1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
function sim_state = SimulateOutage( sim_param, sim_state, code_param )
% SimulateOutage runs a single information outage probability simulation.
%
% The calling syntax is:
% sim_state = SimulateOutage( sim_param, sim_state, code_param )
%
% sim_param = A structure containing simulation parameters.
% sim_state = A structure containing the simulation state.
% code_param = A structure contining derived information.
%
% Copyright (C) 2005-2007, Matthew C. Valenti and Tarik Ghanim
%
% Last updated on December 7, 2007
%
% Function SimulateOutage is part of the Iterative Solutions Coded Modulation
% Library (ISCML).
%
% The Iterative Solutions Coded Modulation Library is free software;
% you can redistribute it and/or modify it under the terms of
% the GNU Lesser General Public License as published by the
% Free Software Foundation; either version 2.1 of the License,
% or (at your option) any later version.
%
% This library is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% Lesser General Public License for more details.
%
% You should have received a copy of the GNU Lesser General Public
% License along with this library; if not, write to the Free Software
% Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
% load AWGN simulation
if(sim_param.mod_order > 0)
input_file = load(code_param.input_filename); % changed 12/7/07
capacity_AWGN = input_file.save_state.capacity_avg * log2(sim_param.mod_order);
EsNodB_AWGN = input_file.save_param.SNR; % assume SNR is Es/No in dB
EsNo_AWGN = 10.^(EsNodB_AWGN/10);
% Determine the slope of the capacity curve
last_index = length( capacity_AWGN );
slope = ( capacity_AWGN(2:last_index) - capacity_AWGN(1:last_index-1) )./( EsNo_AWGN(2:last_index) - EsNo_AWGN(1:last_index-1) );
end
% Initialize variables
rate = sim_param.rate;
if ( sim_param.SNR_type(2) == 'b' ) % Eb/No
EbNo = 10.^(sim_param.SNR/10);
EsNo = EbNo.*rate;
else % Es/No
EsNo = 10.^(sim_param.SNR/10);
end
L = sim_param.blocks_per_frame;
LL = L;
if ( sim_param.mod_order == -1)
% mod_order == -1 corresponds to 1-D Gaussian input
LL = L*2; % account for real symbols only
end
% determine combining type used
type = 0; % 'diversity'
if(strcmpi( sim_param.combining_type, 'code' ))
type = 1;
end
% temporary filename
tempfile = 'tempsave.mat';
% simulate
for snrpoint = 1:size(EsNo,2)
fprintf( strcat( '\n', sim_param.SNR_type, ' = %f dB\n'), sim_param.SNR(snrpoint) );
save_counter = 0;
while (( sim_state.trials( snrpoint ) < sim_param.max_trials( snrpoint ) )...
&( sim_state.frame_errors(snrpoint) < sim_param.max_frame_errors(snrpoint)))
% increment the trials counter
sim_state.trials(snrpoint) = sim_state.trials(snrpoint) + sim_param.trial_size;
save_counter = save_counter + sim_param.trial_size;
% Generate i.i.d. exponential SNRs (changed 12/7/07)
% gamma = EsNo(snrpoint)*exprnd(1,sim_param.trial_size,L);
gamma = -EsNo(snrpoint)*log(rand(sim_param.trial_size,L));
% If this is diversity combining, add the SNRs.
if ( type == 0 )
gamma = sum( gamma, 2 );
end
if(sim_param.mod_order > 0) % Modulation Constrained Input
inst_cap = 1/LL*CapacityTableLookup( EsNo_AWGN, capacity_AWGN, slope, gamma );
else % Unconstrained Gaussian Input
inst_cap = 1/LL*sum( log2( 1 + gamma ), 2 );
end
outages = sum(inst_cap<rate);
sim_state.frame_errors(snrpoint) = sim_state.frame_errors(snrpoint) + outages;
sim_state.FER(snrpoint) = sim_state.frame_errors(snrpoint)./sim_state.trials(snrpoint);
if outages
fprintf('x');
end
% determine if it is time to save (either (1) last error, (2) last
% frame, or (3) once per save_rate
condition1 = ( sim_state.trials(snrpoint ) >= sim_param.max_trials( snrpoint ) );
condition2 = ( sim_state.frame_errors(1, snrpoint) >= sim_param.max_frame_errors(snrpoint) );
% condition3 = ~mod( sim_state.trials(snrpoint), sim_param.save_rate );
condition3 = (save_counter > sim_param.save_rate );
time_to_save = condition1|condition2|condition3;
if ( time_to_save )
fprintf('.');
save_state = sim_state;
save_param = sim_param;
% Aded on April 22, 2006 in case system crashes during save
save( tempfile, code_param.save_flag, 'save_state', 'save_param');
% Store into local directory (if running locally)
if ( sim_param.compiled_mode )
copyfile( tempfile, sim_param.filename, 'f' );
end
movefile( tempfile, code_param.filename, 'f');
save_counter = 0;
end
end % Averaging loop over transmitted codewords(frames)
% halt if FER is low enough
if ( sim_state.FER(1, snrpoint) < sim_param.minFER )
break;
end
end % SNR loop
|