1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
|
% ofdm_lib.m
% David Rowe Mar 2017
#{
Library of functions that implement a BPSK/QPSK OFDM modem. Rate Fs
verison of ofdm_rs.m with OFDM based up and down conversion, and all
those nasty real-world details like fine freq, timing.
#}
1;
% Gray coded QPSK modulation function
function symbol = qpsk_mod(two_bits)
two_bits_decimal = sum(two_bits .* [2 1]);
switch(two_bits_decimal)
case (0) symbol = 1;
case (1) symbol = j;
case (2) symbol = -j;
case (3) symbol = -1;
endswitch
endfunction
% Gray coded QPSK demodulation function
function two_bits = qpsk_demod(symbol)
bit0 = real(symbol*exp(j*pi/4)) < 0;
bit1 = imag(symbol*exp(j*pi/4)) < 0;
two_bits = [bit1 bit0];
endfunction
function out = freq_shift(in, foff, Fs)
foff_rect = exp(j*2*pi*foff/Fs);
foff_phase_rect = exp(j*0);
for r=1:length(in)
foff_phase_rect *= foff_rect;
out(r) = in(r)*foff_phase_rect;
end
endfunction
#{
Correlates the OFDM pilot symbol samples with a window of received
samples to determine the most likely timing offset. Combines two
frames pilots so we need at least Nsamperframe+M+Ncp samples in rx.
Can be used for acquisition (coarse timing), and fine timing. Tends
to break down when freq offset approaches +/- symbol rate (e.g +/-
25 Hz for 700D).
#}
function [t_est timing_valid timing_mx av_level] = est_timing(states, rx, rate_fs_pilot_samples, step)
ofdm_load_const;
Npsam = length(rate_fs_pilot_samples);
Ncorr = length(rx) - (Nsamperframe+Npsam);
corr = zeros(1,Ncorr);
%printf("Npsam: %d M+Ncp: %d Ncorr: %d Nsamperframe: %d step: %d\n", Npsam, M+Ncp, Ncorr, Nsamperframe, step);
% normalise correlation so we can compare to a threshold across varying input levels
av_level = 2*sqrt(states.timing_norm*(rx*rx')/length(rx)) + 1E-12;
% correlate with pilots at start and end of frame to determine timing offset
for i=1:step:Ncorr
rx1 = rx(i:i+Npsam-1); rx2 = rx(i+Nsamperframe:i+Nsamperframe+Npsam-1);
corr_st = rx1 * rate_fs_pilot_samples'; corr_en = rx2 * rate_fs_pilot_samples';
corr(i) = (abs(corr_st) + abs(corr_en))/av_level;
end
[timing_mx t_est] = max(corr);
% only declare timing valid if there are enough samples in rxbuf to demodulate a frame
timing_valid = (abs(rx(t_est)) > 0) && (timing_mx > timing_mx_thresh);
if verbose > 1
printf(" av_level: %5.4f mx: %4.3f timing_est: %4d timing_valid: %d\n", av_level, timing_mx, t_est, timing_valid);
end
if verbose > 2
figure(3); clf;
subplot(211); plot(rx)
subplot(212); plot(corr)
figure(4); clf; plot(real(rate_fs_pilot_samples));
end
endfunction
#{
Determines frequency offset at current timing estimate, used for
coarse freq offset estimation during acquisition.
This estimator works well for AWGN channels but has problems with
fading channels. With stationary/slow fading channels (say a notch
in the spectrum), ot exhibits bias which can delay sync for 10's of
seconds.
#}
function [foff_est states] = est_freq_offset(states, rx, rate_fs_pilot_samples, t_est)
ofdm_load_const;
Npsam = length(rate_fs_pilot_samples);
% Freq offset can be considered as change in phase over two halves
% of pilot symbols. We average this statistic over this and next
% frames pilots.
Npsam2 = floor(Npsam/2);
p1 = rx(t_est:t_est+Npsam2-1) * rate_fs_pilot_samples(1:Npsam2)';
p2 = rx(t_est+Npsam2:t_est+Npsam-1) * rate_fs_pilot_samples(Npsam2+1:Npsam)';
p3 = rx(t_est+Nsamperframe:t_est+Nsamperframe+Npsam2-1) * rate_fs_pilot_samples(1:Npsam2)';
p4 = rx(t_est+Nsamperframe+Npsam2:t_est+Nsamperframe+Npsam-1) * rate_fs_pilot_samples(Npsam2+1:Npsam)';
Fs1 = Fs/(Npsam/2);
states.foff_metric = (conj(p1)*p2 + conj(p3)*p4);
foff_est = Fs1*angle(states.foff_metric)/(2*pi);
if states.verbose > 1
printf(" foff_metric: %f %f foff_est: %f\n", real(states.foff_metric), imag(states.foff_metric), foff_est);
end
endfunction
#{
Determines frequency offset at current timing estimate, used for
coarse freq offset estimation during acquisition.
This is an alternative algorithm to est_freq_offset() above that is less noisey
and performs better on HF channels using the acquistion tests in ofdm_dev.m
#}
function foff_est = est_freq_offset_pilot_corr(states, rx, rate_fs_pilot_samples, t_est)
ofdm_load_const;
Npsam = length(rate_fs_pilot_samples);
% extract pilot samples from either end of frame
rx1 = rx(t_est:t_est+Npsam-1); rx2 = rx(t_est+Nsamperframe:t_est+Nsamperframe+Npsam-1);
% "mix" these down (correlate) with 0 Hz offset pilot samples
corr_st = rx1 .* conj(rate_fs_pilot_samples);
corr_en = rx2 .* conj(rate_fs_pilot_samples);
% sample sum of DFT magnitude of correlated signals at each freq offset and look for peak
st = -20; en = 20; foff_est = 0; Cabs_max = 0;
for f=st:en
w = 2*pi*f/Fs;
C_st = corr_st * exp(j*w*(0:Npsam-1))';
C_en = corr_en * exp(j*w*(0:Npsam-1))';
Cabs = abs(C_st) + abs(C_en);
if Cabs > Cabs_max
Cabs_max = Cabs;
foff_est = f;
end
end
if states.verbose > 1
printf(" foff_est: %f\n", foff_est);
end
if verbose > 2
figure(10); clf;
plot(st:en,C(Fs/2+st:Fs/2+en)); grid;
end
endfunction
%
% Helper function to set up modems for various FreeDV modes, and parse mode string
%
% usage: ofdm_init_mode("Ts=0.018 Nc=17 Ncp=0.002")
function [bps Rs Tcp Ns Nc] = ofdm_init_mode(mode="700D")
bps = 2; Tcp = 0.002; Ns=8;
% some "canned" modes
if strcmp(mode,"700D")
Ts = 0.018; Nc = 17;
elseif strcmp(mode,"2020")
Ts = 0.0205; Nc = 31;
elseif strcmp(mode,"2200")
Tframe = 0.175; Ts = Tframe/Ns; Nc = 37;
else
% try to parse mode string for user defined mode
vec = sscanf(mode, "Ts=%f Nc=%d Ncp=%f");
Ts=vec(1); Nc=vec(2); Ncp=vec(3);
end
Rs=1/Ts;
end
%-------------------------------------------------------------
% ofdm_init
%-------------------------------------------------------------
#{
Frame has Ns-1 data symbols between pilots, e.g. for Ns=3:
PPP
DDD
DDD
PPP
#}
function print_config(states)
ofdm_load_const;
printf("Rs=%5.2f Nc=%d Tcp=%4.3f ", Rs, Nc, Tcp);
printf("Nbitsperframe: %d Nrowsperframe: %d Ntxtbits: %d Nuwbits: %d ",
Nbitsperframe, Nrowsperframe, Ntxtbits, Nuwbits);
printf("bits/s: %4.1f\n", Nbitsperframe*Rs/Ns);
end
function states = ofdm_init(bps, Rs, Tcp, Ns, Nc)
states.Fs = 8000;
states.bps = bps;
states.Rs = Rs;
states.Tcp = Tcp;
states.Ns = Ns; % step size for pilots
states.Nc = Nc; % Number of cols, aka number of carriers
states.M = states.Fs/Rs;
states.Ncp = Tcp*states.Fs;
states.Nbitsperframe = (Ns-1)*Nc*bps;
states.Nrowsperframe = states.Nbitsperframe/(Nc*bps);
states.Nsamperframe = (states.Nrowsperframe+1)*(states.M+states.Ncp);
states.Ntxtbits = 4; % reserved bits/frame for auxillary text information
states.Nuwbits = 10; % fix UW at 10 bits
% some basic sanity checks
assert(floor(states.M) == states.M);
% UW symbol placement, designed to get no false syncs at any freq
% offset. Use ofdm_dev.m, debug_false_sync() to test. Note we need
% to pair the UW bits so the fit into symbols. The LDPC decoder
% works on symbols so we can't break up any symbols into UW/LDPC
% bits.
states.uw_ind = states.uw_ind_sym = [];
for i=1:states.Nuwbits/2
ind_sym = floor(i*(Nc+1)/2+1);
states.uw_ind_sym = [states.uw_ind_sym ind_sym]; % symbol index
states.uw_ind = [states.uw_ind 2*ind_sym-1 2*ind_sym]; % bit index
% states.uw_ind = [states.uw_ind 1+i*(Nc+1) 2+i*(Nc+1)];
% states.uw_ind_sym = [states.uw_ind_sym i*(Nc+1)/2+1];
end
states.tx_uw = [0 0 0 0 0 0 0 0 0 0];
assert(length(states.tx_uw) == states.Nuwbits);
tx_uw_syms = [];
for b=1:2:states.Nuwbits
tx_uw_syms = [tx_uw_syms qpsk_mod(states.tx_uw(b:b+1))];
end
states.tx_uw_syms = tx_uw_syms;
% use this to scale tx output to 16 bit short. Adjusted by experiment
% to have same RMS power as FDMDV waveform
states.amp_scale = 2E5*1.1491/1.06;
% this is used to scale inputs to LDPC decoder to make it amplitude indep
states.mean_amp = 0;
% generate same pilots each time
rand('seed',1);
states.pilots = 1 - 2*(rand(1,Nc+2) > 0.5);
%printf("number of pilots total: %d\n", length(states.pilots));
% carrier tables for up and down conversion
fcentre = 1500;
alower = fcentre - Rs * (Nc/2); % approx frequency of lowest carrier
Nlower = round(alower / Rs) - 1; % round this to nearest integer multiple from 0Hz to keep DFT happy
%printf(" fcentre: %f alower: %f alower/Rs: %f Nlower: %d\n", fcentre, alower, alower/Rs, Nlower);
w = (Nlower:Nlower+Nc+1)*2*pi/(states.Fs/Rs);
W = zeros(Nc+2,states.M);
for c=1:Nc+2
W(c,:) = exp(j*w(c)*(0:states.M-1));
end
states.w = w;
states.W = W;
% fine timing search +/- window_width/2 from current timing instant
states.ftwindow_width = 11;
% Receive buffer: D P DDD P DDD P DDD P D
% ^
% also see ofdm_demod() ...
states.Nrxbuf = 3*states.Nsamperframe+states.M+states.Ncp + 2*(states.M + states.Ncp);
states.rxbuf = zeros(1, states.Nrxbuf);
% default settings on a bunch of options and states
states.verbose = 0;
states.timing_en = 1;
states.foff_est_en = 1;
states.phase_est_en = 1;
states.phase_est_bandwidth = "high";
states.foff_est_gain = 0.1;
states.foff_est_hz = 0;
states.sample_point = states.timing_est = 1;
states.nin = states.Nsamperframe;
states.timing_valid = 0;
states.timing_mx = 0;
states.coarse_foff_est_hz = 0;
states.foff_metric = 0;
% generate OFDM pilot symbol, used for timing and freq offset est
rate_fs_pilot_samples = states.pilots * W/states.M;
% During tuning it was found that not including the cyc prefix in
% rate_fs_pilot_samples produced better fest results
%states.rate_fs_pilot_samples = [rate_fs_pilot_samples(states.M-states.Ncp+1:states.M) rate_fs_pilot_samples];
states.rate_fs_pilot_samples = [zeros(1,states.Ncp) rate_fs_pilot_samples];
% pre-compute a constant used to detect valid modem frames
Npsam = length(states.rate_fs_pilot_samples);
states.timing_norm = Npsam*(states.rate_fs_pilot_samples * states.rate_fs_pilot_samples');
% printf("timing_norm: %f\n", states.timing_norm)
% sync state machine
states.sync_state = states.last_sync_state = 'search';
states.uw_errors = 0;
states.sync_counter = 0;
states.frame_count = 0;
states.sync_start = 0;
states.sync_end = 0;
states.sync_state_interleaver = 'search';
states.last_sync_state_interleaver = 'search';
states.frame_count_interleaver = 0;
% LDPC code is optionally enabled
states.rate = 1.0;
states.ldpc_en = 0;
% init some output states for logging
states.rx_sym = zeros(1+Ns+1+1, Nc+2);
% Es/No (SNR) est states
states.noise_var = 0;
states.sig_var = 0;
states.clock_offset_est = 0;
endfunction
% --------------------------------------
% ofdm_mod - modulates one frame of bits
% --------------------------------------
function tx = ofdm_mod(states, tx_bits)
ofdm_load_const;
assert(length(tx_bits) == Nbitsperframe);
% map to symbols in linear array
if bps == 1
tx_sym_lin = 2*tx_bits - 1;
end
if bps == 2
for s=1:Nbitsperframe/bps
tx_sym_lin(s) = qpsk_mod(tx_bits(2*(s-1)+1:2*s));
end
end
tx = ofdm_txframe(states, tx_sym_lin);
endfunction
% -----------------------------------------
% ofdm_tx - modulates one frame of symbols
% ----------------------------------------
#{
Each carrier amplitude is 1/M. There are two edge carriers that
are just tx-ed for pilots plus plus Nc continuous carriers. So
power is:
p = 2/(Ns*(M*M)) + Nc/(M*M)
e.g. Ns=8, Nc=16, M=144
p = 2/(8*(144*144)) + 16/(144*144) = 7.84-04
#}
function tx = ofdm_txframe(states, tx_sym_lin)
ofdm_load_const;
assert(length(tx_sym_lin) == Nbitsperframe/bps);
% place symbols in multi-carrier frame with pilots and boundary carriers
tx_sym = []; s = 1;
aframe = zeros(Ns,Nc+2);
aframe(1,:) = pilots;
for r=1:Nrowsperframe
arowofsymbols = tx_sym_lin(s:s+Nc-1);
s += Nc;
aframe(r+1,2:Nc+1) = arowofsymbols;
end
tx_sym = [tx_sym; aframe];
% OFDM upconvert symbol by symbol so we can add CP
tx = [];
for r=1:Ns
asymbol = tx_sym(r,:) * W/M;
asymbol_cp = [asymbol(M-Ncp+1:M) asymbol];
tx = [tx asymbol_cp];
end
endfunction
% ----------------------------------------------------------------------------------
% ofdm_sync_search - attempts to find coarse sync parameters for modem initial sync
% ----------------------------------------------------------------------------------
function [timing_valid states] = ofdm_sync_search(states, rxbuf_in)
ofdm_load_const;
% insert latest input samples into rxbuf so it is primed for when we have to call ofdm_demod()
states.rxbuf(1:Nrxbuf-states.nin) = states.rxbuf(states.nin+1:Nrxbuf);
states.rxbuf(Nrxbuf-states.nin+1:Nrxbuf) = rxbuf_in;
% Attempt coarse timing estimate (i.e. detect start of frame) at a range of frequency offsets
st = M+Ncp + Nsamperframe + 1; en = st + 2*Nsamperframe + M+Ncp - 1;
timing_mx = 0; fcoarse = 0; timing_valid = 0;
for afcoarse=-40:40:40
% vector of local oscillator samples to shift input vector
% these could be computed on the fly to save memory, or pre-computed in flash at tables as they are static
if afcoarse != 0
w = 2*pi*afcoarse/Fs;
wvec = exp(-j*w*(0:2*Nsamperframe+M+Ncp-1));
% choose best timing offset metric at this freq offset
[act_est atiming_valid atiming_mx] = est_timing(states, wvec .* states.rxbuf(st:en), states.rate_fs_pilot_samples, 2);
else
% exp(-j*0) is just 1 when afcoarse is 0
[act_est atiming_valid atiming_mx] = est_timing(states, states.rxbuf(st:en), states.rate_fs_pilot_samples, 2);
end
%printf("afcoarse: %f atiming_mx: %f\n", afcoarse, atiming_mx);
if atiming_mx > timing_mx
ct_est = act_est;
timing_valid = atiming_valid;
timing_mx = atiming_mx;
fcoarse = afcoarse;
end
end
% refine freq est within -/+ 20 Hz window
if fcoarse != 0
w = 2*pi*fcoarse/Fs;
wvec = exp(-j*w*(0:2*Nsamperframe+M+Ncp-1));
foff_est = est_freq_offset_pilot_corr(states, wvec .* states.rxbuf(st:en), states.rate_fs_pilot_samples, ct_est);
foff_est += fcoarse;
else
% exp(-j*0) is just 1 when fcoarse is 0
foff_est = est_freq_offset_pilot_corr(states, states.rxbuf(st:en), states.rate_fs_pilot_samples, ct_est);
end
if verbose
printf(" ct_est: %d mx: %3.2f coarse_foff: %4.1f\n", ct_est, timing_mx, foff_est);
end
if timing_valid
% potential candidate found ....
% calculate number of samples we need on next buffer to get into sync
states.nin = ct_est - 1;
% reset modem states
states.sample_point = states.timing_est = 1;
states.foff_est_hz = foff_est;
else
states.nin = Nsamperframe;
end
states.timing_valid = timing_valid;
states.timing_mx = timing_mx;
states.coarse_foff_est_hz = foff_est;
endfunction
% ------------------------------------------
% ofdm_demod - Demodulates one frame of bits
% ------------------------------------------
#{
For phase estimation we need to maintain buffer of 3 frames plus
one pilot, so we have 4 pilots total. '^' is the start of current
frame that we are demodulating.
P DDD P DDD P DDD P
^
Then add one symbol either side to account for movement in
sampling instant due to sample clock differences:
D P DDD P DDD P DDD P D
^
#}
function [rx_bits states aphase_est_pilot_log rx_np rx_amp] = ofdm_demod(states, rxbuf_in)
ofdm_load_const;
% insert latest input samples into rxbuf
rxbuf(1:Nrxbuf-states.nin) = rxbuf(states.nin+1:Nrxbuf);
rxbuf(Nrxbuf-states.nin+1:Nrxbuf) = rxbuf_in;
% get latest freq offset estimate
woff_est = 2*pi*foff_est_hz/Fs;
% update timing estimate --------------------------------------------------
delta_t = coarse_foff_est_hz = timing_valid = timing_mx = 0;
if timing_en
% update timing at start of every frame
st = M+Ncp + Nsamperframe + 1 - floor(ftwindow_width/2) + (timing_est-1);
en = st + Nsamperframe-1 + M+Ncp + ftwindow_width-1;
[ft_est timing_valid timing_mx] = est_timing(states, rxbuf(st:en) .* exp(-j*woff_est*(st:en)), rate_fs_pilot_samples, 1);
% printf(" timing_est: %d ft_est: %d timing_valid: %d timing_mx: %d\n", timing_est, ft_est, timing_valid, timing_mx);
if timing_valid
timing_est = timing_est + ft_est - ceil(ftwindow_width/2);
% Black magic to keep sample_point inside cyclic prefix. Or something like that.
delta_t = ft_est - ceil(ftwindow_width/2);
sample_point = max(timing_est+Ncp/4, sample_point);
sample_point = min(timing_est+Ncp, sample_point);
end
if verbose > 1
printf(" ft_est: %2d mx: %3.2f coarse_foff: %4.1f foff: %4.1f\n", ft_est, timing_mx, coarse_foff_est_hz, foff_est_hz);
end
end
% down convert at current timing instant----------------------------------
% todo: this cld be more efficent, as pilot r becomes r-Ns on next frame
rx_sym = zeros(1+Ns+1+1, Nc+2);
% previous pilot
st = M+Ncp + Nsamperframe + (-Ns)*(M+Ncp) + 1 + sample_point; en = st + M - 1;
for c=1:Nc+2
acarrier = rxbuf(st:en) .* exp(-j*woff_est*(st:en)) .* conj(W(c,:));
rx_sym(1,c) = sum(acarrier);
end
% pilot - this frame - pilot
for rr=1:Ns+1
st = M+Ncp + Nsamperframe + (rr-1)*(M+Ncp) + 1 + sample_point; en = st + M - 1;
for c=1:Nc+2
acarrier = rxbuf(st:en) .* exp(-j*woff_est*(st:en)) .* conj(W(c,:));
rx_sym(rr+1,c) = sum(acarrier);
end
end
% next pilot
st = M+Ncp + Nsamperframe + (2*Ns)*(M+Ncp) + 1 + sample_point; en = st + M - 1;
for c=1:Nc+2
acarrier = rxbuf(st:en) .* exp(-j*woff_est*(st:en)) .* conj(W(c,:));
rx_sym(Ns+3,c) = sum(acarrier);
end
% est freq err based on all carriers ------------------------------------
if foff_est_en
freq_err_rect = sum(rx_sym(2,:))' * sum(rx_sym(2+Ns,:));
% prevent instability in atan(im/re) when real part near 0
freq_err_rect += 1E-6;
%printf("freq_err_rect: %f %f angle: %f\n", real(freq_err_rect), imag(freq_err_rect), angle(freq_err_rect));
freq_err_hz = angle(freq_err_rect)*Rs/(2*pi*Ns);
foff_est_hz = foff_est_hz + foff_est_gain*freq_err_hz;
end
% OK - now channel for each carrier and correct phase ----------------------------------
achannel_est_rect = zeros(1,Nc+2);
for c=2:Nc+1
% estimate channel for this carrier using an average of 12 pilots
% in a rect 2D window centred on this carrier
% PPP <-- frame-1
% ---
% PPP <-- you are here
% DDD
% DDD
% PPP <-- frame+1
% ---
% PPP <-- frame+2
if isfield(states, "phase_est_bandwidth")
phase_est_bandwidth = states.phase_est_bandwidth;
else
phase_est_bandwidth = "low";
end
if strcmp(phase_est_bandwidth, "high")
% Only use pilots at start and end of this frame to track quickly changes in phase
% present. Useful for initial sync where freq offset est may be a bit off, and
% for high Doppler channels. As less pilots are averaged, low SNR performance
% will be poorer.
achannel_est_rect(c) = sum(rx_sym(2,c)*pilots(c)'); % frame
achannel_est_rect(c) += sum(rx_sym(2+Ns,c)*pilots(c)'); % frame+1
else
% Average over a bunch of pilots in adjacent carriers, and past and future frames, good
% low SNR performance, but will fall over with high Doppler of freq offset.
cr = c-1:c+1;
achannel_est_rect(c) = sum(rx_sym(2,cr)*pilots(cr)'); % frame
achannel_est_rect(c) += sum(rx_sym(2+Ns,cr)*pilots(cr)'); % frame+1
% use next step of pilots in past and future
achannel_est_rect(c) += sum(rx_sym(1,cr)*pilots(cr)'); % frame-1
achannel_est_rect(c) += sum(rx_sym(2+Ns+1,cr)*pilots(cr)'); % frame+2
end
end
if strcmp(phase_est_bandwidth, "high")
achannel_est_rect /= 2;
else
achannel_est_rect /= 12;
end
% pilots are estimated over 12 pilot symbols, so find average
aphase_est_pilot = angle(achannel_est_rect);
aamp_est_pilot = abs(achannel_est_rect);
% correct phase offset using phase estimate, and demodulate
% bits, separate loop as it runs across cols (carriers) to get
% frame bit ordering correct
aphase_est_pilot_log = [];
rx_bits = []; rx_np = []; rx_amp = [];
for rr=1:Ns-1
for c=2:Nc+1
if phase_est_en
rx_corr = rx_sym(rr+2,c) * exp(-j*aphase_est_pilot(c));
else
rx_corr = rx_sym(rr+2,c);
end
rx_np = [rx_np rx_corr];
rx_amp = [rx_amp aamp_est_pilot(c)];
if bps == 1
abit = real(rx_corr) > 0;
end
if bps == 2
abit = qpsk_demod(rx_corr);
end
rx_bits = [rx_bits abit];
end % c=2:Nc+1
aphase_est_pilot_log = [aphase_est_pilot_log; aphase_est_pilot(2:Nc+1)];
end
% Adjust nin to take care of sample clock offset
nin = Nsamperframe;
if timing_en && timing_valid
states.clock_offset_est = 0.9*states.clock_offset_est + 0.1*abs(states.timing_est - timing_est)/Nsamperframe;
thresh = (M+Ncp)/8;
tshift = (M+Ncp)/4;
if timing_est > thresh
nin = Nsamperframe+tshift;
timing_est -= tshift;
sample_point -= tshift;
end
if timing_est < -thresh
nin = Nsamperframe-tshift;
timing_est += tshift;
sample_point += tshift;
end
end
% estimates of signal and noise power (see cohpsk.m for further explanation)
% signal power is distance from axis on complex plane
% we just measure noise power on imag axis, as it isn't affected by fading
% using all symbols in frame worked better than just pilots
sig_var = sum(abs(rx_np) .^ 2)/length(rx_np);
sig_rms = sqrt(sig_var);
sum_x = 0;
sum_xx = 0;
n = 0;
for i=1:length(rx_np)
s = rx_np(i);
if abs(real(s)) > sig_rms
% select two constellation points on real axis
sum_x += imag(s);
sum_xx += imag(s)*imag(s);
n++;
end
end
noise_var = 0;
if n > 1
noise_var = (n*sum_xx - sum_x*sum_x)/(n*(n-1));
end
% Total noise power is twice estimate of imaginary-axis noise. This
% effectively gives us the an estimate of Es/No
states.noise_var = 2*noise_var;
states.sig_var = sig_var;
% maintain mean amp estimate for LDPC decoder
states.mean_amp = 0.9*states.mean_amp + 0.1*mean(rx_amp);
states.achannel_est_rect = achannel_est_rect;
states.rx_sym = rx_sym;
states.rxbuf = rxbuf;
states.nin = nin;
states.timing_valid = timing_valid;
states.timing_mx = timing_mx;
states.timing_est = timing_est;
states.sample_point = sample_point;
states.delta_t = delta_t;
states.foff_est_hz = foff_est_hz;
states.coarse_foff_est_hz = coarse_foff_est_hz; % just used for tofdm
endfunction
% assemble modem frame from UW, payload, and txt bits
function modem_frame = assemble_modem_frame(states, payload_bits, txt_bits)
ofdm_load_const;
modem_frame = zeros(1,Nbitsperframe);
p = 1; u = 1;
for b=1:Nbitsperframe-Ntxtbits;
if (u <= Nuwbits) && (b == uw_ind(u))
modem_frame(b) = tx_uw(u++);
else
modem_frame(b) = payload_bits(p++);
end
end
t = 1;
for b=Nbitsperframe-Ntxtbits+1:Nbitsperframe
modem_frame(b) = txt_bits(t++);
end
assert(u == (Nuwbits+1));
assert(p = (length(payload_bits)+1));
endfunction
% assemble modem frame from UW, payload, and txt symbols
function modem_frame = assemble_modem_frame_symbols(states, payload_syms, txt_syms)
ofdm_load_const;
Nsymsperframe = Nbitsperframe/bps;
Nuwsyms = Nuwbits/bps;
Ntxtsyms = Ntxtbits/bps;
modem_frame = zeros(1,Nsymsperframe);
p = 1; u = 1;
for s=1:Nsymsperframe-Ntxtsyms;
if (u <= Nuwsyms) && (s == uw_ind_sym(u))
modem_frame(s) = states.tx_uw_syms(u++);
else
modem_frame(s) = payload_syms(p++);
end
end
t = 1;
for s=Nsymsperframe-Ntxtsyms+1:Nsymsperframe
modem_frame(s) = txt_syms(t++);
end
assert(u == (Nuwsyms+1));
assert(p = (length(payload_syms)+1));
endfunction
% extract UW and txt bits, and payload symbols from a frame of modem symbols
function [rx_uw payload_syms payload_amps txt_bits] = disassemble_modem_frame(states, modem_frame_syms, modem_frame_amps)
ofdm_load_const;
Nsymsperframe = Nbitsperframe/bps;
Nuwsyms = Nuwbits/bps;
Ntxtsyms = Ntxtbits/bps;
payload_syms = zeros(1,Nsymsperframe-Nuwsyms-Ntxtsyms);
payload_amps = zeros(1,Nsymsperframe-Nuwsyms-Ntxtsyms);
rx_uw_syms = zeros(1,Nuwsyms);
txt_syms = zeros(1,Ntxtsyms);
p = 1; u = 1;
for s=1:Nsymsperframe-Ntxtsyms;
if (u <= Nuwsyms) && (s == uw_ind_sym(u))
rx_uw_syms(u++) = modem_frame_syms(s);
else
payload_syms(p) = modem_frame_syms(s);
payload_amps(p++) = modem_frame_amps(s);
end
end
t = 1;
for s=Nsymsperframe-Ntxtsyms+1:Nsymsperframe
txt_syms(t++) = modem_frame_syms(s);
end
assert(u == (Nuwsyms+1));
assert(p = (Nsymsperframe+1));
% now demodulate UW and txt bits
rx_uw = zeros(1,Nuwbits);
txt_bits = zeros(1,Ntxtbits);
for s=1:Nuwsyms
rx_uw(2*s-1:2*s) = qpsk_demod(rx_uw_syms(s));
end
for s=1:Ntxtsyms
txt_bits(2*s-1:2*s) = qpsk_demod(txt_syms(s));
end
endfunction
% a psuedo-random number generator that we can implement in C with
% identical results to Octave. Returns an unsigned int between 0
% and 32767
function r = ofdm_rand(n)
r = zeros(1,n); seed = 1;
for i=1:n
seed = mod(1103515245 * seed + 12345, 32768);
r(i) = seed;
end
endfunction
% generate a test frame of bits. Works differently for coded and
% uncoded mods.
function [tx_bits payload_data_bits codeword] = create_ldpc_test_frame(states, coded_frame=1)
ofdm_load_const;
ldpc;
gp_interleaver;
if coded_frame
% Set up LDPC code
mod_order = 4; bps = 2; modulation = 'QPSK'; mapping = 'gray';
init_cml('~/cml/'); % TODO: make this path sensible and portable
load HRA_112_112.txt
[code_param framesize rate] = ldpc_init_user(HRA_112_112, modulation, mod_order, mapping);
assert(Nbitsperframe == (code_param.coded_bits_per_frame + Nuwbits + Ntxtbits));
payload_data_bits = round(ofdm_rand(code_param.data_bits_per_frame)/32767);
codeword = LdpcEncode(payload_data_bits, code_param.H_rows, code_param.P_matrix);
Nsymbolsperframe = length(codeword)/bps;
% need all these steps to get actual raw codeword bits at demod
% note this will only work for single interleaver frame case,
% but that's enough for initial quick tests
tx_symbols = [];
for s=1:Nsymbolsperframe
tx_symbols = [tx_symbols qpsk_mod( codeword(2*(s-1)+1:2*s) )];
end
tx_symbols = gp_interleave(tx_symbols);
codeword_raw = [];
for s=1:Nsymbolsperframe
codeword_raw = [codeword_raw qpsk_demod(tx_symbols(s))];
end
else
codeword_raw = round(ofdm_rand(Nbitsperframe-(Nuwbits+Ntxtbits))/32767);
end
% insert UW and txt bits
tx_bits = assemble_modem_frame(states, codeword_raw, zeros(1,Ntxtbits));
assert(Nbitsperframe == length(tx_bits));
endfunction
% Save test bits frame to a text file in the form of a C array
%
% usage:
% ofdm_lib; test_bits_ofdm_file
%
function test_bits_ofdm_file
Ts = 0.018; Tcp = 0.002; Rs = 1/Ts; bps = 2; Nc = 17; Ns = 8;
states = ofdm_init(bps, Rs, Tcp, Ns, Nc);
[test_bits_ofdm payload_data_bits codeword] = create_ldpc_test_frame(states);
printf("%d test bits\n", length(test_bits_ofdm));
f=fopen("../src/test_bits_ofdm.h","wt");
fprintf(f,"/* Generated by test_bits_ofdm_file() Octave function */\n\n");
fprintf(f,"const int test_bits_ofdm[]={\n");
for m=1:length(test_bits_ofdm)-1
fprintf(f," %d,\n",test_bits_ofdm(m));
endfor
fprintf(f," %d\n};\n",test_bits_ofdm(end));
fprintf(f,"\nconst int payload_data_bits[]={\n");
for m=1:length(payload_data_bits)-1
fprintf(f," %d,\n",payload_data_bits(m));
endfor
fprintf(f," %d\n};\n",payload_data_bits(end));
fprintf(f,"\nconst int test_codeword[]={\n");
for m=1:length(codeword)-1
fprintf(f," %d,\n",codeword(m));
endfor
fprintf(f," %d\n};\n",codeword(end));
fclose(f);
endfunction
% iterate state machine ------------------------------------
function states = sync_state_machine(states, rx_uw)
ofdm_load_const;
next_state = states.sync_state;
states.sync_start = states.sync_end = 0;
if strcmp(states.sync_state,'search')
if states.timing_valid
states.frame_count = 0;
states.sync_counter = 0;
states.sync_start = 1;
next_state = 'trial';
end
end
if strcmp(states.sync_state,'synced') || strcmp(states.sync_state,'trial')
states.frame_count++;
states.frame_count_interleaver++;
states.uw_errors = sum(xor(tx_uw,rx_uw));
if strcmp(states.sync_state,'trial')
if states.uw_errors > 2
states.sync_counter++;
states.frame_count = 0;
end
if states.sync_counter == 2
next_state = "search";
states.sync_state_interleaver = "search";
states.phase_est_bandwidth = "high";
end
if states.frame_count == 4
next_state = "synced";
% change to low bandwidth, but more accurate phase estimation
states.phase_est_bandwidth = "low";
end
end
if strcmp(states.sync_state,'synced')
if states.uw_errors > 2
states.sync_counter++;
else
states.sync_counter = 0;
end
if states.sync_counter == 12
next_state = "search";
states.sync_state_interleaver = "search";
states.phase_est_bandwidth = "high";
end
end
end
states.last_sync_state = states.sync_state;
states.last_sync_state_interleaver = states.sync_state_interleaver;
states.sync_state = next_state;
endfunction
% test function, kind of like a CRC for QPSK symbols, to compare two vectors
function acc = test_acc(v)
sre = 0; sim = 0;
for i=1:length(v)
x = v(i);
re = round(real(x)); im = round(imag(x));
sre += re; sim += im;
%printf("%d %10f %10f %10f %10f\n", i, re, im, sre, sim);
end
acc = sre + j*sim;
end
% Get rid of nasty unfiltered stuff either side of OFDM signal
% This may need to be tweaked, or better yet made a function of Nc, if Nc changes
%
% usage:
% ofdm_lib; make_ofdm_bpf(1);
function bpf_coeff = make_ofdm_bpf(write_c_header_file)
filt_n = 100;
Fs = 8000;
bpf_coeff = fir2(filt_n,[0 900 1000 2000 2100 4000]/(Fs/2),[0.001 0.001 1 1 0.001 0.001]);
if write_c_header_file
figure(1)
clf;
h = freqz(bpf_coeff,1,Fs/2);
plot(20*log10(abs(h)))
grid minor
% save coeffs to a C header file
f=fopen("../src/ofdm_bpf_coeff.h","wt");
fprintf(f,"/* 1000 - 2000 Hz FIR filter coeffs */\n");
fprintf(f,"/* Generated by make_ofdm_bpf() in ofdm_lib.m */\n");
fprintf(f,"\n#define OFDM_BPF_N %d\n\n", filt_n);
fprintf(f,"float ofdm_bpf_coeff[]={\n");
for r=1:filt_n
if r < filt_n
fprintf(f, " %f,\n", bpf_coeff(r));
else
fprintf(f, " %f\n};", bpf_coeff(r));
end
end
fclose(f);
end
endfunction
% Set up a bunch of constants to support modem frame construction from LDPC codewords and codec source bits
function [code_param Nbitspercodecframe Ncodecframespermodemframe] = codec_to_frame_packing(states, mode)
ofdm_load_const;
mod_order = 4; bps = 2; modulation = 'QPSK'; mapping = 'gray';
init_cml('~/cml/');
if strcmp(mode, "700D")
load HRA_112_112.txt
code_param = ldpc_init_user(HRA_112_112, modulation, mod_order, mapping);
assert(Nbitsperframe == (code_param.coded_bits_per_frame + Nuwbits + Ntxtbits));
% unused for this mode
Nbitspercodecframe = Ncodecframespermodemframe = 0;
end
if strcmp(mode, "2020")
load HRA_504_396.txt
code_param = ldpc_init_user(HRA_504_396, modulation, mod_order, mapping);
code_param.data_bits_per_frame = 312;
code_param.coded_bits_per_frame = code_param.data_bits_per_frame + code_param.ldpc_parity_bits_per_frame;
code_param.coded_syms_per_frame = code_param.coded_bits_per_frame/code_param.bits_per_symbol;
printf("2020 mode\n");
printf("ldpc_data_bits_per_frame = %d\n", code_param.ldpc_data_bits_per_frame);
printf("ldpc_coded_bits_per_frame = %d\n", code_param.ldpc_coded_bits_per_frame);
printf("ldpc_parity_bits_per_frame = %d\n", code_param.ldpc_parity_bits_per_frame);
printf("data_bits_per_frame = %d\n", code_param.data_bits_per_frame);
printf("coded_bits_per_frame = %d\n", code_param.coded_bits_per_frame);
printf("coded_syms_per_frame = %d\n", code_param.coded_syms_per_frame);
printf("ofdm_bits_per_frame = %d\n", Nbitsperframe);
Nbitspercodecframe = 52; Ncodecframespermodemframe = 6;
printf(" Nuwbits: %d Ntxtbits: %d\n", Nuwbits, Ntxtbits);
Nparity = code_param.ldpc_parity_bits_per_frame;
totalbitsperframe = code_param.data_bits_per_frame + Nparity + Nuwbits + Ntxtbits;
printf("Total bits per frame: %d\n", totalbitsperframe);
assert(totalbitsperframe == Nbitsperframe);
end
endfunction
% Assemble a modem frame from input codec bits based on the current FreeDV "mode". Note
% we don't insert UW and txt bits at this stage, that is handled as a second stage of modem frame
% construction a little later.
function [frame_bits bits_per_frame] = assemble_frame(states, code_param, mode, codec_bits, ...
Ncodecframespermodemframe, Nbitspercodecframe)
ofdm_load_const;
if strcmp(mode, "700D")
frame_bits = LdpcEncode(codec_bits, code_param.H_rows, code_param.P_matrix);
end
if strcmp(mode, "2020")
Nunused = code_param.ldpc_data_bits_per_frame - code_param.data_bits_per_frame;
frame_bits = LdpcEncode([codec_bits zeros(1,Nunused)], code_param.H_rows, code_param.P_matrix);
% remove unused datat bits
frame_bits = [ frame_bits(1:code_param.data_bits_per_frame) frame_bits(code_param.ldpc_data_bits_per_frame+1:end) ];
end
bits_per_frame = length(frame_bits);
endfunction
|