1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
/*---------------------------------------------------------------------------*\
FILE........: tfdmdv.c
AUTHOR......: David Rowe
DATE CREATED: April 16 2012
Tests for the C version of the FDMDV modem. This program outputs a
file of Octave vectors that are loaded and automatically tested
against the Octave version of the modem by the Octave script
tfmddv.m
\*---------------------------------------------------------------------------*/
/*
Copyright (C) 2012 David Rowe
All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License version 2.1, as
published by the Free Software Foundation. This program is
distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "fdmdv_internal.h"
#include "codec2_fdmdv.h"
#include "octave.h"
#define FRAMES 35
#define CHANNEL_BUF_SIZE (10*M_FAC)
extern float pilot_coeff[];
int main(int argc, char *argv[])
{
struct FDMDV *fdmdv;
int tx_bits[FDMDV_BITS_PER_FRAME];
COMP tx_symbols[FDMDV_NC+1];
COMP tx_fdm[M_FAC];
float channel[CHANNEL_BUF_SIZE];
int channel_count;
COMP rx_fdm[M_FAC+M_FAC/P];
float foff_coarse;
int nin, next_nin;
COMP rx_fdm_fcorr[M_FAC+M_FAC/P];
COMP rx_fdm_filter[M_FAC+M_FAC/P];
COMP rx_filt[NC+1][P+1];
float rx_timing;
float env[NT*P];
COMP rx_symbols[FDMDV_NC+1];
int rx_bits[FDMDV_BITS_PER_FRAME];
float foff_fine;
int sync_bit, reliable_sync_bit;
int tx_bits_log[FDMDV_BITS_PER_FRAME*FRAMES];
COMP tx_symbols_log[(FDMDV_NC+1)*FRAMES];
COMP tx_fdm_log[M_FAC*FRAMES];
COMP pilot_baseband1_log[NPILOTBASEBAND*FRAMES];
COMP pilot_baseband2_log[NPILOTBASEBAND*FRAMES];
COMP pilot_lpf1_log[NPILOTLPF*FRAMES];
COMP pilot_lpf2_log[NPILOTLPF*FRAMES];
COMP S1_log[MPILOTFFT*FRAMES];
COMP S2_log[MPILOTFFT*FRAMES];
float foff_coarse_log[FRAMES];
float foff_log[FRAMES];
COMP rx_fdm_filter_log[(M_FAC+M_FAC/P)*FRAMES];
int rx_fdm_filter_log_index;
COMP rx_filt_log[NC+1][(P+1)*FRAMES];
int rx_filt_log_col_index;
float env_log[NT*P*FRAMES];
float rx_timing_log[FRAMES];
COMP rx_symbols_log[FDMDV_NC+1][FRAMES];
COMP phase_difference_log[FDMDV_NC+1][FRAMES];
float sig_est_log[FDMDV_NC+1][FRAMES];
float noise_est_log[FDMDV_NC+1][FRAMES];
int rx_bits_log[FDMDV_BITS_PER_FRAME*FRAMES];
float foff_fine_log[FRAMES];
int sync_bit_log[FRAMES];
int sync_log[FRAMES];
int nin_log[FRAMES];
FILE *fout;
int f,c,i,j;
fdmdv = fdmdv_create(FDMDV_NC);
next_nin = M_FAC;
channel_count = 0;
rx_fdm_filter_log_index = 0;
rx_filt_log_col_index = 0;
printf("sizeof FDMDV states: %zd bytes\n", sizeof(struct FDMDV));
for(f=0; f<FRAMES; f++) {
/* --------------------------------------------------------*\
Modulator
\*---------------------------------------------------------*/
fdmdv_get_test_bits(fdmdv, tx_bits);
bits_to_dqpsk_symbols(tx_symbols, FDMDV_NC, fdmdv->prev_tx_symbols, tx_bits, &fdmdv->tx_pilot_bit, 0);
memcpy(fdmdv->prev_tx_symbols, tx_symbols, sizeof(COMP)*(FDMDV_NC+1));
tx_filter_and_upconvert(tx_fdm, FDMDV_NC , tx_symbols, fdmdv->tx_filter_memory,
fdmdv->phase_tx, fdmdv->freq, &fdmdv->fbb_phase_tx, fdmdv->fbb_rect);
/* --------------------------------------------------------*\
Channel
\*---------------------------------------------------------*/
nin = next_nin;
// nin = M_FAC; // when debugging good idea to uncomment this to "open loop"
/* add M_FAC tx samples to end of buffer */
assert((channel_count + M_FAC) < CHANNEL_BUF_SIZE);
for(i=0; i<M_FAC; i++)
channel[channel_count+i] = tx_fdm[i].real;
channel_count += M_FAC;
/* take nin samples from start of buffer */
for(i=0; i<nin; i++) {
rx_fdm[i].real = channel[i];
rx_fdm[i].imag = 0;
}
/* shift buffer back */
for(i=0,j=nin; j<channel_count; i++,j++)
channel[i] = channel[j];
channel_count -= nin;
/* --------------------------------------------------------*\
Demodulator
\*---------------------------------------------------------*/
/* shift down to complex baseband */
fdmdv_freq_shift(rx_fdm, rx_fdm, -FDMDV_FCENTRE, &fdmdv->fbb_phase_rx, nin);
/* freq offset estimation and correction */
// fdmdv->sync = 0; // when debugging good idea to uncomment this to "open loop"
foff_coarse = rx_est_freq_offset(fdmdv, rx_fdm, nin, !fdmdv->sync);
if (fdmdv->sync == 0)
fdmdv->foff = foff_coarse;
fdmdv_freq_shift(rx_fdm_fcorr, rx_fdm, -fdmdv->foff, &fdmdv->foff_phase_rect, nin);
/* baseband processing */
rxdec_filter(rx_fdm_filter, rx_fdm_fcorr, fdmdv->rxdec_lpf_mem, nin);
down_convert_and_rx_filter(rx_filt, fdmdv->Nc, rx_fdm_filter, fdmdv->rx_fdm_mem, fdmdv->phase_rx, fdmdv->freq,
fdmdv->freq_pol, nin, M_FAC/Q);
rx_timing = rx_est_timing(rx_symbols, FDMDV_NC, rx_filt, fdmdv->rx_filter_mem_timing, env, nin, M_FAC);
foff_fine = qpsk_to_bits(rx_bits, &sync_bit, FDMDV_NC, fdmdv->phase_difference, fdmdv->prev_rx_symbols, rx_symbols, 0);
//for(i=0; i<FDMDV_NC;i++)
// printf("rx_symbols: %f %f prev_rx_symbols: %f %f phase_difference: %f %f\n", rx_symbols[i].real, rx_symbols[i].imag,
// fdmdv->prev_rx_symbols[i].real, fdmdv->prev_rx_symbols[i].imag, fdmdv->phase_difference[i].real, fdmdv->phase_difference[i].imag);
//if (f==1)
// exit(0);
snr_update(fdmdv->sig_est, fdmdv->noise_est, FDMDV_NC, fdmdv->phase_difference);
memcpy(fdmdv->prev_rx_symbols, rx_symbols, sizeof(COMP)*(FDMDV_NC+1));
next_nin = M_FAC;
if (rx_timing > 2*M_FAC/P)
next_nin += M_FAC/P;
if (rx_timing < 0)
next_nin -= M_FAC/P;
fdmdv->sync = freq_state(&reliable_sync_bit, sync_bit, &fdmdv->fest_state, &fdmdv->timer, fdmdv->sync_mem);
fdmdv->foff -= TRACK_COEFF*foff_fine;
/* --------------------------------------------------------*\
Log each vector
\*---------------------------------------------------------*/
memcpy(&tx_bits_log[FDMDV_BITS_PER_FRAME*f], tx_bits, sizeof(int)*FDMDV_BITS_PER_FRAME);
memcpy(&tx_symbols_log[(FDMDV_NC+1)*f], tx_symbols, sizeof(COMP)*(FDMDV_NC+1));
memcpy(&tx_fdm_log[M_FAC*f], tx_fdm, sizeof(COMP)*M_FAC);
memcpy(&pilot_baseband1_log[f*NPILOTBASEBAND], fdmdv->pilot_baseband1, sizeof(COMP)*NPILOTBASEBAND);
memcpy(&pilot_baseband2_log[f*NPILOTBASEBAND], fdmdv->pilot_baseband2, sizeof(COMP)*NPILOTBASEBAND);
memcpy(&pilot_lpf1_log[f*NPILOTLPF], fdmdv->pilot_lpf1, sizeof(COMP)*NPILOTLPF);
memcpy(&pilot_lpf2_log[f*NPILOTLPF], fdmdv->pilot_lpf2, sizeof(COMP)*NPILOTLPF);
memcpy(&S1_log[f*MPILOTFFT], fdmdv->S1, sizeof(COMP)*MPILOTFFT);
memcpy(&S2_log[f*MPILOTFFT], fdmdv->S2, sizeof(COMP)*MPILOTFFT);
foff_coarse_log[f] = foff_coarse;
foff_log[f] = fdmdv->foff;
/* rx filtering */
for(i=0; i<nin; i++)
rx_fdm_filter_log[rx_fdm_filter_log_index + i] = rx_fdm_filter[i];
rx_fdm_filter_log_index += nin;
for(c=0; c<NC+1; c++) {
for(i=0; i<(P*nin)/M_FAC; i++)
rx_filt_log[c][rx_filt_log_col_index + i] = rx_filt[c][i];
}
rx_filt_log_col_index += (P*nin)/M_FAC;
/* timing estimation */
memcpy(&env_log[NT*P*f], env, sizeof(float)*NT*P);
rx_timing_log[f] = rx_timing;
nin_log[f] = nin;
for(c=0; c<FDMDV_NC+1; c++) {
rx_symbols_log[c][f] = rx_symbols[c];
phase_difference_log[c][f] = fdmdv->phase_difference[c];
}
/* qpsk_to_bits() */
memcpy(&rx_bits_log[FDMDV_BITS_PER_FRAME*f], rx_bits, sizeof(int)*FDMDV_BITS_PER_FRAME);
for(c=0; c<FDMDV_NC+1; c++) {
sig_est_log[c][f] = fdmdv->sig_est[c];
noise_est_log[c][f] = fdmdv->noise_est[c];
}
foff_fine_log[f] = foff_fine;
sync_bit_log[f] = sync_bit;
sync_log[f] = fdmdv->sync;
}
/*---------------------------------------------------------*\
Dump logs to Octave file for evaluation
by tfdmdv.m Octave script
\*---------------------------------------------------------*/
fout = fopen("tfdmdv_out.txt","wt");
assert(fout != NULL);
fprintf(fout, "# Created by tfdmdv.c\n");
octave_save_int(fout, "tx_bits_log_c", tx_bits_log, 1, FDMDV_BITS_PER_FRAME*FRAMES);
octave_save_complex(fout, "tx_symbols_log_c", tx_symbols_log, 1, (FDMDV_NC+1)*FRAMES, (FDMDV_NC+1)*FRAMES);
octave_save_complex(fout, "tx_fdm_log_c", (COMP*)tx_fdm_log, 1, M_FAC*FRAMES, M_FAC*FRAMES);
octave_save_complex(fout, "pilot_lut_c", (COMP*)fdmdv->pilot_lut, 1, NPILOT_LUT, NPILOT_LUT);
octave_save_complex(fout, "pilot_baseband1_log_c", pilot_baseband1_log, 1, NPILOTBASEBAND*FRAMES, NPILOTBASEBAND*FRAMES);
octave_save_complex(fout, "pilot_baseband2_log_c", pilot_baseband2_log, 1, NPILOTBASEBAND*FRAMES, NPILOTBASEBAND*FRAMES);
octave_save_float(fout, "pilot_coeff_c", pilot_coeff, 1, NPILOTCOEFF, NPILOTCOEFF);
octave_save_complex(fout, "pilot_lpf1_log_c", pilot_lpf1_log, 1, NPILOTLPF*FRAMES, NPILOTLPF*FRAMES);
octave_save_complex(fout, "pilot_lpf2_log_c", pilot_lpf2_log, 1, NPILOTLPF*FRAMES, NPILOTLPF*FRAMES);
octave_save_complex(fout, "S1_log_c", S1_log, 1, MPILOTFFT*FRAMES, MPILOTFFT*FRAMES);
octave_save_complex(fout, "S2_log_c", S2_log, 1, MPILOTFFT*FRAMES, MPILOTFFT*FRAMES);
octave_save_float(fout, "foff_log_c", foff_log, 1, FRAMES, FRAMES);
octave_save_float(fout, "foff_coarse_log_c", foff_coarse_log, 1, FRAMES, FRAMES);
octave_save_complex(fout, "rx_fdm_filter_log_c", (COMP*)rx_fdm_filter_log, 1, rx_fdm_filter_log_index, rx_fdm_filter_log_index);
octave_save_complex(fout, "rx_filt_log_c", (COMP*)rx_filt_log, (FDMDV_NC+1), rx_filt_log_col_index, (P+1)*FRAMES);
octave_save_float(fout, "env_log_c", env_log, 1, NT*P*FRAMES, NT*P*FRAMES);
octave_save_float(fout, "rx_timing_log_c", rx_timing_log, 1, FRAMES, FRAMES);
octave_save_complex(fout, "rx_symbols_log_c", (COMP*)rx_symbols_log, (FDMDV_NC+1), FRAMES, FRAMES);
octave_save_complex(fout, "phase_difference_log_c", (COMP*)phase_difference_log, (FDMDV_NC+1), FRAMES, FRAMES);
octave_save_float(fout, "sig_est_log_c", (float*)sig_est_log, (FDMDV_NC+1), FRAMES, FRAMES);
octave_save_float(fout, "noise_est_log_c", (float*)noise_est_log, (FDMDV_NC+1), FRAMES, FRAMES);
octave_save_int(fout, "rx_bits_log_c", rx_bits_log, 1, FDMDV_BITS_PER_FRAME*FRAMES);
octave_save_float(fout, "foff_fine_log_c", foff_fine_log, 1, FRAMES, FRAMES);
octave_save_int(fout, "sync_bit_log_c", sync_bit_log, 1, FRAMES);
octave_save_int(fout, "sync_log_c", sync_log, 1, FRAMES);
octave_save_int(fout, "nin_log_c", nin_log, 1, FRAMES);
fclose(fout);
fdmdv_destroy(fdmdv);
return 0;
}
|