1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
|
% ofdm_rs.m
% David Rowe Mar 2017
%
% Rate Rs BPSK/QPSK simulation to explore techniques for
% phase estimation over multiple carriers in HF channel. Rate
% Rs version of ofdm_fs.m
#{
TODO:
[X] sim pilot based phase est using known symbols
[X] test AWGN BER with averaging pilots from adj carriers
[X] refactor to insert pilot rows
[X] add border cols, not used for data
[X] centre est on current carrier, extend to > 3
[X] test single points
+ 1dB IL @ 6dB HF, 0.4 dB @ 2dB AWGN
[X] try linear interpolation
[X] try longer time windows
[X] try combining mod stripping phase est inside frame
[X] curves taking into account pilot losses
[ ] remove border carriers, interpolate edge carrier
[X] modify for QPSK
#}
1;
% Gray coded QPSK modulation function
function symbol = qpsk_mod(two_bits)
two_bits_decimal = sum(two_bits .* [2 1]);
switch(two_bits_decimal)
case (0) symbol = 1;
case (1) symbol = j;
case (2) symbol = -j;
case (3) symbol = -1;
endswitch
endfunction
% Gray coded QPSK demodulation function
function two_bits = qpsk_demod(symbol)
bit0 = real(symbol*exp(j*pi/4)) < 0;
bit1 = imag(symbol*exp(j*pi/4)) < 0;
two_bits = [bit1 bit0];
endfunction
function sim_out = run_sim(sim_in)
Rs = 100;
bps = sim_in.bps;
EbNodB = sim_in.EbNodB;
verbose = sim_in.verbose;
hf_en = sim_in.hf_en;
hf_phase = sim_in.hf_phase;
phase_offset = sim_in.phase_offset;
Ns = sim_in.Ns; % step size for pilots
Nc = sim_in.Nc; % Number of cols, aka number of carriers
Nbitsperframe = (Ns-1)*Nc*bps;
Nrowsperframe = Nbitsperframe/(Nc*bps);
if verbose
printf("bps:.........: %d\n", bps);
printf("Nbitsperframe: %d\n", Nbitsperframe);
printf("Nrowsperframe: %d\n", Nrowsperframe);
end
% Important to define run time in seconds so HF model will evolve the same way
% for different pilot insertion rates. So lets work backwards from approx
% seconds in run to get Nbits, the total number of payload data bits
% frame has Ns-1 data symbols between pilots, e.g. for Ns=3:
%
% PPP
% DDD
% DDD
% PPP
Nrows = sim_in.Nsec*Rs;
Nframes = floor((Nrows-1)/Ns);
Nbits = Nframes * Nbitsperframe; % number of payload data bits
Nr = Nbits/(Nc*bps); % Number of data rows to get Nbits total
if verbose
printf("Nc.....: %d\n", Nc);
printf("Ns.....: %d (step size for pilots, Ns-1 data symbols between pilots)\n", Ns);
printf("Nr.....: %d\n", Nr);
printf("Nbits..: %d\n", Nbits);
end
% double check if Nbits fit neatly into carriers
assert(Nbits/(Nc*bps) == floor(Nbits/(Nc*bps)), "Nbits/(Nc*bps) must be an integer");
printf("Nframes: %d\n", Nframes);
Nrp = Nr + Nframes + 1; % number of rows once pilots inserted
% extra row of pilots at end
printf("Nrp....: %d (number of rows including pilots)\n", Nrp);
% set up HF model
if hf_en
% some typical values, or replace with user supplied
dopplerSpreadHz = 1.0; path_delay = 1E-3*Rs;
if isfield(sim_in, "dopplerSpreadHz")
dopplerSpreadHz = sim_in.dopplerSpreadHz;
end
if isfield(sim_in, "path_delay")
path_delay = sim_in.path_delay;
end
printf("Doppler Spread: %3.2f Hz Path Delay: %3.2f symbols\n", dopplerSpreadHz, path_delay);
randn('seed',1);
spread1 = doppler_spread(dopplerSpreadHz, Rs, sim_in.Nsec*Rs*1.1);
spread2 = doppler_spread(dopplerSpreadHz, Rs, sim_in.Nsec*Rs*1.1);
% sometimes doppler_spread() doesn't return exactly the number of samples we need
assert(length(spread1) >= Nrp, "not enough doppler spreading samples");
assert(length(spread2) >= Nrp, "not enough doppler spreading samples");
end
% construct an artificial phase countour for testing, linear across freq and time
if sim_in.phase_test
phase_test = ones(Nrp, Nc+2);
for r=1:Nrp
for c=1:Nc+2
phase_test(r,c) = -pi/2 + c*pi/(Nc+2) + r*0.01*2*pi;
phase_test(r,c) = phase_test(r,c) - 2*pi*floor((phase_test(r,c)+pi)/(2*pi));
end
end
end
% simulate for each Eb/No point ------------------------------------
for nn=1:length(EbNodB)
rand('seed',1);
randn('seed',1);
EsNo = bps * (10 .^ (EbNodB(nn)/10));
variance = 1/(EsNo/2);
noise = sqrt(variance)*(0.5*randn(Nrp,Nc+2) + j*0.5*randn(Nrp,Nc+2));
% generate tx bits
tx_bits = rand(1,Nbits) > 0.5;
% map to symbols
if bps == 1
tx_symb = 2*tx_bits - 1;
end
if bps == 2
for s=1:Nbits/bps
tx_symb(s) = qpsk_mod(tx_bits(2*(s-1)+1:2*s));
end
end
% place symbols in multi-carrier frame with pilots and boundary carriers
tx = []; s = 1;
for f=1:Nframes
aframe = zeros(Nrowsperframe,Nc+2);
aframe(1,:) = 1;
for r=1:Nrowsperframe
arowofsymbols = tx_symb(s:s+Nc-1);
s += Nc;
aframe(r+1,2:Nc+1) = arowofsymbols;
end
tx = [tx; aframe];
end
tx = [tx; ones(1,Nc+2)]; % final row of pilots
[nr nc] = size(tx);
assert(nr == Nrp);
rx = tx * exp(j*phase_offset);
if sim_in.phase_test
rx = rx .* exp(j*phase_test);
end
if hf_en
% simplified rate Rs simulation model that doesn't include
% ISI, just freq filtering.
% Note Rs carrier spacing, sample rate is Rs
hf_model = zeros(Nr,Nc+2); phase_est = zeros(Nr,Nc);
for r=1:Nrp
for c=1:Nc+2
w = 2*pi*c*Rs/Rs;
hf_model(r,c) = spread1(r) + exp(-j*w*path_delay)*spread2(r);
end
if hf_phase
rx(r,:) = rx(r,:) .* hf_model(r,:);
else
rx(r,:) = rx(r,:) .* abs(hf_model(r,:));
end
end
% normalise power over HF simulation run
p = sum(var(rx));
rx *= sqrt(Nc/p);
end
rx += noise;
% pilot based phase est, we use known tx symbols as pilots ----------
rx_corr = rx;
if sim_in.pilot_phase_est
% est phase from pilots either side of data symbols
% adjust phase of data symbol
% demodulate and count errors of just data
phase_est_pilot_log = 10*ones(Nrp,Nc+2);
phase_est_stripped_log = 10*ones(Nrp,Nc+2);
phase_est_log = 10*ones(Nrp,Nc+2);
for c=2:Nc+1
for r=1:Ns:Nrp-Ns
% estimate phase using average of 6 pilots in a rect 2D window centred
% on this carrier
% PPP
% DDD
% DDD
% PPP
cr = c-1:c+1;
aphase_est_pilot_rect1 = sum(rx(r,cr)*tx(r,cr)');
aphase_est_pilot_rect2 = sum(rx(r+Ns,cr)*tx(r+Ns,cr)');
% optionally use next step of pilots in past and future
if sim_in.pilot_wide
if r > Ns+1
aphase_est_pilot_rect1 += sum(rx(r-Ns,cr)*tx(r-Ns,cr)');
end
if r < Nrp - 2*Ns
aphase_est_pilot_rect2 += sum(rx(r+2*Ns,cr)*tx(r+2*Ns,cr)');
end
end
% correct phase offset using phase estimate
for rr=r+1:r+Ns-1
a = b = 1;
if sim_in.pilot_interp
b = (rr-r)/Ns; a = 1 - b;
end
%printf("rr: %d a: %4.3f b: %4.3f\n", rr, a, b);
aphase_est_pilot = angle(a*aphase_est_pilot_rect1 + b*aphase_est_pilot_rect2);
phase_est_pilot_log(rr,c) = aphase_est_pilot;
rx_corr(rr,c) = rx(rr,c) * exp(-j*aphase_est_pilot);
end
if sim_in.stripped_phase_est
% Optional modulation stripping feed fwd phase estimation, to refine
% pilot-based phase estimate. Doing it after pilot based phase estimation
% means we don't need to deal with ambiguity, which is difficult to handle
% in low SNR channels.
% Use vector of 7 symbols around current data symbol. We could use a 2D
% window if we can work out how best to correct with pilot-est and avoid
% ambiguities
for rr=r+1:r+Ns-1
% extract a matrix of nearby samples with pilot-based offset removed
amatrix = rx(max(1,rr-3):min(Nrp,rr+3),c) .* exp(-j*aphase_est_pilot);
% modulation strip and est phase
stripped = abs(amatrix) .* exp(j*2*angle(amatrix));
aphase_est_stripped = angle(sum(sum(stripped)))/2;
phase_est_stripped_log(rr,c) = aphase_est_stripped;
% correct rx symbols based on both phase ests
phase_est_log(rr,c) = angle(exp(j*(aphase_est_pilot+aphase_est_stripped)));
rx_corr(rr,c) = rx(rr,c) * exp(-j*phase_est_log(rr,c));
end
end % sim_in.stripped_phase_est
end % r=1:Ns:Nrp-Ns
end % c=2:Nc+1
end % sim_in.pilot_phase_est
if isfield(sim_in, "ml_pd") && sim_in.ml_pd
% Bill's ML with pilots phase detector, does phase est and demodulation
rx_bits = []; rx_np = [];
aframeofbits = zeros(Ns-1, Nc);
for r=1:Ns:Nrp-Ns
% demodulate this frame, ML operates carrier by carrier
for c=2:Nc+1
arxcol = rx(r:r+Ns, c);
arxcol(1) = rx(r, c-1) + rx(r, c+1);
arxcol(Ns+1) = rx(r+Ns, c-1) + rx(r+Ns, c+1);
[acolofbits aphase_est] = ml_pd(rot90(arxcol), bps, [1 Ns+1]);
aframeofbits(:,c-1) = xor(acolofbits, ones(1,Ns-1));
rx_np = [rx_np rot90(arxcol) .* exp(-j*aphase_est)];
end
% unpack from frame into linear array of bits
for rr=1:Ns-1
rx_bits = [rx_bits aframeofbits(rr,:)];
end
end
else
% remove pilots to give us just data symbols and demodulate
rx_bits = []; rx_np = [];
for r=1:Nrp
if mod(r-1,Ns) != 0
arowofsymbols = rx_corr(r,2:Nc+1);
rx_np = [rx_np arowofsymbols];
if bps == 1
arowofbits = real(arowofsymbols) > 0;
end
if bps == 2
arowofbits = zeros(1,Nc);
for c=1:Nc
arowofbits((c-1)*2+1:c*2) = qpsk_demod(arowofsymbols(c));
end
end
rx_bits = [rx_bits arowofbits];
end
end
end
%tx_bits
%rx_bits
assert(length(rx_bits) == Nbits);
%phase_test
%phase_est_log
% calculate BER stats as a block, after pilots extracted
errors = xor(tx_bits, rx_bits);
Nerrs = sum(errors);
printf("EbNodB: %3.2f BER: %5.4f Nbits: %d Nerrs: %d\n", EbNodB(nn), Nerrs/Nbits, Nbits, Nerrs);
if verbose
figure(1); clf;
plot(rx_np,'+');
axis([-2 2 -2 2]);
if hf_en
figure(2); clf;
plot(abs(hf_model(:,2:Nc+1)));
end
if sim_in.pilot_phase_est
figure(3); clf;
plot(phase_est_log(:,2:Nc+1),'+', 'markersize', 10);
hold on;
plot(phase_est_pilot_log(:,2:Nc+1),'g+', 'markersize', 5);
if sim_in.stripped_phase_est
plot(phase_est_stripped_log(:,2:Nc+1),'ro', 'markersize', 5);
end
if sim_in.hf_en && sim_in.hf_phase
plot(angle(hf_model(:,2:Nc+1)));
end
if sim_in.phase_test
plot(phase_test(:,2:Nc+1));
end
axis([1 Nrp -pi pi]);
end
end
sim_out.ber(nn) = sum(Nerrs)/Nbits;
sim_out.pilot_overhead = 10*log10(Ns/(Ns-1));
end
endfunction
% Plot BER against Eb/No curves at various pilot insertion rates Ns
% using the HF multipath channel. Second set of curves includes Eb/No
% loss for pilot insertion, so small Ns means better tracking of phase
% but large pilot insertion loss
% Target operating point Eb/No is 6dB, as this is where our rate 1/2
% LDPC code gives good results (10% PER, 1% BER). However this means
% the Eb/No at the input is 10*log(1/2) or 3dB less, so we need to
% make sure phase est works at Eb/No = 6 - 3 = 3dB
function run_curves_hf
sim_in.Nc = 7;
sim_in.Ns = 5;
sim_in.Nsec = 240;
sim_in.EbNodB = 1:8;
sim_in.verbose = 0;
sim_in.pilot_phase_est = 0;
sim_in.pilot_wide = 1;
sim_in.pilot_interp = 0;
sim_in.stripped_phase_est = 0;
sim_in.phase_offset = 0;
sim_in.phase_test = 0;
sim_in.hf_en = 1;
sim_in.hf_phase = 0;
sim_in.Ns = 5;
hf_ref_Ns_5_no_phase = run_sim(sim_in);
sim_in.Ns = 9;
hf_ref_Ns_9_no_phase = run_sim(sim_in);
sim_in.hf_phase = 1;
sim_in.pilot_phase_est = 1;
sim_in.Ns = 5;
hf_Ns_5 = run_sim(sim_in);
sim_in.Ns = 9;
hf_Ns_9 = run_sim(sim_in);
sim_in.Ns = 17;
hf_Ns_17 = run_sim(sim_in);
figure(4); clf;
semilogy(sim_in.EbNodB, hf_ref_Ns_5_no_phase.ber,'b+-;Ns=5 HF ref no phase;');
hold on;
semilogy(sim_in.EbNodB, hf_ref_Ns_9_no_phase.ber,'c+-;Ns=9 HF ref no phase;');
semilogy(sim_in.EbNodB, hf_Ns_5.ber,'g+--;Ns=5;');
semilogy(sim_in.EbNodB + hf_Ns_5.pilot_overhead, hf_Ns_5.ber,'go-;Ns=5 with pilot overhead;');
semilogy(sim_in.EbNodB, hf_Ns_9.ber,'r+--;Ns=9;');
semilogy(sim_in.EbNodB + hf_Ns_9.pilot_overhead, hf_Ns_9.ber,'ro-;Ns=9 with pilot overhead;');
semilogy(sim_in.EbNodB, hf_Ns_17.ber,'k+--;Ns=17;');
semilogy(sim_in.EbNodB + hf_Ns_17.pilot_overhead, hf_Ns_17.ber,'ko-;Ns=17 with pilot overhead;');
hold off;
axis([1 8 4E-2 2E-1])
xlabel('Eb/No (dB)');
ylabel('BER');
grid; grid minor on;
legend('boxoff');
title('HF Multipath 1Hz Doppler 1ms delay');
end
% Generate HF curves for some alternative, experimental methods tested
% during development, such as interpolation, refinements using
% modulation stripping, narrow window.
function run_curves_hf_alt
sim_in.Nc = 7;
sim_in.Ns = 5;
sim_in.Nsec = 60;
sim_in.EbNodB = 1:8;
sim_in.verbose = 0;
sim_in.pilot_phase_est = 0;
sim_in.pilot_wide = 1;
sim_in.pilot_interp = 0;
sim_in.stripped_phase_est = 0;
sim_in.phase_offset = 0;
sim_in.phase_test = 0;
sim_in.hf_en = 1;
sim_in.hf_phase = 0;
sim_in.Ns = 9;
hf_ref_Ns_9_no_phase = run_sim(sim_in);
sim_in.hf_phase = 1;
sim_in.pilot_phase_est = 1;
hf_Ns_9 = run_sim(sim_in);
sim_in.stripped_phase_est = 1;
hf_Ns_9_stripped = run_sim(sim_in);
sim_in.stripped_phase_est = 0;
sim_in.pilot_wide = 0;
hf_Ns_9_narrow = run_sim(sim_in);
sim_in.pilot_wide = 1;
sim_in.pilot_interp = 1;
hf_Ns_9_interp = run_sim(sim_in);
figure(6); clf;
semilogy(sim_in.EbNodB, hf_ref_Ns_9_no_phase.ber,'c+-;Ns=9 HF ref no phase;');
hold on;
semilogy(sim_in.EbNodB, hf_Ns_9.ber,'r+--;Ns=9;');
semilogy(sim_in.EbNodB, hf_Ns_9_stripped.ber,'g+--;Ns=9 stripped refinement;');
semilogy(sim_in.EbNodB, hf_Ns_9_narrow.ber,'b+--;Ns=9 narrow;');
semilogy(sim_in.EbNodB, hf_Ns_9_interp.ber,'k+--;Ns=9 interp;');
hold off;
axis([1 8 4E-2 2E-1])
xlabel('Eb/No (dB)');
ylabel('BER');
grid; grid minor on;
legend('boxoff');
title('HF Multipath 1Hz Doppler 1ms delay');
end
% Generate HF curves for fixed Ns but different HF channels.
function run_curves_hf_channels
sim_in.Nc = 7;
sim_in.Ns = 9;
sim_in.Nsec = 240;
sim_in.EbNodB = 1:8;
sim_in.verbose = 0;
sim_in.pilot_phase_est = 0;
sim_in.pilot_wide = 1;
sim_in.pilot_interp = 0;
sim_in.stripped_phase_est = 0;
sim_in.phase_offset = 0;
sim_in.phase_test = 0;
sim_in.hf_en = 1;
sim_in.hf_phase = 0;
hf_Ns_9_1hz_1ms_no_phase = run_sim(sim_in);
sim_in.hf_phase = 1;
sim_in.pilot_phase_est = 1;
hf_Ns_9_1hz_1ms = run_sim(sim_in);
Rs = 100;
sim_in.dopplerSpreadHz = 1.0;
sim_in.path_delay = 500E-6*Rs;
hf_Ns_9_1hz_500us = run_sim(sim_in);
sim_in.dopplerSpreadHz = 1.0;
sim_in.path_delay = 2E-3*Rs;
hf_Ns_9_1hz_2ms = run_sim(sim_in);
sim_in.dopplerSpreadHz = 2.0;
sim_in.path_delay = 1E-3*Rs;
hf_Ns_9_2hz_1ms = run_sim(sim_in);
sim_in.dopplerSpreadHz = 2.0;
sim_in.path_delay = 1E-3*Rs;
hf_Ns_9_2hz_2ms = run_sim(sim_in);
sim_in.dopplerSpreadHz = 2.0;
sim_in.path_delay = 2E-3*Rs;
hf_Ns_9_2hz_2ms = run_sim(sim_in);
sim_in.dopplerSpreadHz = 4.0;
sim_in.path_delay = 1E-3*Rs;
hf_Ns_9_4hz_1ms = run_sim(sim_in);
figure(6); clf;
semilogy(sim_in.EbNodB, hf_Ns_9_1hz_1ms_no_phase.ber,'c+-;Ns=9 1Hz 1ms ref no phase;');
hold on;
semilogy(sim_in.EbNodB, hf_Ns_9_1hz_500us.ber,'k+-;Ns=9 1Hz 500us;');
semilogy(sim_in.EbNodB, hf_Ns_9_1hz_1ms.ber,'r+-;Ns=9 1Hz 1ms;');
semilogy(sim_in.EbNodB, hf_Ns_9_1hz_2ms.ber,'bo-;Ns=9 1Hz 2ms;');
semilogy(sim_in.EbNodB, hf_Ns_9_2hz_1ms.ber,'g+-;Ns=9 2Hz 1ms;');
semilogy(sim_in.EbNodB, hf_Ns_9_2hz_2ms.ber,'mo-;Ns=9 2Hz 2ms;');
semilogy(sim_in.EbNodB, hf_Ns_9_4hz_1ms.ber,'c+-;Ns=9 4Hz 1ms;');
hold off;
axis([1 8 4E-2 2E-1])
xlabel('Eb/No (dB)');
ylabel('BER');
grid; grid minor on;
legend('boxoff');
title('HF Multipath Ns = 9');
end
% AWGN curves for BPSK and QPSK. Coded Eb/No operating point is 2dB,
% so raw BER for rate 1/2 will be -1dB
function run_curves_awgn_bpsk_qpsk
sim_in.Nc = 7;
sim_in.Ns = 7;
sim_in.Nsec = 30;
sim_in.verbose = 0;
sim_in.pilot_phase_est = 0;
sim_in.pilot_wide = 1;
sim_in.pilot_interp = 0;
sim_in.stripped_phase_est = 1;
sim_in.phase_offset = 0;
sim_in.phase_test = 0;
sim_in.hf_en = 0;
sim_in.hf_phase = 0;
sim_in.EbNodB = -3:5;
ber_awgn_theory = 0.5*erfc(sqrt(10.^(sim_in.EbNodB/10)));
sim_in.bps = 1;
awgn_bpsk = run_sim(sim_in);
sim_in.bps = 2;
awgn_qpsk = run_sim(sim_in);
figure(5); clf;
semilogy(sim_in.EbNodB, ber_awgn_theory,'b+-;AWGN Theory;');
hold on;
semilogy(sim_in.EbNodB, awgn_bpsk.ber,'g+-;Ns=7 BPSK;');
semilogy(sim_in.EbNodB + awgn_bpsk.pilot_overhead, awgn_bpsk.ber,'go-;Ns=7 BPSK with pilot overhead;');
semilogy(sim_in.EbNodB, awgn_qpsk.ber,'r+-;Ns=7 QPSK;');
semilogy(sim_in.EbNodB + awgn_qpsk.pilot_overhead, awgn_qpsk.ber,'ro-;Ns=7 QPSK with pilot overhead;');
hold off;
axis([-3 5 4E-3 2E-1])
xlabel('Eb/No (dB)');
ylabel('BER');
grid; grid minor on;
legend('boxoff');
title('AWGN');
end
% HF multipath curves for BPSK and QPSK. Coded operating point is about 3dB
function run_curves_hf_bpsk_qpsk
sim_in.Nc = 7;
sim_in.Ns = 7;
sim_in.Nsec = 120;
sim_in.verbose = 0;
sim_in.pilot_phase_est = 1;
sim_in.pilot_wide = 1;
sim_in.pilot_interp = 0;
sim_in.stripped_phase_est = 0;
sim_in.phase_offset = 0;
sim_in.phase_test = 0;
sim_in.hf_en = 1;
sim_in.hf_phase = 1;
sim_in.EbNodB = 1:8;
EbNoLin = 10.^(sim_in.EbNodB/10);
hf_theory = 0.5.*(1-sqrt(EbNoLin./(EbNoLin+1)));
sim_in.bps = 1;
hf_bpsk = run_sim(sim_in);
sim_in.bps = 2;
hf_qpsk = run_sim(sim_in);
figure(5); clf;
semilogy(sim_in.EbNodB, hf_theory,'b+-;HF Theory;');
hold on;
semilogy(sim_in.EbNodB, hf_bpsk.ber,'g+-;Ns=7 BPSK;');
semilogy(sim_in.EbNodB + hf_bpsk.pilot_overhead, hf_bpsk.ber,'go-;Ns=7 BPSK with pilot overhead;');
semilogy(sim_in.EbNodB, hf_qpsk.ber,'r+-;Ns=7 QPSK;');
semilogy(sim_in.EbNodB + hf_qpsk.pilot_overhead, hf_qpsk.ber,'ro-;Ns=7 QPSK with pilot overhead;');
hold off;
axis([1 8 4E-3 2E-1])
xlabel('Eb/No (dB)');
ylabel('BER');
grid; grid minor on;
legend('boxoff');
title('HF Multipath');
end
% AWGN curves for BPSK using 3 carrier 2D matrix pilot and ML pilot
function run_curves_awgn_ml
sim_in.bps = 1;
sim_in.Nc = 7;
sim_in.Ns = 7;
sim_in.Nsec = 10;
sim_in.verbose = 0;
sim_in.pilot_phase_est = 1;
sim_in.pilot_wide = 1;
sim_in.pilot_interp = 0;
sim_in.stripped_phase_est = 1;
sim_in.phase_offset = 0;
sim_in.phase_test = 0;
sim_in.hf_en = 0;
sim_in.hf_phase = 0;
sim_in.EbNodB = -3:5;
ber_awgn_theory = 0.5*erfc(sqrt(10.^(sim_in.EbNodB/10)));
awgn_2d = run_sim(sim_in);
sim_in.pilot_phase_est = 0;
sim_in.ml_pd = 1;
awgn_ml = run_sim(sim_in);
figure(5); clf;
semilogy(sim_in.EbNodB, ber_awgn_theory,'b+-;AWGN Theory;');
hold on;
semilogy(sim_in.EbNodB, awgn_2d.ber,'g+-;Ns=7 3 carrier pilot BPSK;');
semilogy(sim_in.EbNodB, awgn_ml.ber,'ro-;Ns=7 ML pilot BPSK;');
hold off;
axis([-3 5 4E-3 5E-1])
xlabel('Eb/No (dB)');
ylabel('BER');
grid; grid minor on;
legend('boxoff');
title('AWGN');
end
% HF multipath curves for ML
function run_curves_hf_ml
sim_in.bps = 1;
sim_in.Nc = 7;
sim_in.Ns = 14;
sim_in.Nsec = 120;
sim_in.verbose = 0;
sim_in.pilot_phase_est = 1;
sim_in.pilot_wide = 1;
sim_in.pilot_interp = 0;
sim_in.stripped_phase_est = 0;
sim_in.phase_offset = 0;
sim_in.phase_test = 0;
sim_in.hf_en = 1;
sim_in.hf_phase = 1;
sim_in.EbNodB = 1:8;
EbNoLin = 10.^(sim_in.EbNodB/10);
hf_theory = 0.5.*(1-sqrt(EbNoLin./(EbNoLin+1)));
hf_2d = run_sim(sim_in);
sim_in.pilot_phase_est = 0;
sim_in.ml_pd = 1;
hf_ml = run_sim(sim_in);
figure(7); clf;
semilogy(sim_in.EbNodB, hf_theory,'b+-;HF Theory;');
hold on;
semilogy(sim_in.EbNodB, hf_2d.ber,'g+-;Ns=7 3 carrier pilot BPSK;');
semilogy(sim_in.EbNodB, hf_ml.ber,'ro-;Ns=7 ML pilot BPSK;');
hold off;
axis([1 8 4E-3 2E-1])
xlabel('Eb/No (dB)');
ylabel('BER');
grid; grid minor on;
legend('boxoff');
title('HF Multipath');
end
function run_single
sim_in.bps = 2;
sim_in.Nsec = 60;
sim_in.Nc = 16;
sim_in.Ns = 8;
sim_in.EbNodB = 6;
sim_in.verbose = 1;
sim_in.pilot_phase_est = 1;
sim_in.pilot_wide = 1;
sim_in.pilot_interp = 0;
sim_in.stripped_phase_est = 0;
sim_in.ml_pd = 0;
sim_in.phase_offset = 0;
sim_in.phase_test = 0;
sim_in.hf_en = 1;
sim_in.hf_phase = 1;
sim_in.path_delay = 0;
run_sim(sim_in);
EbNoLin = 10.^(sim_in.EbNodB/10);
hf_theory = 0.5.*(1-sqrt(EbNoLin./(EbNoLin+1)));
printf("HF theory: %5.4f\n", hf_theory);
end
format;
more off;
run_single
%run_curves_hf_bpsk_qpsk
%run_curves_hf_channels
%run_curves_hf_ml
|