1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
|
function [sim_param, sim_state] = CmlPlot( varargin )
% CmlPlot plots simulation results
%
% The calling syntax is:
% [sim_param, sim_state] = CmlPlot( scenario_filename, cases )
%
% Outputs:
% sim_param = A structure containing simulation parameters.
% sim_state = A structure containing the simulation state.
% Note: See readme.txt for a description of the structure formats.
%
% Required inputs:
% scenario_filename = the name of the file containing an array of sim_param structures.
% cases = a list of the array indices to plot.
%
% Note: Multiple scenario files can be specified. In this case, the argument list
% should contain each scenario file to be used followed by the list of array indices
% to read from that file.
%
% Example:
% [sim_param, sim_state] = CmlPlot( 'Scenario1', [1 2 5], 'Scenario2', [1 4 6] );
%
% Copyright (C) 2005-2006, Matthew C. Valenti
%
% Last updated on June 4, 2006
%
% Function CmlPlot is part of the Iterative Solutions Coded Modulation
% Library (ISCML).
%
% The Iterative Solutions Coded Modulation Library is free software;
% you can redistribute it and/or modify it under the terms of
% the GNU Lesser General Public License as published by the
% Free Software Foundation; either version 2.1 of the License,
% or (at your option) any later version.
%
% This library is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% Lesser General Public License for more details.
%
% You should have received a copy of the GNU Lesser General Public
% License along with this library; if not, write to the Free Software
% Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
% setup structures are retrieve data
% give an extra argument to force sim_param.reset = 0
[sim_param, sim_state] = ReadScenario( varargin{:}, [] );
number_cases = length( sim_param );
% determine the simulation types
sim_types = zeros( 8, number_cases );
for ( case_number=1:number_cases )
if ( strcmp( sim_param(case_number).sim_type, 'capacity' ) )
sim_types(1,case_number) = 1; % capacity simulation
elseif ( strcmp( sim_param(case_number).sim_type, 'exit' ) )
sim_types(2,case_number) = 1; % EXIT
elseif ( strcmp( sim_param(case_number).sim_type, 'uncoded' ) )
sim_types(3,case_number) = 1; % uncoded modulation
elseif ( strcmp( sim_param(case_number).sim_type, 'coded' ) )
sim_types(4,case_number) = 1; % coded modulation
elseif ( strcmpi( sim_param(case_number).sim_type, 'outage' )|strcmpi( sim_param(case_number).sim_type, 'bloutage' ) )
sim_types(5,case_number) = 1; % outage probability
elseif ( strcmp( sim_param(case_number).sim_type, 'throughput' ) )
sim_types(6,case_number) = 1; % throughput of hybrid-ARQ
elseif ( strcmp( sim_param(case_number).sim_type, 'bwcapacity' ) )
sim_types(7,case_number) = 1; % capacity of FSK under BW constraint
elseif ( strcmp( sim_param(case_number).sim_type, 'minSNRvsB' ) )
sim_types(8,case_number) = 1; % Min SNR as a function of B
end
end
fig_number = 0;
% first plot capacity vs. Eb/No and Es/No, if there are any capacity curves requested
if ( sum( sim_types(1,:) ) )
fig_number = fig_number + 1;
figure( fig_number );
for (i=find( sim_types(1,:) == 1 ) )
EsNo = 10.^(sim_param(i).SNR/10); % assume SNR is Es/No in dB
EbNo = EsNo./(sim_state(i).capacity_avg*log2(sim_param(i).mod_order));
EbNodB = 10*log10( EbNo );
plot( EbNodB, log2(sim_param(i).mod_order)*sim_state(i).capacity_avg, sim_param(i).linetype );
hold on;
end
% compute unconstrained (Gaussian input) capacity
EsNodB = sim_param(i).SNR;
EsNo = 10.^(EsNodB/10);
cap_unconstrained = log2(1+EsNo);
EbNo = EsNo./cap_unconstrained;
EbNodB = 10*log10( EbNo );
legend( sim_param( find( sim_types(1,:) == 1 ) ).legend );
% uncomment if you want to show unconstrained
% plot( EbNodB, cap_unconstrained, '-.');
% legend( sim_param( find( sim_types(1,:) == 1 ) ).legend, 'Unconstrained', 2 );
xlabel( 'Eb/No in dB' );
ylabel( 'Capacity' );
hold off;
% Eb/No vs. Capacity (useful for FSK modulation)
fig_number = fig_number + 1;
figure( fig_number );
for (i=find( sim_types(1,:) == 1 ) )
EsNo = 10.^(sim_param(i).SNR/10); % assume SNR is Es/No in dB
EbNo = EsNo./(sim_state(i).capacity_avg*log2(sim_param(i).mod_order));
EbNodB = 10*log10( EbNo );
plot( sim_state(i).capacity_avg, EbNodB, sim_param(i).linetype );
hold on;
end
ylabel( 'Eb/No in dB' );
xlabel( 'Rate' );
hold off;
% plot capacity vs. Es/No
fig_number = fig_number + 1;
figure( fig_number );
for (i=find( sim_types(1,:) == 1 ) )
plot( sim_param(i).SNR, log2(sim_param(i).mod_order)*sim_state(i).capacity_avg, sim_param(i).linetype );
hold on;
end
legend( sim_param( find( sim_types(1,:) == 1 ) ).legend );
% uncomment if you want to show unconstrained
% plot( EsNodB, cap_unconstrained, '-.');
% legend( sim_param( find( sim_types(1,:) == 1 ) ).legend, 'Unconstrained', 2 );
xlabel( 'Es/No in dB' );
ylabel( 'Capacity' );
hold off;
end
% next plot BER vs. Eb/No if this is a coded or uncoded simulation
if ( sum( sum( sim_types(3:4,:) ) ) )
% plot BER vs. Eb/No
fig_number = fig_number + 1;
figure( fig_number );
% BER of uncoded modulation
for (i=find( sim_types(3,:) == 1 ) )
% Can only plot against Eb/No (add logic later)
if ( sim_param(i).SNR_type(2) ~= 'b' )
error( 'Uncoded modulation results must use SNR_type of Eb/No in dB' );
end
figure( fig_number );
semilogy( sim_param(i).SNR, sim_state(i).BER, sim_param(i).linetype );
hold on;
end
% BER of coded modulation
for (i=find( sim_types(4,:) == 1 ) )
% Convert to Eb/No (dB) if stored as Es/No (dB)
if ( sim_param(i).SNR_type(2) ~= 'b' )
% This is Es/No
EsNodB = sim_param(i).SNR;
% Convert to Eb/No
EsNo = 10.^(EsNodB/10);
EbNo = EsNo./sim_param(i).rate;
EbNodB = 10*log10(EbNo);
else
EbNodB = sim_param(i).SNR;
end
% only plot the last iteration
if ( length( sim_param(i).max_iterations ) )
max_iter = sim_param(i).max_iterations;
else
max_iter = 1;
end
semilogy( EbNodB, sim_state(i).BER( max_iter, : ), sim_param(i).linetype );
hold on;
end
legend( sim_param( find( sim_types(3,:) == 1 ) ).legend, sim_param( find( sim_types(4,:) == 1 ) ).legend, 0 );
xlabel( 'Eb/No in dB' );
ylabel( 'BER' );
for (i=find( sim_types(4,:) == 1 ) )
if ( length( sim_param(i).plot_iterations ) )
% Convert to Eb/No (dB) if stored as Es/No (dB)
if ( sim_param(i).SNR_type(2) ~= 'b' )
% This is Es/No
EsNodB = sim_param(i).SNR;
% Convert to Eb/No
EsNo = 10.^(EsNodB/10);
EbNo = EsNo./sim_param(i).rate;
EbNodB = 10*log10(EbNo);
else
EbNodB = sim_param(i).SNR;
end
% plot the other iterations
semilogy( EbNodB, sim_state(i).BER(sim_param(i).plot_iterations,:), sim_param(i).linetype );
end
end
hold off;
% Now plot against Es/No, if uncoded
if sum( sim_types(4,:) )
fig_number = fig_number + 1;
figure( fig_number );
for (i=find( sim_types(4,:) == 1 ) )
% see if Es/No is defind, otherwise derive
if ( sim_param(i).SNR_type(2) == 'b' )
% This is Eb/No
EbNodB = sim_param(i).SNR;
% Convert to Es/No
EbNo = 10.^(EbNodB/10);
EsNo = sim_param(i).rate*EbNo;
EsNodB = 10*log10(EsNo);
else
% This is already in Es/No
EsNodB = sim_param(i).SNR;
end
% only plot the last iteration
if ( length( sim_param(i).max_iterations ) )
max_iter = sim_param(i).max_iterations;
else
max_iter = 1;
end
% Plot FER versus Es/No in dB
figure( fig_number );
semilogy( EsNodB, sim_state(i).BER( max_iter, : ), sim_param(i).linetype );
hold on;
end
figure( fig_number );
legend( sim_param( find( sim_types(4,:) == 1 ) ).legend, 0 );
xlabel( 'Es/No in dB' );
ylabel( 'BER' );
for (i=find( sim_types(4,:) == 1 ) )
if ( length( sim_param(i).plot_iterations ) )
% see if Es/No is defind, otherwise derive
if ( sim_param(i).SNR_type(2) == 'b' )
% This is Eb/No
EbNodB = sim_param(i).SNR;
% Convert to Es/No
EbNo = 10.^(EbNodB/10);
EsNo = sim_param(i).rate*EbNo;
EsNodB = 10*log10(EsNo);
else
% This is Es/No
EsNodB = sim_param(i).SNR;
% Convert to Eb/No
EsNo = 10.^(EsNodB/10);
EbNo = EsNo./sim_param(i).rate;
EbNodB = 10*log10(EbNo);
end
% plot the other iterations
figure( fig_number );
semilogy( EsNodB, sim_state(i).BER(sim_param(i).plot_iterations,:), sim_param(i).linetype );
end
end
figure( fig_number );
hold off;
end
end
% Plot the SER if uncoded
if ( sum( sum( sim_types(3,:) ) ) )
% plot SER vs. Eb/No
fig_number = fig_number + 1;
figure( fig_number );
% SER of uncoded modulation
for (i=find( sim_types(3,:) == 1 ) )
% Convert to Eb/No (dB) if stored as Es/No (dB)
if ( sim_param(i).SNR_type(2) ~= 'b' )
error( 'The SNR should be stored as Eb/No' );
end
semilogy( sim_param(i).SNR, sim_state(i).SER, sim_param(i).linetype );
hold on;
end
legend( sim_param( find( sim_types(3,:) == 1 ) ).legend, 0 );
xlabel( 'Eb/No in dB' );
ylabel( 'SER' );
hold off;
end
% Plot the FER of coded and outage simulations
if ( sum( sum( sim_types(4:5,:) ) ) )
% First plot FER vs. Eb/No
fig_number = fig_number + 1;
figure( fig_number );
% Outage Probability
for (i=find( sim_types(5,:) == 1 ) )
% If stored as Es/No, convert to Eb/No
if ( sim_param(i).SNR_type(2) == 'b' )
% This is Eb/No
EbNodB = sim_param(i).SNR;
else
% This is stored as Es/No
EsNodB = sim_param(i).SNR;
% Convert to Eb/No
EsNo = 10.^(EsNodB/10);
EbNo = EsNo./sim_param(i).rate;
EbNodB = 10*log10(EbNo);
end
% Plot FER versus Eb/No in dB
figure( fig_number );
semilogy( EbNodB, sim_state(i).FER, sim_param(i).linetype );
hold on;
end
% FER of coded modulation
for (i=find( sim_types(4,:) == 1 ) )
% If stored as Es/No, convert to Eb/No
if ( sim_param(i).SNR_type(2) == 'b' )
% This is Eb/No
EbNodB = sim_param(i).SNR;
else
% This is stored as Es/No
EsNodB = sim_param(i).SNR;
% Convert to Eb/No
EsNo = 10.^(EsNodB/10);
EbNo = EsNo./sim_param(i).rate;
EbNodB = 10*log10(EbNo);
end
% only plot the last iteration
if ( length( sim_param(i).max_iterations ) )
max_iter = sim_param(i).max_iterations;
else
max_iter = 1;
end
% Plot FER versus Eb/No in dB
figure( fig_number );
semilogy( EbNodB, sim_state(i).FER( max_iter, : ), sim_param(i).linetype );
hold on;
end
figure( fig_number );
legend( sim_param( find( sim_types(5,:) == 1 ) ).legend, sim_param( find( sim_types(4,:) == 1 ) ).legend, 0 );
xlabel( 'Eb/No in dB' );
ylabel( 'FER' );
% Now plot the other iterations
for (i=find( sim_types(4,:) == 1 ) )
if ( length( sim_param(i).plot_iterations ) )
% make sure that we get both Es/No and Eb/No
if ( sim_param(i).SNR_type(2) == 'b' )
% This is Eb/No
EbNodB = sim_param(i).SNR;
else
% This is stored as Es/No
EsNodB = sim_param(i).SNR;
% Convert to Eb/No
EsNo = 10.^(EsNodB/10);
EbNo = EsNo./sim_param(i).rate;
EbNodB = 10*log10(EbNo);
end
% plot the other iterations
figure( fig_number );
semilogy( EbNodB, sim_state(i).FER(sim_param(i).plot_iterations,:), sim_param(i).linetype );
end
end
figure( fig_number );
hold off;
% plot FER vs. Es/No
fig_number = fig_number + 1;
figure( fig_number );
% Outage Probability
for (i=find( sim_types(5,:) == 1 ) )
% If stored as Eb/No, convert to Es/No
if ( sim_param(i).SNR_type(2) == 'b' )
% This is Eb/No
EbNodB = sim_param(i).SNR;
% Convert to Es/No
EbNo = 10.^(EbNodB/10);
EsNo = sim_param(i).rate*EbNo;
EsNodB = 10*log10(EsNo);
else
% This is Es/No
EsNodB = sim_param(i).SNR;
end
% Plot FER versus Es/No in dB
figure( fig_number );
semilogy( EsNodB, sim_state(i).FER, sim_param(i).linetype );
hold on;
end
% FER of coded modulation
for (i=find( sim_types(4,:) == 1 ) )
% If stored as Eb/No, convert to Es/No
if ( sim_param(i).SNR_type(2) == 'b' )
% This is Eb/No
EbNodB = sim_param(i).SNR;
% Convert to Es/No
EbNo = 10.^(EbNodB/10);
EsNo = sim_param(i).rate*EbNo;
EsNodB = 10*log10(EsNo);
else
% This is Es/No
EsNodB = sim_param(i).SNR;
end
% only plot the last iteration
if ( length( sim_param(i).max_iterations ) )
max_iter = sim_param(i).max_iterations;
else
max_iter = 1;
end
% Plot FER versus Es/No in dB
figure( fig_number );
semilogy( EsNodB, sim_state(i).FER( max_iter, : ), sim_param(i).linetype );
hold on;
end
figure( fig_number );
legend( sim_param( find( sim_types(5,:) == 1 ) ).legend, sim_param( find( sim_types(4,:) == 1 ) ).legend, 0 );
xlabel( 'Es/No in dB' );
ylabel( 'FER' );
% Now plot the other iterations
for (i=find( sim_types(4,:) == 1 ) )
if ( length( sim_param(i).plot_iterations ) )
% If stored as Eb/No, convert to Es/No
if ( sim_param(i).SNR_type(2) == 'b' )
% This is Eb/No
EbNodB = sim_param(i).SNR;
% Convert to Es/No
EbNo = 10.^(EbNodB/10);
EsNo = sim_param(i).rate*EbNo;
EsNodB = 10*log10(EsNo);
else
% This is Es/No
EsNodB = sim_param(i).SNR;
end
% plot the other iterations
figure( fig_number );
semilogy( EsNodB, sim_state(i).FER(sim_param(i).plot_iterations,:), sim_param(i).linetype );
end
end
figure( fig_number );
hold off;
end
% plot throughput vs. Es/No, if there are any throughput curves requested
if ( sum( sim_types(6,:) ) )
fig_number = fig_number + 1;
figure( fig_number );
% plot throughput vs. Es/No
for (i=find( sim_types(6,:) == 1 ) )
plot( sim_param(i).SNR, sim_state(i).throughput, sim_param(i).linetype );
hold on;
end
legend( sim_param( find( sim_types(6,:) == 1 ) ).legend, 2 );
xlabel( 'Es/No in dB' );
ylabel( 'Normalized throughput' );
hold off;
end
% plot min Eb/No vs. h for nonorthogonal FSK under BW constraints.
if ( sum( sim_types(7,:) ) )
fig_number = fig_number + 1;
figure( fig_number );
% plot min Eb/No vs. h
for (i=find( sim_types(7,:) == 1 ) )
[Y,I] = sort( sim_param(i).h );
plot( sim_param(i).h(I), sim_state(i).min_EbNodB(I), sim_param(i).linetype );
hold on;
end
legend( sim_param( find( sim_types(7,:) == 1 ) ).legend, 2 );
xlabel( 'h' );
ylabel( 'min Eb/No (in dB)' );
hold off;
fig_number = fig_number + 1;
figure( fig_number );
% plot min Eb/No vs. rate
for (i=find( sim_types(7,:) == 1 ) )
[Y,I] = sort( sim_state(i).best_rate );
plot( sim_state(i).best_rate(I), sim_state(i).min_EbNodB(I), sim_param(i).linetype );
hold on;
end
legend( sim_param( find( sim_types(7,:) == 1 ) ).legend, 2 );
xlabel( 'code rate r' );
ylabel( 'min Eb/No (in dB)' );
hold off;
end
% plot min Eb/No vs. B for nonorthogonal FSK under BW constraint B.
if ( sum( sim_types(8,:) ) )
fig_number = fig_number + 1;
figure( fig_number );
% plot min Eb/No vs. B
for (i=find( sim_types(8,:) == 1 ) )
[Y,I] = sort( sim_param(i).bwconstraint );
plot( sim_param(i).bwconstraint(I), sim_state(i).min_EbNodB(I), sim_param(i).linetype );
hold on;
end
legend( sim_param( find( sim_types(8,:) == 1 ) ).legend, 2 );
xlabel( 'Bandwidth B' );
ylabel( 'min Eb/No (in dB)' );
hold off;
fig_number = fig_number + 1;
figure( fig_number );
% plot eta vs. min Eb/No
for (i=find( sim_types(8,:) == 1 ) )
[Y,I] = sort( sim_param(i).bwconstraint );
% plot( sim_state(i).min_EbNodB(I), 1./sim_param(i).bwconstraint(I), sim_param(i).linetype );
plot( 1./sim_param(i).bwconstraint(I), sim_state(i).min_EbNodB(I), sim_param(i).linetype );
hold on;
end
legend( sim_param( find( sim_types(8,:) == 1 ) ).legend, 2 );
% ylabel( '\eta' );
% xlabel( 'minimum Eb/No in dB' );
xlabel( '\eta in bps/Hz' );
ylabel( 'Minimum Eb/No in dB' );
hold off;
fig_number = fig_number + 1;
figure( fig_number );
% plot optimal h vs. B
for (i=find( sim_types(8,:) == 1 ) )
[Y,I] = sort( sim_param(i).bwconstraint );
plot( sim_param(i).bwconstraint(I), sim_param(i).h(I), sim_param(i).linetype );
hold on;
end
legend( sim_param( find( sim_types(8,:) == 1 ) ).legend, 2 );
xlabel( 'Bandwidth B' );
ylabel( 'optimal h' );
hold off;
fig_number = fig_number + 1;
figure( fig_number );
% plot optimal rate vs. B
for (i=find( sim_types(8,:) == 1 ) )
[Y,I] = sort( sim_param(i).bwconstraint );
plot( sim_param(i).bwconstraint(I), sim_state(i).best_rate(I), sim_param(i).linetype );
hold on;
end
legend( sim_param( find( sim_types(8,:) == 1 ) ).legend, 2 );
xlabel( 'Bandwidth B' );
ylabel( 'optimal rate' );
hold off;
end
|