1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
function sim_state = SimulateMod( sim_param, sim_state, code_param )
% SimulateMod runs a single coded/uncoded modulation simulation scenario
%
% The calling syntax is:
% sim_state = SimulateMod( sim_param, sim_state )
%
% sim_param = A structure containing simulation parameters.
% sim_state = A structure containing the simulation state.
% code_param = A structure contining derived information.
% Note: See readme.txt for a description of the structure formats.
%
% Copyright (C) 2005-2007, Matthew C. Valenti
%
% Last updated on Dec. 23, 2007
%
% Function SimulateMod is part of the Iterative Solutions Coded Modulation
% Library (ISCML).
%
% The Iterative Solutions Coded Modulation Library is free software;
% you can redistribute it and/or modify it under the terms of
% the GNU Lesser General Public License as published by the
% Free Software Foundation; either version 2.1 of the License,
% or (at your option) any later version.
%
% This library is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% Lesser General Public License for more details.
%
% You should have received a copy of the GNU Lesser General Public
% License along with this library; if not, write to the Free Software
% Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
% create a random channel (BICM) interleaver
if (code_param.coded)
if ( sim_param.bicm > 0 )
code_param.bicm_interleaver = randperm(code_param.code_bits_per_frame)-1;
end
end
% determine Es/No
if ( sim_param.SNR_type(2) == 'b' ) % Eb/No
EbNo = 10.^(sim_param.SNR/10);
EsNo = EbNo*code_param.rate;
else % Es/No
EsNo = 10.^(sim_param.SNR/10);
end
% temporary filename
tempfile = 'tempsave.mat';
% FOR PROFILING RUNTIME
t0 = clock;
% simulate
for snrpoint = 1:length(EsNo)
fprintf( strcat( '\n', sim_param.SNR_type, ' = %f dB\n'), sim_param.SNR(snrpoint) );
current_time = fix(clock);
fprintf( 'Clock %2d:%2d:%2d\n', current_time(4), current_time(5), current_time(6) );
% loop until either there are enough trials or enough errors
while ( ( sim_state.trials( code_param.max_iterations, snrpoint ) < sim_param.max_trials( snrpoint ) )&( sim_state.frame_errors(code_param.max_iterations, snrpoint) < sim_param.max_frame_errors(snrpoint) ) )
% increment the trials counter
sim_state.trials(1:code_param.max_iterations, snrpoint) = sim_state.trials(1:code_param.max_iterations, snrpoint) + 1;
% generate random data
data = round( rand( 1, code_param.data_bits_per_frame ) );
% code and modulate
s = CmlEncode( data, sim_param, code_param );
% Put through the channel
symbol_likelihood = CmlChannel( s, sim_param, code_param, EsNo(snrpoint) );
if (code_param.outage == 0)
% Decode
[detected_data, errors] = CmlDecode( symbol_likelihood, data, sim_param, code_param );
% Echo an x if there was an error
if ( errors( code_param.max_iterations ) );
fprintf( 'x' );
end
% update frame error and bit error counters
sim_state.bit_errors( 1:code_param.max_iterations, snrpoint ) = sim_state.bit_errors( 1:code_param.max_iterations, snrpoint ) + errors;
sim_state.frame_errors( 1:code_param.max_iterations, snrpoint ) = sim_state.frame_errors( 1:code_param.max_iterations, snrpoint ) + (errors>0);
sim_state.BER(1:code_param.max_iterations, snrpoint) = sim_state.bit_errors(1:code_param.max_iterations, snrpoint)./sim_state.trials(1:code_param.max_iterations, snrpoint)/code_param.data_bits_per_frame;
sim_state.FER(1:code_param.max_iterations, snrpoint) = sim_state.frame_errors(1:code_param.max_iterations, snrpoint)./sim_state.trials(1:code_param.max_iterations, snrpoint);
% if uncoded, update symbol error rate, too.
if ~code_param.coded
if ( sim_param.mod_order > 2 )
error_positions = xor( detected_data(1:code_param.data_bits_per_frame), data );
% update symbol, frame, and bit error counters
sim_state.symbol_errors(snrpoint) = sim_state.symbol_errors( snrpoint) + sum( max( reshape( error_positions, code_param.bits_per_symbol, code_param.symbols_per_frame ),[],1 ) );
sim_state.SER(snrpoint) = sim_state.symbol_errors(snrpoint)/sim_state.trials(snrpoint)/code_param.symbols_per_frame;
else
sim_state.symbol_errors(snrpoint) = sim_state.bit_errors(snrpoint);
sim_state.SER(snrpoint) = sim_state.BER(snrpoint);
end
end
else
% determine capacity
if ( sim_param.bicm )
% BICM capacity
if (code_param.bpsk)
bit_likelihood = symbol_likelihood; % later this should be moved to Somap function
else
bit_likelihood = Somap( symbol_likelihood, sim_param.demod_type );
end
% BICM capacity (added log2(mod_order) on 12/23/07)
cap = log2(sim_param.mod_order)*Capacity( bit_likelihood, data );
else
% CM capacity (added log2(mod_order) on 12/23/07)
cap = log2(sim_param.mod_order)*Capacity( symbol_likelihood, data );
end
% compare to threshold and update FER counter
if ( cap < code_param.rate )
sim_state.frame_errors( 1, snrpoint ) = sim_state.frame_errors( 1, snrpoint ) + 1;
sim_state.FER(1, snrpoint) = sim_state.frame_errors(1, snrpoint)./sim_state.trials(1, snrpoint);
% Echo an x if there was an error
fprintf( 'x' );
end
end
% determine if it is time to save (either (1) last error, (2) last frame, or (3) once per save_rate)
condition1 = ( sim_state.frame_errors(code_param.max_iterations, snrpoint) == sim_param.max_frame_errors(snrpoint) );
condition2 = ( sim_state.trials( code_param.max_iterations, snrpoint ) == sim_param.max_trials( snrpoint ) );
condition3 = ~mod( sim_state.trials(code_param.max_iterations, snrpoint),sim_param.save_rate );
if ( condition1|condition2|condition3 )
% FOR PROFILING RUNTIME
% fprintf( '%f\n', etime(clock,t0) );
% t0=clock;
fprintf('.');
save_state = sim_state;
save_param = sim_param;
% Aded on April 22, 2006 in case system crashes during save
save( tempfile, code_param.save_flag, 'save_state', 'save_param');
% Store into local directory (if running locally)
if ( sim_param.compiled_mode )
copyfile( tempfile, sim_param.filename, 'f' );
end
movefile( tempfile, code_param.filename, 'f');
% redraw the BICM interleaver (so that it is uniform)
if (code_param.coded)
if ( sim_param.bicm > 0 )
code_param.bicm_interleaver = randperm(code_param.code_bits_per_frame)-1;
end
end
end
end
% halt if BER or FER is low enough
if ( ~code_param.outage & ( sim_state.BER(code_param.max_iterations, snrpoint) < sim_param.minBER ) )
% adjust max_iterations to be the last iteration that has not yet dropped below the BER threshold
% Logic has changed on 7-28-06
iteration_index = max( find( sim_state.BER(sim_param.plot_iterations,snrpoint) >= sim_param.minBER ) );
if isempty( iteration_index )
break;
else
code_param.max_iterations = sim_param.plot_iterations( iteration_index );
fprintf( '\nNumber of iterations = %d\n', code_param.max_iterations );
end
% elseif ( code_param.outage & ( sim_state.FER(code_param.max_iterations, snrpoint) < sim_param.minFER ) )
% break when the FER is low enough (changed on 12-31-07)
elseif ( sim_state.FER(code_param.max_iterations, snrpoint) < sim_param.minFER )
break;
end
end
fprintf( 'Simulation Complete\n' );
current_time = fix(clock);
fprintf( 'Clock %2d:%2d:%2d\n', current_time(4), current_time(5), current_time(6) );
|