1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
#!/usr/bin/python3
import math
# Save the points in separate lists
points_t1 = [] # A list of tuples (x, r)
points_t2 = [] # A list of tuples (x, r)
points_t3 = [] # A list of tuples (x, r)
######################################################
# Generate
######################################################
adj = 0.50 # Offset ratio for step of 1, estimate
def loop_even(upper, lower, step, ary):
result = []
for i in range((int)(upper * step), (int)(lower * step), -1):
x = i / step
z = math.exp(x + (adj / step))
r = math.log((z+1)/(z-1))
ary.append( (x, r) )
#####
# Create initial list which will be sorted desending
# Tbl-1 9:5 in linear steps of 0.5
loop_even(9.999, 4.999, 2, points_t1)
# Tbl-2 5:1 in linear steps of 1/16
loop_even(4.999, 0.999, 16, points_t2)
# Tbl-3 log steps: 1/(2^0.5), 1/(2^1), 1/(2^1.5), ...
for i in range(1, 28):
e = (2 ** (i/2))
x = 1.0 / e
z = math.exp(x+ (.19 / e))
r = math.log((z+1)/(z-1))
points_t3.append( (x, r) )
######################################################
# Output
######################################################
print("""
// phi0.c
//
// An approximation of the function
//
// This file is generated by the gen_phi0 scritps
// Any changes should be made to that file, not this one
#include <stdint.h>
#define SI16(f) ((int32_t)(f * (1<<16)))
float phi0( float xf ) {
int32_t x = SI16(xf);
if (x >= SI16(10.0f)) return(0.0f);
""", end="")
##################################
# Tbl-1 9:5 in linear steps of 0.5 (9.5, 9.0, 8.5, 8.0, .., 5.0)
print(""" else {
if (x >= SI16(5.0f)) {
int i = 19 - (x >> 15);
switch (i) {
""", end="")
for i in range(len(points_t1)):
#assert(points_t1[i][0] == ((18 - i) / 2))
print("{}case {}: return({:.9f}f); // ({:.1f})".format(
(10*" "), i, points_t1[i][1], points_t1[i][0]))
print("{}}}".format(( 8*" ")))
print("{}}}".format(( 6*" ")))
##################################
# Tbl-2 5:1 in linear steps of 1/16 (4-15/16, 4-7/7, ... 1)
print(""" else {
if (x >= SI16(1.0f)) {
int i = 79 - (x >> 12);
switch (i) {
""", end="")
for i in range(len(points_t2)):
#assert(points_t2[i][0] == ((18 - i) / 2))
print("{}case {}: return({:.9f}f); // ({:.4f})".format(
(12*" "), i, points_t2[i][1], points_t2[i][0]))
print("{}}}".format((10*" ")))
print("{}}}".format(( 8*" ")))
##################################
# Tbl-3 log steps: 1/(2^0.5), 1/(2^1), 1/(2^1.5), ...
# Output as a balanced search
def prnt_cmp(x, ind):
print("{}if (x > SI16({:.6f}f)) {{".format((" "*ind), x))
def prnt_rtn(r, ind):
print("{}return({:.9f}f);".format((" "*ind), r))
def one_level(pts, ind, dft):
#print("# One_Level({})".format(pts))
mid = (int)(len(pts)/2)
lft = pts[:mid]
rgt = pts[mid+1:]
x = pts[mid][0]
r = pts[mid][1]
#print("## {}, {}, {}".format(lft, x, rgt))
prnt_cmp(x, ind)
if (len(lft)):
one_level(lft, ind+2, r)
else:
prnt_rtn(r, (ind+2))
print("{}}} else {{".format((" "*(ind))))
if (len(rgt)):
one_level(rgt, ind+2, dft)
else:
prnt_rtn(dft, (ind+2))
print("{}}}".format((" "*(ind))))
# Start recursive process
print("{}else {{".format((8*" ")))
indent = 10
one_level(points_t3, indent, 10)
print("{}}}".format((8*" "))) # End of tb1_1
print("{}}}".format((6*" "))) # End of tb1_2
print("{}}}".format((4*" "))) # End of tb1_3
print("{}return(10.0f);".format((4*" ")))
print("}")
|