1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
function [detected_data, errors] = CmlDecode( symbol_likelihood, data, sim_param, code_param )
% CmlDecode demaps and decodes a single received codeword
%
% The calling syntax is:
% [detected_data, errors] = CmlDecode( symbol_likelihood, data, max_iterations, sim_param, code_param )
%
% Outputs:
% detected_data = a row vector containing the detected data
% errors = a column vector containing the number of errors per iteration
%
% Required inputs:
% symbol_likelihood = a M-row matrix containing the symbol log-likelihoods
% data = the row vector of data bits (used to count errors and for early halting of iterative decoding)
% sim_param = A structure containing simulation parameters.
% code_param = A structure containing the code paramaters.
%
% Copyright (C) 2005-2008, Matthew C. Valenti
%
% Last updated on May 22, 2008
%
% Function CmlDecode is part of the Iterative Solutions Coded Modulation
% Library (ISCML).
%
% The Iterative Solutions Coded Modulation Library is free software;
% you can redistribute it and/or modify it under the terms of
% the GNU Lesser General Public License as published by the
% Free Software Foundation; either version 2.1 of the License,
% or (at your option) any later version.
%
% This library is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% Lesser General Public License for more details.
%
% You should have received a copy of the GNU Lesser General Public
% License along with this library; if not, write to the Free Software
% Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
if (code_param.coded)
% default values
bicm_iterations = 1;
turbo_iterations = 1;
% initialize some parameters
[M,L] = size(symbol_likelihood);
switch sim_param.code_configuration
case {0} % convolutional
[N1,K1] = size( sim_param.g1 );
input_decoder_u = zeros(1, code_param.data_bits_per_frame ); % stays at zero
if ( length(code_param.max_iterations) )
bicm_iterations = code_param.max_iterations;
end
case {1,4} % PCCC
[N1,K1] = size( sim_param.g1 );
if ( sim_param.bicm == 2 ) % bicm-id
bicm_iterations = code_param.max_iterations;
else
turbo_iterations = code_param.max_iterations;
end
[N2,K2] = size( sim_param.g2 );
input_decoder_u = zeros(1, code_param.data_bits_per_frame );
case {3} % HSDPA
% BICM-ID not supported
bicm_iteration = 1;
turbo_iterations = code_param.max_iterations;
% Number of H-ARQ transmissions
M_arq = length(sim_param.X_set);
end
% initialize errors vector
errors = zeros(turbo_iterations*bicm_iterations,1);
% initialize the extrinsic decoder input
input_somap_c = zeros(1, code_param.code_bits_per_frame );
for bicm_iter=1:bicm_iterations
% demodulate
if (code_param.bpsk)
input_decoder_c = symbol_likelihood;
else
bit_likelihood = Somap( symbol_likelihood, sim_param.demod_type, input_somap_c );
input_decoder_c = bit_likelihood(1:code_param.code_bits_per_frame);
end
% deinterleave (BICM)
if sim_param.bicm
input_decoder_c = Deinterleave( input_decoder_c, code_param.bicm_interleaver);
end
% decode
switch sim_param.code_configuration
case {0} % convolutional
% depuncture if necessary
if ( length (sim_param.pun_pattern1 ) )
depunctured_output = Depuncture( input_decoder_c, sim_param.pun_pattern1, sim_param.tail_pattern1 );
input_c = reshape( depunctured_output, 1, prod( size( depunctured_output ) ) );
else
input_c = input_decoder_c;
end
% decode
if ( sim_param.decoder_type < 0 )
% fprintf( 'Viterbi decoding\n' );
detected_data = ViterbiDecode( input_c, sim_param.g1, sim_param.nsc_flag1, sim_param.depth );
else
[output_decoder_u, output_decoder_c] = SisoDecode( input_decoder_u, input_c, sim_param.g1, sim_param.nsc_flag1, sim_param.decoder_type );
detected_data = (sign(output_decoder_u)+1)/2;
end
% count errors
error_positions = xor( detected_data, data );
errors(bicm_iter) = sum( error_positions );
% exit if all the errors are corrected or if a Viterbi decoder
if (errors(bicm_iter)==0)||( sim_param.decoder_type < 0 )
return;
end
% repuncture if necessary
if ( length (sim_param.pun_pattern1 )&&(sim_param.bicm > 0) )
output_decoder_c = reshape( output_decoder_c, N1, length(output_decoder_c)/N1 );
output_decoder_c = Puncture( output_decoder_c, sim_param.pun_pattern1, sim_param.tail_pattern1 );
end
case {1,4} % PCCC
[detected_data, turbo_errors, output_decoder_c, output_decoder_u ] = TurboDecode( input_decoder_c, data, turbo_iterations, sim_param.decoder_type, code_param.code_interleaver, code_param.pun_pattern, code_param.tail_pattern, sim_param.g1, sim_param.nsc_flag1, sim_param.g2, sim_param.nsc_flag2, input_decoder_u );
errors( (bicm_iter-1)*turbo_iterations+1:bicm_iter*turbo_iterations ) = turbo_errors;
% exit if all the errors are corrected
if (turbo_errors(turbo_iterations)==0)
return;
else
% determine new input_decoder_u
input_decoder_u = output_decoder_u;
end
case {2} % LDPC
[x_hat errors] = MpDecode( -input_decoder_c, code_param.H_rows, code_param.H_cols, code_param.max_iterations, sim_param.decoder_type, 1, 1, data );
detected_data = x_hat(code_param.max_iterations,:);
return; % BICM-ID is not supported for LDPC codes.
case {3} % HSDPA
% Dematch each H-ARQ transmission
LLR_buffer = zeros(code_param.number_codewords,code_param.N_TTI);
harq_input = reshape( input_decoder_c, code_param.number_codewords*code_param.N_data, M_arq )';
for harq_transmission=1:M_arq
[LLR] = HarqDematch( reshape( harq_input(harq_transmission,:), code_param.U, code_param.number_codewords*sim_param.P)', sim_param.X_set(harq_transmission), sim_param.N_IR, code_param.N_TTI, code_param.number_codewords );
% update the virtual buffer
LLR_buffer = LLR_buffer + LLR;
end
% Decode
[detected_data, errors, output_decoder_c ] = TurboDecode( LLR_buffer, data, turbo_iterations, sim_param.decoder_type, code_param.code_interleaver, code_param.pun_pattern, code_param.tail_pattern, sim_param.g1, sim_param.nsc_flag1, sim_param.g2, sim_param.nsc_flag2 );
% BICM-ID not currently supported, so return
return;
case {5,6} % CTC code from WiMAX (5) or DVB-RCS (6)
[x_hat errors] = TurboDuobinaryCRSCDecode( input_decoder_c, code_param.code_interleaver, code_param.pun_pattern, data, code_param.max_iterations, sim_param.decoder_type);
detected_data = x_hat;
return; % BICM-ID is not supported for Wimax CTC code.
case {7} % BTC
[detected_data, errors] = BtcDecode( input_decoder_c, data, sim_param.g1, sim_param.g2, sim_param.k_per_row, sim_param.k_per_column, sim_param.B, sim_param.Q, code_param.max_iterations, sim_param.decoder_type );
return; % BICM-ID is not supported
end
% turn LLR into extrinsic info
input_somap_c = output_decoder_c - input_decoder_c;
% deinterleave
if sim_param.bicm
input_somap_c = Interleave( input_somap_c, code_param.bicm_interleaver );
end
end
else
% Convert to bit_likelihood
if (code_param.bpsk) % BPSK
bit_likelihood = symbol_likelihood; % This is the LLR
else
bit_likelihood = Somap( symbol_likelihood, sim_param.demod_type );
end
detected_data = (sign(bit_likelihood)+1)/2; % hard decision
% count errors
error_positions = xor( detected_data(1:code_param.data_bits_per_frame), data );
errors = sum( error_positions );
end
|