1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
/*---------------------------------------------------------------------------*\
FILE........: tnewamp1.c
AUTHOR......: David Rowe
DATE CREATED: Jan 2017
Tests for the C version of the newamp1 amplitude modelling used for
700c. This program outputs a file of Octave vectors that are loaded
and automatically tested against the Octave version of the modem by
the Octave script tnewamp1.m
\*---------------------------------------------------------------------------*/
/*
Copyright (C) 2017 David Rowe
All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License version 2.1, as
published by the Free Software Foundation. This program is
distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "defines.h"
#include "codec2_fft.h"
#include "sine.h"
#include "nlp.h"
#include "dump.h"
#include "octave.h"
#include "newamp1.h"
#include "quantise.h"
#define FRAMES 300
int main(int argc, char *argv[]) {
int Fs = 8000;
C2CONST c2const = c2const_create(Fs, N_S);
int n_samp = c2const.n_samp;
int m_pitch = c2const.m_pitch;
short buf[n_samp]; /* input/output buffer */
float Sn[m_pitch]; /* float input speech samples */
COMP Sw[FFT_ENC]; /* DFT of Sn[] */
codec2_fft_cfg fft_fwd_cfg; /* fwd FFT states */
float w[m_pitch]; /* time domain hamming window */
float W[FFT_ENC]; /* DFT of w[] */
MODEL model;
void *nlp_states;
codec2_fft_cfg phase_fft_fwd_cfg, phase_fft_inv_cfg;
float pitch, prev_f0;
int i,m,f,k;
if (argc != 2) {
printf("usage: ./tnewamp1 RawFile\n");
exit(1);
}
nlp_states = nlp_create(&c2const);
prev_f0 = 1.0/P_MAX_S;
fft_fwd_cfg = codec2_fft_alloc(FFT_ENC, 0, NULL, NULL);
make_analysis_window(&c2const,fft_fwd_cfg, w, W);
phase_fft_fwd_cfg = codec2_fft_alloc(NEWAMP1_PHASE_NFFT, 0, NULL, NULL);
phase_fft_inv_cfg = codec2_fft_alloc(NEWAMP1_PHASE_NFFT, 1, NULL, NULL);
for(i=0; i<m_pitch; i++) {
Sn[i] = 1.0;
}
int K = 20;
float rate_K_sample_freqs_kHz[K];
float model_octave[FRAMES][MAX_AMP+2]; // model params in matrix format, useful for C <-> Octave
float rate_K_surface[FRAMES][K]; // rate K vecs for each frame, form a surface that makes pretty graphs
float rate_K_surface_no_mean[FRAMES][K]; // mean removed surface
float rate_K_surface_no_mean_[FRAMES][K]; // quantised mean removed surface
float mean[FRAMES];
float mean_[FRAMES];
float rate_K_surface_[FRAMES][K]; // quantised rate K vecs for each frame
float interpolated_surface_[FRAMES][K]; // dec/interpolated surface
//int voicing[FRAMES];
int voicing_[FRAMES];
float model_octave_[FRAMES][MAX_AMP+2];
COMP H[FRAMES][MAX_AMP];
int indexes[FRAMES][NEWAMP1_N_INDEXES];
float se = 0.0;
float eq[K];
for(k=0; k<K; k++)
eq[k] = 0.0;
for(f=0; f<FRAMES; f++) {
for(m=0; m<MAX_AMP+2; m++) {
model_octave[f][m] = 0.0;
model_octave_[f][m] = 0.0;
}
for(m=0; m<MAX_AMP; m++) {
H[f][m].real = 0.0;
H[f][m].imag = 0.0;
}
for(k=0; k<K; k++)
interpolated_surface_[f][k] = 0.0;
voicing_[f] = 0;
}
mel_sample_freqs_kHz(rate_K_sample_freqs_kHz, K, ftomel(200.0), ftomel(3700.0));
//for(int k=0; k<K; k++)
// printf("k: %d sf: %f\n", k, rate_K_sample_freqs_kHz[k]);
FILE *fin = fopen(argv[1], "rb");
if (fin == NULL) {
fprintf(stderr, "Problem opening hts1.raw\n");
exit(1);
}
int M = 4;
for(f=0; f<FRAMES; f++) {
assert(fread(buf,sizeof(short),n_samp,fin) == n_samp);
/* shift buffer of input samples, and insert new samples */
for(i=0; i<m_pitch-n_samp; i++) {
Sn[i] = Sn[i+n_samp];
}
for(i=0; i<n_samp; i++) {
Sn[i+m_pitch-n_samp] = buf[i];
}
/* Estimate Sinusoidal Model Parameters ----------------------*/
nlp(nlp_states, Sn, n_samp, &pitch, Sw, W, &prev_f0);
model.Wo = TWO_PI/pitch;
dft_speech(&c2const, fft_fwd_cfg, Sw, Sn, w);
two_stage_pitch_refinement(&c2const, &model, Sw);
estimate_amplitudes(&model, Sw, W, 1);
est_voicing_mbe(&c2const, &model, Sw, W);
//voicing[f] = model.voiced;
/* newamp1 processing ----------------------------------------*/
newamp1_model_to_indexes(&c2const,
&indexes[f][0],
&model,
&rate_K_surface[f][0],
rate_K_sample_freqs_kHz,
K,
&mean[f],
&rate_K_surface_no_mean[f][0],
&rate_K_surface_no_mean_[f][0],
&se,
eq, 0);
newamp1_indexes_to_rate_K_vec(&rate_K_surface_[f][0],
&rate_K_surface_no_mean_[f][0],
rate_K_sample_freqs_kHz,
K,
&mean_[f],
&indexes[f][0], NULL, 1);
#ifdef VERBOSE
fprintf(stderr,"f: %d Wo: %4.3f L: %d v: %d\n", f, model.Wo, model.L, model.voiced);
if ((f % M) == 0) {
for(i=0; i<5; i++) {
fprintf(stderr," %5.3f", rate_K_surface_[f][i]);
}
fprintf(stderr,"\n");
fprintf(stderr," %d %d %d %d\n", indexes[f][0], indexes[f][1], indexes[f][2], indexes[f][3]);
}
#endif
/* log vectors */
model_octave[f][0] = model.Wo;
model_octave[f][1] = model.L;
for(m=1; m<=model.L; m++) {
model_octave[f][m+1] = model.A[m];
}
}
/* Decoder */
MODEL model__[M];
float prev_rate_K_vec_[K];
COMP HH[M][MAX_AMP+1];
float Wo_left;
int voicing_left;
/* initial conditions */
for(k=0; k<K; k++)
prev_rate_K_vec_[k] = 0.0;
voicing_left = 0;
Wo_left = 2.0*M_PI/100.0;
/* decoder runs on every M-th frame, 25Hz frame rate, offset at
start is to minimise processing delay (thanks Jeroen!) */
fprintf(stderr,"\n");
for(f=M-1; f<FRAMES; f+=M) {
float a_interpolated_surface_[M][K];
newamp1_indexes_to_model(&c2const,
model__,
(COMP*)HH,
(float*)a_interpolated_surface_,
prev_rate_K_vec_,
&Wo_left,
&voicing_left,
rate_K_sample_freqs_kHz,
K,
phase_fft_fwd_cfg,
phase_fft_inv_cfg,
&indexes[f][0],
NULL, 1);
#ifdef VERBOSE
fprintf(stderr,"f: %d\n", f);
fprintf(stderr," %d %d %d %d\n", indexes[f][0], indexes[f][1], indexes[f][2], indexes[f][3]);
for(i=0; i<M; i++) {
fprintf(stderr," Wo: %4.3f L: %d v: %d\n", model__[i].Wo, model__[i].L, model__[i].voiced);
}
fprintf(stderr," rate_K_vec: ");
for(i=0; i<5; i++) {
fprintf(stderr,"%5.3f ", prev_rate_K_vec_[i]);
}
fprintf(stderr,"\n");
fprintf(stderr," Am H:\n");
for(m=0; m<M; m++) {
fprintf(stderr," ");
for(i=1; i<=5; i++) {
fprintf(stderr,"%5.1f (%5.3f %5.3f) ", model__[m].A[i], HH[m][i].real, HH[m][i].imag);
}
fprintf(stderr,"\n");
}
fprintf(stderr,"\n\n");
#endif
//if (f == 7)
// exit(0);
/* with f == 0, we don't store ouput, but memories are updated, helps to match
what happens in Codec 2 mode */
if (f >= M) {
for(i=0; i<M; i++) {
for(k=0; k<K; k++) {
interpolated_surface_[f-M+i][k] = a_interpolated_surface_[i][k];
}
}
/* store test vectors */
for(i=f-M, m=0; i<f; i++,m++) {
model_octave_[i][0] = model__[m].Wo;
model_octave_[i][1] = model__[m].L;
voicing_[i] = model__[m].voiced;
}
int j;
for(i=f-M, j=0; i<f; i++,j++) {
for(m=1; m<=model__[j].L; m++) {
model_octave_[i][m+1] = model__[j].A[m];
H[i][m-1] = HH[j][m];// aH[m];
}
}
}
}
fclose(fin);
/* save vectors in Octave format */
FILE *fout = fopen("tnewamp1_out.txt","wt");
assert(fout != NULL);
fprintf(fout, "# Created by tnewamp1.c\n");
octave_save_float(fout, "rate_K_surface_c", (float*)rate_K_surface, FRAMES, K, K);
octave_save_float(fout, "mean_c", (float*)mean, 1, FRAMES, 1);
octave_save_float(fout, "eq_c", eq, 1, K, K);
octave_save_float(fout, "rate_K_surface_no_mean_c", (float*)rate_K_surface_no_mean, FRAMES, K, K);
octave_save_float(fout, "rate_K_surface_no_mean__c", (float*)rate_K_surface_no_mean_, FRAMES, K, K);
octave_save_float(fout, "mean__c", (float*)mean_, FRAMES, 1, 1);
octave_save_float(fout, "rate_K_surface__c", (float*)rate_K_surface_, FRAMES, K, K);
octave_save_float(fout, "interpolated_surface__c", (float*)interpolated_surface_, FRAMES, K, K);
octave_save_float(fout, "model_c", (float*)model_octave, FRAMES, MAX_AMP+2, MAX_AMP+2);
octave_save_float(fout, "model__c", (float*)model_octave_, FRAMES, MAX_AMP+2, MAX_AMP+2);
octave_save_int(fout, "voicing__c", (int*)voicing_, 1, FRAMES);
octave_save_complex(fout, "H_c", (COMP*)H, FRAMES, MAX_AMP, MAX_AMP);
fclose(fout);
printf("Done! Now run\n octave:1> tnewamp1(\"../path/to/build_linux/src/hts1a\", \"../path/to/build_linux/unittest\")\n");
return 0;
}
|