File: ofdm_rs.m

package info (click to toggle)
codec2 0.9.2-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 113,072 kB
  • sloc: ansic: 412,877; python: 4,004; sh: 1,540; objc: 817; asm: 683; makefile: 588
file content (795 lines) | stat: -rw-r--r-- 21,675 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
% ofdm_rs.m
% David Rowe Mar 2017
%
% Rate Rs BPSK/QPSK simulation to explore techniques for
% phase estimation over multiple carriers in HF channel.  Rate
% Rs version of ofdm_fs.m

#{
 TODO:
   [X] sim pilot based phase est using known symbols
   [X] test AWGN BER with averaging pilots from adj carriers
   [X] refactor to insert pilot rows
   [X] add border cols, not used for data
   [X] centre est on current carrier, extend to > 3
   [X] test single points
       + 1dB IL @ 6dB HF, 0.4 dB @ 2dB AWGN
   [X] try linear interpolation
   [X] try longer time windows
   [X] try combining mod stripping phase est inside frame
   [X] curves taking into account pilot losses
   [ ] remove border carriers, interpolate edge carrier
   [X] modify for QPSK
#}

1;

% Gray coded QPSK modulation function

function symbol = qpsk_mod(two_bits)
    two_bits_decimal = sum(two_bits .* [2 1]); 
    switch(two_bits_decimal)
        case (0) symbol =  1;
        case (1) symbol =  j;
        case (2) symbol = -j;
        case (3) symbol = -1;
    endswitch
endfunction


% Gray coded QPSK demodulation function

function two_bits = qpsk_demod(symbol)
    bit0 = real(symbol*exp(j*pi/4)) < 0;
    bit1 = imag(symbol*exp(j*pi/4)) < 0;
    two_bits = [bit1 bit0];
endfunction


function sim_out = run_sim(sim_in)
  Rs = 100;

  bps = sim_in.bps;
  EbNodB = sim_in.EbNodB;
  verbose = sim_in.verbose;
  hf_en = sim_in.hf_en;
  hf_phase = sim_in.hf_phase;
  phase_offset = sim_in.phase_offset;

  Ns = sim_in.Ns;          % step size for pilots
  Nc = sim_in.Nc;          % Number of cols, aka number of carriers

  Nbitsperframe = (Ns-1)*Nc*bps;
  Nrowsperframe = Nbitsperframe/(Nc*bps);
  if verbose
    printf("bps:.........: %d\n", bps);
    printf("Nbitsperframe: %d\n", Nbitsperframe);
    printf("Nrowsperframe: %d\n", Nrowsperframe);
  end

  % Important to define run time in seconds so HF model will evolve the same way
  % for different pilot insertion rates.  So lets work backwards from approx
  % seconds in run to get Nbits, the total number of payload data bits

  % frame has Ns-1 data symbols between pilots, e.g. for Ns=3: 
  %
  % PPP
  % DDD
  % DDD
  % PPP

  Nrows = sim_in.Nsec*Rs;
  Nframes = floor((Nrows-1)/Ns);
  Nbits = Nframes * Nbitsperframe;    % number of payload data bits

  Nr = Nbits/(Nc*bps);                % Number of data rows to get Nbits total

  if verbose
    printf("Nc.....: %d\n", Nc);
    printf("Ns.....: %d (step size for pilots, Ns-1 data symbols between pilots)\n", Ns);
    printf("Nr.....: %d\n", Nr);
    printf("Nbits..: %d\n", Nbits);
  end

  % double check if Nbits fit neatly into carriers

  assert(Nbits/(Nc*bps) == floor(Nbits/(Nc*bps)), "Nbits/(Nc*bps) must be an integer");
 
  printf("Nframes: %d\n", Nframes);

  Nrp = Nr + Nframes + 1;  % number of rows once pilots inserted
                           % extra row of pilots at end
  printf("Nrp....: %d (number of rows including pilots)\n", Nrp);
  
  % set up HF model

  if hf_en

    % some typical values, or replace with user supplied

    dopplerSpreadHz = 1.0; path_delay = 1E-3*Rs;

    if isfield(sim_in, "dopplerSpreadHz") 
      dopplerSpreadHz = sim_in.dopplerSpreadHz;
    end
    if isfield(sim_in, "path_delay") 
      path_delay = sim_in.path_delay;
    end
    printf("Doppler Spread: %3.2f Hz Path Delay: %3.2f symbols\n", dopplerSpreadHz, path_delay);
    randn('seed',1);
    spread1 = doppler_spread(dopplerSpreadHz, Rs, sim_in.Nsec*Rs*1.1);
    spread2 = doppler_spread(dopplerSpreadHz, Rs, sim_in.Nsec*Rs*1.1);

    % sometimes doppler_spread() doesn't return exactly the number of samples we need
 
    assert(length(spread1) >= Nrp, "not enough doppler spreading samples");
    assert(length(spread2) >= Nrp, "not enough doppler spreading samples");
  end
  
  % construct an artificial phase countour for testing, linear across freq and time

  if sim_in.phase_test
    phase_test = ones(Nrp, Nc+2);
    for r=1:Nrp
      for c=1:Nc+2
        phase_test(r,c) = -pi/2 + c*pi/(Nc+2) + r*0.01*2*pi;
        phase_test(r,c) = phase_test(r,c) - 2*pi*floor((phase_test(r,c)+pi)/(2*pi));
      end
    end
  end

  % simulate for each Eb/No point ------------------------------------

  for nn=1:length(EbNodB)
    rand('seed',1);
    randn('seed',1);

    EsNo = bps * (10 .^ (EbNodB(nn)/10));
    variance = 1/(EsNo/2);
    noise = sqrt(variance)*(0.5*randn(Nrp,Nc+2) + j*0.5*randn(Nrp,Nc+2));

    % generate tx bits

    tx_bits = rand(1,Nbits) > 0.5;

    % map to symbols 

    if bps == 1
      tx_symb = 2*tx_bits - 1;
    end
    if bps == 2
      for s=1:Nbits/bps
        tx_symb(s) = qpsk_mod(tx_bits(2*(s-1)+1:2*s));
      end
    end

    % place symbols in multi-carrier frame with pilots and boundary carriers

    tx = []; s = 1;
    for f=1:Nframes
      aframe = zeros(Nrowsperframe,Nc+2);
      aframe(1,:) = 1;
      for r=1:Nrowsperframe
        arowofsymbols = tx_symb(s:s+Nc-1);
        s += Nc;
        aframe(r+1,2:Nc+1) = arowofsymbols;
      end
      tx = [tx; aframe];
    end      
    tx = [tx; ones(1,Nc+2)];  % final row of pilots
    [nr nc] = size(tx);
    assert(nr == Nrp);
    
    rx = tx * exp(j*phase_offset);

    if sim_in.phase_test
      rx = rx .* exp(j*phase_test);
    end

    if hf_en

      % simplified rate Rs simulation model that doesn't include
      % ISI, just freq filtering.
      
      % Note Rs carrier spacing, sample rate is Rs

      hf_model = zeros(Nr,Nc+2); phase_est = zeros(Nr,Nc);
      for r=1:Nrp
        for c=1:Nc+2
          w = 2*pi*c*Rs/Rs; 
          hf_model(r,c) = spread1(r) + exp(-j*w*path_delay)*spread2(r);
        end
        
        if hf_phase
          rx(r,:) = rx(r,:) .* hf_model(r,:);
        else
          rx(r,:) = rx(r,:) .* abs(hf_model(r,:));
        end
      end

      % normalise power over HF simulation run

      p = sum(var(rx));
      rx *= sqrt(Nc/p);
    end

    rx += noise;

    % pilot based phase est, we use known tx symbols as pilots ----------

    rx_corr = rx;

    if sim_in.pilot_phase_est

      % est phase from pilots either side of data symbols
      % adjust phase of data symbol
      % demodulate and count errors of just data
 
      phase_est_pilot_log = 10*ones(Nrp,Nc+2);
      phase_est_stripped_log = 10*ones(Nrp,Nc+2);
      phase_est_log = 10*ones(Nrp,Nc+2);
      for c=2:Nc+1
        for r=1:Ns:Nrp-Ns

          % estimate phase using average of 6 pilots in a rect 2D window centred
          % on this carrier
          % PPP
          % DDD
          % DDD
          % PPP
          
          cr = c-1:c+1;
          aphase_est_pilot_rect1 = sum(rx(r,cr)*tx(r,cr)');
          aphase_est_pilot_rect2 = sum(rx(r+Ns,cr)*tx(r+Ns,cr)');

          % optionally use next step of pilots in past and future

          if sim_in.pilot_wide
            if r > Ns+1
              aphase_est_pilot_rect1 += sum(rx(r-Ns,cr)*tx(r-Ns,cr)');
            end
            if r < Nrp - 2*Ns
              aphase_est_pilot_rect2 += sum(rx(r+2*Ns,cr)*tx(r+2*Ns,cr)');
            end
          end

          % correct phase offset using phase estimate

          for rr=r+1:r+Ns-1
            a = b = 1;
            if sim_in.pilot_interp
              b = (rr-r)/Ns; a = 1 - b;
            end
            %printf("rr: %d a: %4.3f b: %4.3f\n", rr, a, b);
            aphase_est_pilot = angle(a*aphase_est_pilot_rect1 + b*aphase_est_pilot_rect2);
            phase_est_pilot_log(rr,c) = aphase_est_pilot;
            rx_corr(rr,c) = rx(rr,c) * exp(-j*aphase_est_pilot);
          end

          if sim_in.stripped_phase_est
            % Optional modulation stripping feed fwd phase estimation, to refine
            % pilot-based phase estimate.  Doing it after pilot based phase estimation
            % means we don't need to deal with ambiguity, which is difficult to handle
            % in low SNR channels.

            % Use vector of 7 symbols around current data symbol.  We could use a 2D
            % window if we can work out how best to correct with pilot-est and avoid
            % ambiguities

            for rr=r+1:r+Ns-1

              % extract a matrix of nearby samples with pilot-based offset removed
 
              amatrix = rx(max(1,rr-3):min(Nrp,rr+3),c) .* exp(-j*aphase_est_pilot);

              % modulation strip and est phase

              stripped = abs(amatrix) .* exp(j*2*angle(amatrix));
              aphase_est_stripped = angle(sum(sum(stripped)))/2;
              phase_est_stripped_log(rr,c) = aphase_est_stripped;

              % correct rx symbols based on both phase ests

              phase_est_log(rr,c) = angle(exp(j*(aphase_est_pilot+aphase_est_stripped)));
              rx_corr(rr,c) = rx(rr,c) * exp(-j*phase_est_log(rr,c));
            end       
          end % sim_in.stripped_phase_est

        end % r=1:Ns:Nrp-Ns

      end % c=2:Nc+1
    end % sim_in.pilot_phase_est


    if isfield(sim_in, "ml_pd") && sim_in.ml_pd

      % Bill's ML with pilots phase detector, does phase est and demodulation 

      rx_bits = []; rx_np = [];
      aframeofbits = zeros(Ns-1, Nc);
      for r=1:Ns:Nrp-Ns

        % demodulate this frame, ML operates carrier by carrier 

        for c=2:Nc+1
          arxcol = rx(r:r+Ns, c);
          arxcol(1) = rx(r, c-1) + rx(r, c+1);
          arxcol(Ns+1) = rx(r+Ns, c-1) + rx(r+Ns, c+1);
          [acolofbits aphase_est] = ml_pd(rot90(arxcol),  bps, [1 Ns+1]);
          aframeofbits(:,c-1) = xor(acolofbits, ones(1,Ns-1));
          rx_np = [rx_np rot90(arxcol) .* exp(-j*aphase_est)];
        end
        
        % unpack from frame into linear array of bits

        for rr=1:Ns-1
          rx_bits = [rx_bits aframeofbits(rr,:)];
        end
 
      end
    else

      % remove pilots to give us just data symbols and demodulate
      
      rx_bits = []; rx_np = [];
      for r=1:Nrp
        if mod(r-1,Ns) != 0
          arowofsymbols = rx_corr(r,2:Nc+1);
          rx_np = [rx_np arowofsymbols];
          if bps == 1
            arowofbits = real(arowofsymbols) > 0;
          end
          if bps == 2
            arowofbits = zeros(1,Nc);
            for c=1:Nc
              arowofbits((c-1)*2+1:c*2) = qpsk_demod(arowofsymbols(c));
            end
          end
          rx_bits = [rx_bits arowofbits];
        end
      end
    end
    %tx_bits
    %rx_bits
    assert(length(rx_bits) == Nbits);

    %phase_test
    %phase_est_log

    % calculate BER stats as a block, after pilots extracted

    errors = xor(tx_bits, rx_bits);
    Nerrs = sum(errors);

    printf("EbNodB: %3.2f BER: %5.4f Nbits: %d Nerrs: %d\n", EbNodB(nn), Nerrs/Nbits, Nbits, Nerrs);

    if verbose
      figure(1); clf; 
      plot(rx_np,'+');
      axis([-2 2 -2 2]);

      if hf_en
        figure(2); clf; 
        plot(abs(hf_model(:,2:Nc+1)));
      end

      if sim_in.pilot_phase_est
        figure(3); clf;
        plot(phase_est_log(:,2:Nc+1),'+', 'markersize', 10); 
        hold on; 
        plot(phase_est_pilot_log(:,2:Nc+1),'g+', 'markersize', 5); 
        if sim_in.stripped_phase_est
          plot(phase_est_stripped_log(:,2:Nc+1),'ro', 'markersize', 5); 
        end
        if sim_in.hf_en && sim_in.hf_phase
          plot(angle(hf_model(:,2:Nc+1)));
        end
        if sim_in.phase_test
          plot(phase_test(:,2:Nc+1));
        end
        axis([1 Nrp -pi pi]);
      end
    end

    sim_out.ber(nn) = sum(Nerrs)/Nbits; 
    sim_out.pilot_overhead = 10*log10(Ns/(Ns-1));
  end
endfunction


% Plot BER against Eb/No curves at various pilot insertion rates Ns
% using the HF multipath channel.  Second set of curves includes Eb/No
% loss for pilot insertion, so small Ns means better tracking of phase
% but large pilot insertion loss

% Target operating point Eb/No is 6dB, as this is where our rate 1/2
% LDPC code gives good results (10% PER, 1% BER).  However this means
% the Eb/No at the input is 10*log(1/2) or 3dB less, so we need to
% make sure phase est works at Eb/No = 6 - 3 = 3dB

function run_curves_hf
  sim_in.Nc = 7;
  sim_in.Ns = 5;
  sim_in.Nsec = 240;
  sim_in.EbNodB = 1:8;
  sim_in.verbose = 0;
  sim_in.pilot_phase_est = 0;
  sim_in.pilot_wide = 1;
  sim_in.pilot_interp = 0;
  sim_in.stripped_phase_est = 0;
  sim_in.phase_offset = 0;
  sim_in.phase_test = 0;
  sim_in.hf_en = 1;
  sim_in.hf_phase = 0;

  sim_in.Ns = 5;
  hf_ref_Ns_5_no_phase = run_sim(sim_in);
  sim_in.Ns = 9;
  hf_ref_Ns_9_no_phase = run_sim(sim_in);

  sim_in.hf_phase = 1;
  sim_in.pilot_phase_est = 1;

  sim_in.Ns = 5;
  hf_Ns_5 = run_sim(sim_in);

  sim_in.Ns = 9;
  hf_Ns_9 = run_sim(sim_in);

  sim_in.Ns = 17;
  hf_Ns_17 = run_sim(sim_in);

  figure(4); clf;
  semilogy(sim_in.EbNodB, hf_ref_Ns_5_no_phase.ber,'b+-;Ns=5 HF ref no phase;');
  hold on;
  semilogy(sim_in.EbNodB, hf_ref_Ns_9_no_phase.ber,'c+-;Ns=9 HF ref no phase;');
  semilogy(sim_in.EbNodB, hf_Ns_5.ber,'g+--;Ns=5;');
  semilogy(sim_in.EbNodB + hf_Ns_5.pilot_overhead, hf_Ns_5.ber,'go-;Ns=5 with pilot overhead;');
  semilogy(sim_in.EbNodB, hf_Ns_9.ber,'r+--;Ns=9;');
  semilogy(sim_in.EbNodB + hf_Ns_9.pilot_overhead, hf_Ns_9.ber,'ro-;Ns=9 with pilot overhead;');
  semilogy(sim_in.EbNodB, hf_Ns_17.ber,'k+--;Ns=17;');
  semilogy(sim_in.EbNodB + hf_Ns_17.pilot_overhead, hf_Ns_17.ber,'ko-;Ns=17 with pilot overhead;');
  hold off;
  axis([1 8 4E-2 2E-1])
  xlabel('Eb/No (dB)');
  ylabel('BER');
  grid; grid minor on;
  legend('boxoff');
  title('HF Multipath 1Hz Doppler 1ms delay');

end


% Generate HF curves for some alternative, experimental methods tested
% during development, such as interpolation, refinements using
% modulation stripping, narrow window.

function run_curves_hf_alt
  sim_in.Nc = 7;
  sim_in.Ns = 5;
  sim_in.Nsec = 60;
  sim_in.EbNodB = 1:8;
  sim_in.verbose = 0;
  sim_in.pilot_phase_est = 0;
  sim_in.pilot_wide = 1;
  sim_in.pilot_interp = 0;
  sim_in.stripped_phase_est = 0;
  sim_in.phase_offset = 0;
  sim_in.phase_test = 0;
  sim_in.hf_en = 1;
  sim_in.hf_phase = 0;

  sim_in.Ns = 9;
  hf_ref_Ns_9_no_phase = run_sim(sim_in);

  sim_in.hf_phase = 1;
  sim_in.pilot_phase_est = 1;
  hf_Ns_9 = run_sim(sim_in);

  sim_in.stripped_phase_est = 1;
  hf_Ns_9_stripped = run_sim(sim_in);

  sim_in.stripped_phase_est = 0;
  sim_in.pilot_wide = 0;
  hf_Ns_9_narrow = run_sim(sim_in);

  sim_in.pilot_wide = 1;
  sim_in.pilot_interp = 1;
  hf_Ns_9_interp = run_sim(sim_in);

  figure(6); clf;
  semilogy(sim_in.EbNodB, hf_ref_Ns_9_no_phase.ber,'c+-;Ns=9 HF ref no phase;');
  hold on;
  semilogy(sim_in.EbNodB, hf_Ns_9.ber,'r+--;Ns=9;');
  semilogy(sim_in.EbNodB, hf_Ns_9_stripped.ber,'g+--;Ns=9 stripped refinement;');
  semilogy(sim_in.EbNodB, hf_Ns_9_narrow.ber,'b+--;Ns=9 narrow;');
  semilogy(sim_in.EbNodB, hf_Ns_9_interp.ber,'k+--;Ns=9 interp;');
  hold off;
  axis([1 8 4E-2 2E-1])
  xlabel('Eb/No (dB)');
  ylabel('BER');
  grid; grid minor on;
  legend('boxoff');
  title('HF Multipath 1Hz Doppler 1ms delay');

end


% Generate HF curves for fixed Ns but different HF channels.

function run_curves_hf_channels
  sim_in.Nc = 7;
  sim_in.Ns = 9;
  sim_in.Nsec = 240;
  sim_in.EbNodB = 1:8;
  sim_in.verbose = 0;
  sim_in.pilot_phase_est = 0;
  sim_in.pilot_wide = 1;
  sim_in.pilot_interp = 0;
  sim_in.stripped_phase_est = 0;
  sim_in.phase_offset = 0;
  sim_in.phase_test = 0;
  sim_in.hf_en = 1;
  sim_in.hf_phase = 0;

  hf_Ns_9_1hz_1ms_no_phase = run_sim(sim_in);

  sim_in.hf_phase = 1;
  sim_in.pilot_phase_est = 1;
  hf_Ns_9_1hz_1ms = run_sim(sim_in);

  Rs = 100;

  sim_in.dopplerSpreadHz = 1.0; 
  sim_in.path_delay = 500E-6*Rs;
  hf_Ns_9_1hz_500us = run_sim(sim_in);

  sim_in.dopplerSpreadHz = 1.0; 
  sim_in.path_delay = 2E-3*Rs;
  hf_Ns_9_1hz_2ms = run_sim(sim_in);

  sim_in.dopplerSpreadHz = 2.0; 
  sim_in.path_delay = 1E-3*Rs;
  hf_Ns_9_2hz_1ms = run_sim(sim_in);

  sim_in.dopplerSpreadHz = 2.0; 
  sim_in.path_delay = 1E-3*Rs;
  hf_Ns_9_2hz_2ms = run_sim(sim_in);

  sim_in.dopplerSpreadHz = 2.0; 
  sim_in.path_delay = 2E-3*Rs;
  hf_Ns_9_2hz_2ms = run_sim(sim_in);

  sim_in.dopplerSpreadHz = 4.0; 
  sim_in.path_delay = 1E-3*Rs;
  hf_Ns_9_4hz_1ms = run_sim(sim_in);

  figure(6); clf;
  semilogy(sim_in.EbNodB, hf_Ns_9_1hz_1ms_no_phase.ber,'c+-;Ns=9 1Hz 1ms ref no phase;');
  hold on;
  semilogy(sim_in.EbNodB, hf_Ns_9_1hz_500us.ber,'k+-;Ns=9 1Hz 500us;');
  semilogy(sim_in.EbNodB, hf_Ns_9_1hz_1ms.ber,'r+-;Ns=9 1Hz 1ms;');
  semilogy(sim_in.EbNodB, hf_Ns_9_1hz_2ms.ber,'bo-;Ns=9 1Hz 2ms;');
  semilogy(sim_in.EbNodB, hf_Ns_9_2hz_1ms.ber,'g+-;Ns=9 2Hz 1ms;');
  semilogy(sim_in.EbNodB, hf_Ns_9_2hz_2ms.ber,'mo-;Ns=9 2Hz 2ms;');
  semilogy(sim_in.EbNodB, hf_Ns_9_4hz_1ms.ber,'c+-;Ns=9 4Hz 1ms;');
  hold off;
  axis([1 8 4E-2 2E-1])
  xlabel('Eb/No (dB)');
  ylabel('BER');
  grid; grid minor on;
  legend('boxoff');
  title('HF Multipath Ns = 9');

end


% AWGN curves for BPSK and QPSK.  Coded Eb/No operating point is 2dB,
% so raw BER for rate 1/2 will be -1dB

function run_curves_awgn_bpsk_qpsk
  sim_in.Nc = 7;
  sim_in.Ns = 7;
  sim_in.Nsec = 30;
  sim_in.verbose = 0;
  sim_in.pilot_phase_est = 0;
  sim_in.pilot_wide = 1;
  sim_in.pilot_interp = 0;
  sim_in.stripped_phase_est = 1;
  sim_in.phase_offset = 0;
  sim_in.phase_test = 0;
  sim_in.hf_en = 0;
  sim_in.hf_phase = 0;

  sim_in.EbNodB = -3:5;

  ber_awgn_theory = 0.5*erfc(sqrt(10.^(sim_in.EbNodB/10)));

  sim_in.bps = 1;
  awgn_bpsk = run_sim(sim_in);
  sim_in.bps = 2;
  awgn_qpsk = run_sim(sim_in);

  figure(5); clf;
  semilogy(sim_in.EbNodB, ber_awgn_theory,'b+-;AWGN Theory;');
  hold on;
  semilogy(sim_in.EbNodB, awgn_bpsk.ber,'g+-;Ns=7 BPSK;');
  semilogy(sim_in.EbNodB + awgn_bpsk.pilot_overhead, awgn_bpsk.ber,'go-;Ns=7 BPSK with pilot overhead;');
  semilogy(sim_in.EbNodB, awgn_qpsk.ber,'r+-;Ns=7 QPSK;');
  semilogy(sim_in.EbNodB + awgn_qpsk.pilot_overhead, awgn_qpsk.ber,'ro-;Ns=7 QPSK with pilot overhead;');
  hold off;
  axis([-3 5 4E-3 2E-1])
  xlabel('Eb/No (dB)');
  ylabel('BER');
  grid; grid minor on;
  legend('boxoff');
  title('AWGN');
end


% HF multipath curves for BPSK and QPSK.  Coded operating point is about 3dB

function run_curves_hf_bpsk_qpsk
  sim_in.Nc = 7;
  sim_in.Ns = 7;
  sim_in.Nsec = 120;
  sim_in.verbose = 0;
  sim_in.pilot_phase_est = 1;
  sim_in.pilot_wide = 1;
  sim_in.pilot_interp = 0;
  sim_in.stripped_phase_est = 0;
  sim_in.phase_offset = 0;
  sim_in.phase_test = 0;
  sim_in.hf_en = 1;
  sim_in.hf_phase = 1;

  sim_in.EbNodB = 1:8;

  EbNoLin = 10.^(sim_in.EbNodB/10);
  hf_theory = 0.5.*(1-sqrt(EbNoLin./(EbNoLin+1)));

  sim_in.bps = 1;
  hf_bpsk = run_sim(sim_in);
  sim_in.bps = 2;
  hf_qpsk = run_sim(sim_in);

  figure(5); clf;
  semilogy(sim_in.EbNodB, hf_theory,'b+-;HF Theory;');
  hold on;
  semilogy(sim_in.EbNodB, hf_bpsk.ber,'g+-;Ns=7 BPSK;');
  semilogy(sim_in.EbNodB + hf_bpsk.pilot_overhead, hf_bpsk.ber,'go-;Ns=7 BPSK with pilot overhead;');
  semilogy(sim_in.EbNodB, hf_qpsk.ber,'r+-;Ns=7 QPSK;');
  semilogy(sim_in.EbNodB + hf_qpsk.pilot_overhead, hf_qpsk.ber,'ro-;Ns=7 QPSK with pilot overhead;');
  hold off;
  axis([1 8 4E-3 2E-1])
  xlabel('Eb/No (dB)');
  ylabel('BER');
  grid; grid minor on;
  legend('boxoff');
  title('HF Multipath');
end


% AWGN curves for BPSK using 3 carrier 2D matrix pilot and ML pilot

function run_curves_awgn_ml
  sim_in.bps = 1;
  sim_in.Nc = 7;
  sim_in.Ns = 7;
  sim_in.Nsec = 10;
  sim_in.verbose = 0;
  sim_in.pilot_phase_est = 1;
  sim_in.pilot_wide = 1;
  sim_in.pilot_interp = 0;
  sim_in.stripped_phase_est = 1;
  sim_in.phase_offset = 0;
  sim_in.phase_test = 0;
  sim_in.hf_en = 0;
  sim_in.hf_phase = 0;

  sim_in.EbNodB = -3:5;

  ber_awgn_theory = 0.5*erfc(sqrt(10.^(sim_in.EbNodB/10)));

  awgn_2d = run_sim(sim_in);
  sim_in.pilot_phase_est = 0;
  sim_in.ml_pd = 1;
  awgn_ml = run_sim(sim_in);

  figure(5); clf;
  semilogy(sim_in.EbNodB, ber_awgn_theory,'b+-;AWGN Theory;');
  hold on;
  semilogy(sim_in.EbNodB, awgn_2d.ber,'g+-;Ns=7 3 carrier pilot BPSK;');
  semilogy(sim_in.EbNodB, awgn_ml.ber,'ro-;Ns=7 ML pilot BPSK;');
  hold off;
  axis([-3 5 4E-3 5E-1])
  xlabel('Eb/No (dB)');
  ylabel('BER');
  grid; grid minor on;
  legend('boxoff');
  title('AWGN');
end


% HF multipath curves for ML

function run_curves_hf_ml
  sim_in.bps = 1;
  sim_in.Nc = 7;
  sim_in.Ns = 14;
  sim_in.Nsec = 120;
  sim_in.verbose = 0;
  sim_in.pilot_phase_est = 1;
  sim_in.pilot_wide = 1;
  sim_in.pilot_interp = 0;
  sim_in.stripped_phase_est = 0;
  sim_in.phase_offset = 0;
  sim_in.phase_test = 0;
  sim_in.hf_en = 1;
  sim_in.hf_phase = 1;

  sim_in.EbNodB = 1:8;

  EbNoLin = 10.^(sim_in.EbNodB/10);
  hf_theory = 0.5.*(1-sqrt(EbNoLin./(EbNoLin+1)));

  hf_2d = run_sim(sim_in);
  sim_in.pilot_phase_est = 0;
  sim_in.ml_pd = 1;
  hf_ml = run_sim(sim_in);

  figure(7); clf;
  semilogy(sim_in.EbNodB, hf_theory,'b+-;HF Theory;');
  hold on;
  semilogy(sim_in.EbNodB, hf_2d.ber,'g+-;Ns=7 3 carrier pilot BPSK;');
  semilogy(sim_in.EbNodB, hf_ml.ber,'ro-;Ns=7 ML pilot BPSK;');
  hold off;
  axis([1 8 4E-3 2E-1])
  xlabel('Eb/No (dB)');
  ylabel('BER');
  grid; grid minor on;
  legend('boxoff');
  title('HF Multipath');
end



function run_single
  sim_in.bps = 2;
  sim_in.Nsec = 60;
  sim_in.Nc = 16;
  sim_in.Ns = 8;
  sim_in.EbNodB = 6;
  sim_in.verbose = 1;

  sim_in.pilot_phase_est = 1;
  sim_in.pilot_wide = 1;
  sim_in.pilot_interp = 0;
  sim_in.stripped_phase_est = 0;
  sim_in.ml_pd = 0;

  sim_in.phase_offset = 0;
  sim_in.phase_test = 0;
  sim_in.hf_en = 1;
  sim_in.hf_phase = 1;
  sim_in.path_delay = 0;

  run_sim(sim_in);

  EbNoLin = 10.^(sim_in.EbNodB/10);
  hf_theory = 0.5.*(1-sqrt(EbNoLin./(EbNoLin+1)));
  printf("HF theory: %5.4f\n", hf_theory);
end


format;
more off;

run_single
%run_curves_hf_bpsk_qpsk
%run_curves_hf_channels
%run_curves_hf_ml