sim_in.timing_en = sim_in.foff_est_en = 0;
EbNoLin = 10.^(sim_in.EbNodB/10);
hf_theory = 0.5.*(1-sqrt(EbNoLin./(EbNoLin+1)));
hf = run_sim(sim_in);
sim_in.timing_en = 1; hf_timing = run_sim(sim_in);
sim_in.timing_en = 0; sim_in.foff_est_en = 1; hf_foff_est = run_sim(sim_in);
sim_in.timing_en = 1; hf_timing_foff_est = run_sim(sim_in);
sim_in.dfoff_hz_per_sec = 0.02; hf_dfoff = run_sim(sim_in); sim_in.dfoff_hz_per_sec = 0.0;
figure(1); clf;
semilogy(awgn_EbNodB, awgn_theory,'b+-;AWGN theory;');
hold on;
semilogy(awgn_EbNodB, awgn.ber,'r+-;AWGN phase;');
semilogy(awgn_EbNodB, awgn_timing.ber,'go-;AWGN phase+timing;');
semilogy(awgn_EbNodB, awgn_foff_est.ber,'d+-;AWGN phase+timing+foff_est;');
semilogy(awgn_EbNodB, awgn_dfoff.ber,'m+-;AWGN all + 0.02Hz/s drift;');
semilogy(sim_in.EbNodB, hf_theory,'b+-;HF theory;');
semilogy(sim_in.EbNodB, hf.ber,'r+-;HF phase;');
semilogy(sim_in.EbNodB, hf_timing.ber,'go-;HF phase+timing;');
semilogy(sim_in.EbNodB, hf_timing_foff_est.ber,'kd-;HF phase+foff_est;');
semilogy(sim_in.EbNodB, hf_foff_est.ber,'c+-;HF phase+timing+foff_est;');
semilogy(sim_in.EbNodB, hf_dfoff.ber,'m+-;HF + 0.02Hz/s drift;');
hold off;
axis([0 8 5E-3 1E-1])
xlabel('Eb/No (dB)');
ylabel('BER');
grid; grid minor on;
legend('boxoff');
legend("location", "southeast");
title('Rate Fs modem BER with estimators');
print('-deps', '-color', "ofdm_dev_estimators.eps")
% Simulate different HF path delays
sim_in.hf_en = 1; sim_in.Nsec = Nsec_hf; sim_in.EbNodB = 4:2:8;
sim_in.timing_en = sim_in.foff_est_en = 0;
sim_in.path_delay_ms = 0; hf0 = run_sim(sim_in);
sim_in.path_delay_ms = 0.5; hf500us = run_sim(sim_in);
sim_in.path_delay_ms = 1; hf1ms = run_sim(sim_in);
sim_in.path_delay_ms = 2; hf2ms = run_sim(sim_in);
figure(2); clf;
semilogy(sim_in.EbNodB, hf_theory,'b+-;HF theory;');
hold on;
semilogy(sim_in.EbNodB, hf0.ber,'r+-;HF phase 0 ms;');
semilogy(sim_in.EbNodB, hf500us.ber,'g+-;HF phase 0.5 ms;');
semilogy(sim_in.EbNodB, hf1ms.ber,'c+-;HF phase 1 ms;');
semilogy(sim_in.EbNodB, hf2ms.ber,'k+-;HF phase 2 ms;');
hold off;
axis([3 9 1E-2 1E-1])
xlabel('Eb/No (dB)');
ylabel('BER');
grid; grid minor on;
legend('boxoff');
legend("location", "southeast");
title('Rate Fs modem BER across HF path delay');
print('-deps', '-color', "ofdm_dev_estimators.eps")
end
% Plot SNR actual and estimated for various channels
% Note no acquistion, as this can upset results, e.g. if
% sync is lost. We average SNR over entire run, in practice
% there will be some sort of IIR averager.
function run_curves_snr
Nsec_awgn = 30;
Nsec_hf = 60;
% waveform
Ts = 0.018; sim_in.Tcp = 0.002;
sim_in.Rs = 1/Ts; sim_in.bps = 2; sim_in.Nc = 16; sim_in.Ns = 8;
% simulation parameters
sim_in.verbose = 1; sim_in.foff_hz = 0; sim_in.ldpc_en = 0; sim_in.gain = 1;
sim_in.phase_est_en = sim_in.timing_en = sim_in.foff_est_en = 1;
% AWGN simulation
sim_in.EbNodB = 0:3:12;
sim_in.hf_en = 0; sim_in.Nsec = Nsec_awgn;
awgn = run_sim(sim_in);
% HF simulations
sim_in.hf_en = 1; sim_in.Nsec = Nsec_hf; sim_in.dopplerSpreadHz = 1; hf_fast = run_sim(sim_in);
sim_in.dopplerSpreadHz = 0.5; hf_mid = run_sim(sim_in);
sim_in.dopplerSpreadHz = 0.2; hf_slow = run_sim(sim_in);
figure(1); clf;
plot(sim_in.EbNodB, awgn.snrdB,'b+-;AWGN SNR;');
hold on;
plot(sim_in.EbNodB, awgn.snr_estdB ,'g+-;AWGN SNR est;');
plot(sim_in.EbNodB, hf_slow.snr_estdB,'k+-;HF 0.2 Hz SNR est;');
plot(sim_in.EbNodB, hf_mid.snr_estdB ,'r+-;HF 0.5 Hz SNR est;');
plot(sim_in.EbNodB, hf_fast.snr_estdB,'c+-;HF 1.0 Hz SNR est;');
hold off;
xlabel('Eb/No (dB)');
ylabel('SNR (dB)');
grid;
legend('boxoff');
title('SNR Actual and Estimated');
legend("location", "northwest");
print('-deps', '-color', "ofdm_dev_snr.eps")
end
% Run an acquisition test, returning vectors of estimation errors.
% Generates a vector of noise followed by continous rx signal to
% simulate signal starting. We then measure how long it takes to
% get good timing and freq estimates.
function [delta_ct delta_foff timing_mx_log] = acquisition_test(mode="700D", Ntests=10, EbNodB=100, foff_hz=0, hf_en=0, verbose=0)
[bps Rs Tcp Ns Nc] = ofdm_init_mode(mode);
states = ofdm_init(bps, Rs, Tcp, Ns, Nc);
sim_in.Tcp = Tcp;
sim_in.Rs = Rs; sim_in.bps = bps; sim_in.Nc = Nc; sim_in.Ns = Ns;
sim_in.Nsec = (Ntests+1)*(sim_in.Ns+1)/sim_in.Rs;
#{
Notes:
1) uncoded modem operating point, e.g -1dB for AWGN
2) run_sim adds complex noise, when we take the real() below, this relects
the -ve noise over to the +ve side, increasing the noise by 3dB. In
ofdm_tx.m and friends, we add real nosie that is correctly scaled so
no problemo. This means we need to increase the Eb/No below by 3dB
to ensure the correct level of noise at the input of the timing_est.
#}
sim_in.EbNodB = EbNodB + 3;
sim_in.verbose = 0;
sim_in.hf_en = hf_en;
sim_in.foff_hz = foff_hz;
sim_in.gain = 1;
sim_in.timing_en = 1;
sim_in.foff_est_en = 1;
sim_in.phase_est_en = 1;
sim_in.ldpc_en = 0;
% optionally stick a bunch of noise in front of signal to confuse things
sim_in.initial_noise_sams = 0;
[sim_out rx states] = run_sim(sim_in);
states.verbose = verbose;
% set up acquistion
Nsamperframe = states.Nsamperframe; M = states.M; Ncp = states.Ncp;
rate_fs_pilot_samples = states.rate_fs_pilot_samples;
% test fine or acquisition over test signal
delta_ct = []; delta_foff = []; timing_mx_log = []; foff_metric_log = [];
% coarse acquiistion test. We have no idea of timing or freq
% offset for coarse we just use constant window shifts to simulate
% a bunch of trials, this allows averaging of freq est
% metric over time as we receive more and more frames
st = 0.5*Nsamperframe;
en = 2.5*Nsamperframe - 1; % note this gives Nsamperframe possibilities for coarse timing
% actual known position of correct coarse timing
ct_target = mod(sim_in.initial_noise_sams + Nsamperframe/2, Nsamperframe);
i = 1;
states.foff_metric = 0;
for w=1:Nsamperframe:length(rx)-4*Nsamperframe
[ct_est timing_valid timing_mx] = est_timing(states, real(rx(w+st:w+en)), rate_fs_pilot_samples, 1);
foff_est = est_freq_offset_pilot_corr(states, real(rx(w+st:w+en)), rate_fs_pilot_samples, ct_est);
if states.verbose
printf("i: %2d w: %5d ct_est: %4d foff_est: %5.1f timing_mx: %3.2f timing_vld: %d\n", i++, w, ct_est, foff_est, timing_mx, timing_valid);
end
% valid coarse timing ests are modulo Nsamperframe
delta_ct = [delta_ct ct_est-ct_target];
delta_foff = [delta_foff (foff_est-foff_hz)];
timing_mx_log = [timing_mx_log; timing_mx];
foff_metric_log = [foff_metric_log states.foff_metric];
end
if states.verbose > 1
%printf("mean: %f std: %f\n", mean(delta_foff), std(delta_foff));
figure(1); clf; plot(timing_mx_log,'+-');
figure(2); clf; plot(delta_ct,'+-');
figure(3); clf; plot(delta_foff,'+-');
figure(4); clf; plot(foff_metric_log,'+');
figure(5); clf; plot(real(rx))
end
endfunction
#{
Generates aquisistion statistics for AWGN and HF channels for
continuous signals. Probability of acquistion is what matters,
e.g. if it's 50% we can expect sync within 2 frames.
#}
function res = acquisition_histograms(mode="700D", fine_en = 0, foff, EbNoAWGN=-1, EbNoHF=3, verbose=1)
Fs = 8000;
Ntests = 100;
% allowable tolerance for acquistion
ftol_hz = 1.5; % we can sync up on this
ttol_samples = 0.002*Fs; % 2ms, ie CP length
% AWGN channel at uncoded Eb/No operating point
[dct dfoff] = acquisition_test(mode, Ntests, EbNoAWGN, foff, 0, fine_en);
% Probability of acquistion is what matters, e.g. if it's 50% we can
% expect sync within 2 frames
PtAWGN = length(find (abs(dct) < ttol_samples))/length(dct);
printf("AWGN P(time offset acq) = %3.2f\n", PtAWGN);
if fine_en == 0
PfAWGN = length(find (abs(dfoff) < ftol_hz))/length(dfoff);
printf("AWGN P(freq offset acq) = %3.2f\n", PfAWGN);
end
if verbose
figure(1); clf;
hist(dct(find (abs(dct) < ttol_samples)))
t = sprintf("Coarse Timing Error AWGN EbNo = %3.2f foff = %3.1f", EbNoAWGN, foff);
title(t)
if fine_en == 0
figure(2)
hist(dfoff(find(abs(dfoff) < 2*ftol_hz)))
t = sprintf("Coarse Freq Error AWGN EbNo = %3.2f foff = %3.1f", EbNoAWGN, foff);
title(t);
end
end
% HF channel at uncoded operating point
[dct dfoff] = acquisition_test(mode, Ntests, EbNoHF, foff, 1, fine_en);
PtHF = length(find (abs(dct) < ttol_samples))/length(dct);
printf("HF P(time offset acq) = %3.2f\n", PtHF);
if fine_en == 0
PfHF = length(find (abs(dfoff) < ftol_hz))/length(dfoff)
printf("HF P(freq offset acq) = %3.2f\n", PfHF);
end
if verbose
figure(3); clf;
hist(dct(find (abs(dct) < ttol_samples)))
t = sprintf("Coarse Timing Error HF EbNo = %3.2f foff = %3.1f", EbNoHF, foff);
title(t)
if fine_en == 0
figure(4)
hist(dfoff(find(abs(dfoff) < 2*ftol_hz)))
t = sprintf("Coarse Freq Error HF EbNo = %3.2f foff = %3.1f", EbNoHF, foff);
title(t);
end
end
res = [PtAWGN PfAWGN PtHF PfHF];
endfunction
% plot some curves of Acquisition probability against EbNo and freq offset
function acquistion_curves(mode="700D")
EbNo = [-1 2 5 8 20];
%foff = [-20 -15 -10 -5 0 5 10 15 20];
foff = [-15 -5 0 5 15];
cc = ['b' 'g' 'k' 'c' 'm'];
figure(1); clf; hold on; title('P(timing) AWGN'); xlabel('Eb/No dB'); legend('location', 'southeast');
figure(2); clf; hold on; title('P(freq) AWGN'); xlabel('Eb/No dB'); legend('location', 'southeast');
figure(3); clf; hold on; title('P(timing) HF'); xlabel('Eb/No dB'); legend('location', 'southeast');
figure(4); clf; hold on; title('P(freq) HF'); xlabel('Eb/No dB'); legend('location', 'southeast');
for f=1:4
ylim([0 1]);
end
for f = 1:length(foff)
afoff = foff(f);
res_log = [];
for e = 1:length(EbNo)
aEbNo = EbNo(e);
res = zeros(1,4);
res = acquisition_histograms(mode, fine_en = 0, afoff, aEbNo, aEbNo+4, verbose = 0);
res_log = [res_log; res];
end
figure(1); l = sprintf('%c+-;%3.1f Hz;', cc(f), afoff); plot(EbNo, res_log(:,1), l);
figure(2); l = sprintf('%c+-;%3.1f Hz;', cc(f), afoff); plot(EbNo, res_log(:,3), l);
figure(3); l = sprintf('%c+-;%3.1f Hz;', cc(f), afoff); plot(EbNo+4, res_log(:,2), l);
figure(4); l = sprintf('%c+-;%3.1f Hz;', cc(f), afoff); plot(EbNo+4, res_log(:,4), l);
end
figure(1); print('-deps', '-color', sprintf("ofdm_dev_acq_curves_time_awgn_%s.eps", mode))
figure(2); print('-deps', '-color', sprintf("ofdm_dev_acq_curves_freq_awgn_%s.eps", mode))
figure(3); print('-deps', '-color', sprintf("ofdm_dev_acq_curves_time_hf_%s.eps", mode))
figure(4); print('-deps', '-color', sprintf("ofdm_dev_acq_curves_freq_hf_%s.eps", mode))
endfunction
% Used to develop sync state machine - in particular a metric to show
% we are out of sync, or have sync with a bad freq offset est, or have
% lost modem signal
function sync_metrics(mode = "700D", x_axis = 'EbNo')
Fs = 8000;
Ntests = 4;
f_offHz = [-25:25];
EbNodB = [-10 0 3 6 10 20];
%f_offHz = [-5:5:5];
%EbNodB = [-10 0 10];
cc = ['b' 'g' 'k' 'c' 'm' 'b'];
pt = ['+' '+' '+' '+' '+' 'o'];
mean_mx1_log = mean_dfoff_log = [];
for f = 1:length(f_offHz)
af_offHz = f_offHz(f);
mean_mx1_row = mean_dfoff_row = [];
for e = 1:length(EbNodB)
aEbNodB = EbNodB(e);
[dct dfoff timing_mx_log] = acquisition_test(mode, Ntests, aEbNodB, af_offHz);
mean_mx1 = mean(timing_mx_log(:,1));
printf("f_offHz: %5.2f EbNodB: % 6.2f mx1: %3.2f\n", af_offHz, aEbNodB, mean_mx1);
mean_mx1_row = [mean_mx1_row mean_mx1];
mean_dfoff_row = [mean_dfoff_row mean(dfoff)];
end
mean_mx1_log = [mean_mx1_log; mean_mx1_row];
mean_dfoff_log = [mean_dfoff_log; mean_dfoff_row];
end
figure(1); clf; hold on; grid;
if strcmp(x_axis,'EbNo')
for f = 1:length(f_offHz)
if f == 2, hold on, end;
leg1 = sprintf("b+-;mx1 %4.1f Hz;", f_offHz(f));
plot(EbNodB, mean_mx1_log(f,:), leg1)
end
hold off;
xlabel('Eb/No (dB)');
ylabel('Coefficient')
title('Pilot Correlation Metric against Eb/No for different Freq Offsets');
legend("location", "northwest"); legend("boxoff");
axis([min(EbNodB) max(EbNodB) 0 1.2])
print('-deps', '-color', "ofdm_dev_pilot_correlation_ebno.eps")
end
if strcmp(x_axis,'freq')
% x axis is freq
for e = length(EbNodB):-1:1
leg1 = sprintf("%c%c-;mx1 %3.0f dB;", cc(e), pt(e), EbNodB(e));
plot(f_offHz, mean_mx1_log(:,e), leg1)
end
hold off;
xlabel('freq offset (Hz)');
ylabel('Coefficient')
title('Pilot Correlation Metric against Freq Offset for different Eb/No dB');
legend("location", "northwest"); legend("boxoff");
axis([min(f_offHz) max(f_offHz) 0 1])
print('-deps', '-color', "ofdm_dev_pilot_correlation_freq.eps")
mean_dfoff_log
figure(2); clf;
for e = 1:length(EbNodB)
if e == 2, hold on, end;
leg1 = sprintf("+-;mx1 %3.0f dB;", EbNodB(e));
plot(f_offHz, mean_dfoff_log(:,e), leg1)
end
hold off;
xlabel('freq offset (Hz)');
ylabel('Mean Freq Est Error')
title('Freq Est Error against Freq Offset for different Eb/No dB');
axis([min(f_offHz) max(f_offHz) -5 5])
end
endfunction
% during development it was discovered demod could obtain a false sync with no UW
% errors at +/- 7Hz, approx the frame rate. This function is used to explore that
function debug_false_sync(EbNodB = 100)
Ts = 0.018;
sim_in.Tcp = 0.002;
sim_in.Rs = 1/Ts; sim_in.bps = 2; sim_in.Nc = 17; sim_in.Ns = 8;
sim_in.Nsec = (sim_in.Ns+1)/sim_in.Rs; % one frame, make sure sim_in.interleave_frames = 1
sim_in.Nsec = 1;
sim_in.EbNodB = 40;
sim_in.verbose = 0;
sim_in.hf_en = 0;
sim_in.foff_hz = 0;
sim_in.dfoff_hz_per_sec = 0.00;
sim_in.sample_clock_offset_ppm = 0;
sim_in.gain = 1;
sim_in.timing_en = 0;
sim_in.foff_est_en = 0;
sim_in.phase_est_en = 1;
load HRA_112_112.txt
sim_in.ldpc_code = HRA_112_112;
sim_in.ldpc_en = 0;
%sim_in.interleave_frames = 1;
%sim_in.diversity_en = 1;
sim_in.uw_debug = 1;
foff = -25:0.5:25;
for f=1:length(foff)
sim_in.foff_hz = foff(f);
sim_out = run_sim(sim_in);
min_uw_errors(f) = min(sim_out.uw_errors_log(2:end-1));
printf("f: %4.2f %2d\n", foff(f), min_uw_errors(f));
end
figure(1); clf;
plot(foff, min_uw_errors);
title('UW errors versus freq offset');
xlabel('Freq Offset (Hz)');
end
#{
% Using an input raw file, plot frame by frame metric information,
% used to debug false syncs
function metric_fbf(fn, Nsec)
Ts = 0.018;
states = ofdm_init(bps=2, Rs=1/Ts, Tcp=0.002, Ns=8, Nc=17);
ofdm_load_const;
states.verbose = 2;
% factor of 2 as input is a real valued signal
Ascale = states.amp_scale/2;
f = fopen(fn,"rb"); rx = fread(f,Inf,"short")'/Ascale; fclose(f);
if (nargin == 2) && (length(rx) > Nsec*Fs)
rx = rx(1:Nsec*Fs);
end
Nsam = length(rx); Nframes = floor(Nsam/Nsamperframe) - 2;
% main loop ----------------------------------------------------------------
ct_est_log = timing_mx_log = st_log = foff_est_log = foff_metric_log = [];
for f=1:Nframes
st = (f-1)*Nsamperframe+1; en = st + 2*Nsamperframe;
[ct_est timing_valid timing_mx] = est_timing(states, rx(st:en)', states.rate_fs_pilot_samples);
foff_est = est_freq_offset_pilot_corr(states, rx(st:en)', states.rate_fs_pilot_samples, ct_est);
printf("i: %2d w: %5d ct_est: %4d foff_est: %5.1f timing_mx: %3.2f timing_vld: %d\n", f, st, ct_est, foff_est, timing_mx, timing_valid);
i = 1; w_log = timing_mx_log = av_level_log = [];
states.foff_metric = 0;
for w=1:Nsamperframe:length(rx)-4*Nsamperframe
printf("%3d %5d", i,w);
#{
if i == 30
states.verbose = 3;
else
states.verbose = 2;
end
#}
[ct_est timing_valid timing_mx av_level] = est_timing(states, real(rx(w+st:w+en)), states.rate_fs_pilot_samples);
i++;
w_log = [w_log w];
timing_mx_log = [timing_mx_log timing_mx];
av_level_log = [av_level_log av_level];
end
figure(1); clf; plot(timing_mx_log,'+-'); title('mx');
figure(2); clf; plot(ct_est_log,'+-'); title('ct');
figure(3); clf; plot(foff_est_log,'+-'); title('foff est');
figure(4); clf; hist(foff_est_log); title('foff est');
figure(5); clf; plot(real(rx)); axis([1 length(rx) -max(abs(rx)) max(abs(rx))]);
figure(6); clf; plot_specgram(rx); axis([0 Nsec 500 2500])
figure(2); clf;
mx = max(abs(rx));
subplot(211); plot(rx); axis([0 Nsam -mx mx]);
subplot(212); hold on;
plot(w_log,timing_mx_log,'b+-;timing mx;');
plot(w_log,av_level_log,'g+-;av level;');
hold off;
endfunction
#}
% ---------------------------------------------------------
% choose simulation to run here
% ---------------------------------------------------------
format;
more off;
path_to_cml = '~/cml';
addpath(strcat(path_to_cml, "/mex"), strcat(path_to_cml, "/mat"));
if exist("Somap") == 0
printf("Can't find CML mex directory so we wont init CML...\n");
else
printf("OK found CML mex directory so will init CML...\n");
init_cml('~/cml/');
end
%run_single(100);
%run_curves
%run_curves_estimators
%acquisition_histograms("700D", fin_en=0, foff_hz=-15, EbNoAWGN=-1, EbNoHF=3)
%acquisition_test("700D", Ntests=10, EbNodB=-1, foff_hz=0, hf_en=0, verbose=1);
%sync_metrics('freq')
%run_curves_snr
%acquisition_dev(Ntests=10, EbNodB=100, foff_hz=0)
%acquistion_curves
%debug_false_sync
%metric_fbf("ofdm_test.raw")
|