File: SimulateUGI.m

package info (click to toggle)
codec2 1.2.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 76,376 kB
  • sloc: ansic: 436,819; cpp: 2,091; objc: 1,736; sh: 1,510; python: 1,405; asm: 683; makefile: 605
file content (139 lines) | stat: -rw-r--r-- 5,470 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
function sim_state = SimulateUGI( sim_param, sim_state, code_param )
% SimulateUGI simulates the information outage probability of 1 or 2-D
% modulation with an unconstrained Gaussian input (UGI)
%
% The calling syntax is:
%     sim_state = SimulateUGI( sim_param, sim_state )
%
%     sim_param = A structure containing simulation parameters.
%     sim_state = A structure containing the simulation state.
%     code_param = A structure contining derived information.
%     Note: See readme.txt for a description of the structure formats.
%
%     Copyright (C) 2007, Matthew C. Valenti and David Buckingham
%
%     Last updated on Dec. 30, 2007
%
%     Function SimulateUGI is part of the Iterative Solutions Coded Modulation
%     Library (ISCML).
%
%     The Iterative Solutions Coded Modulation Library is free software;
%     you can redistribute it and/or modify it under the terms of
%     the GNU Lesser General Public License as published by the
%     Free Software Foundation; either version 2.1 of the License,
%     or (at your option) any later version.
%
%     This library is distributed in the hope that it will be useful,
%     but WITHOUT ANY WARRANTY; without even the implied warranty of
%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
%     Lesser General Public License for more details.
%
%     You should have received a copy of the GNU Lesser General Public
%     License along with this library; if not, write to the Free Software
%     Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301
%     USA

fprintf( 'Rate = %f\n', code_param.rate );

% determine Es/No
if ( sim_param.SNR_type(2) == 'b' ) % Eb/No
    EbNo = 10.^(sim_param.SNR/10);
    EsNo = EbNo*(code_param.rate);
else % Es/No
    EsNo = 10.^(sim_param.SNR/10);
end

% temporary filename
tempfile = 'tempsave.mat';


% simulate
for snrpoint = 1:length(EsNo)
    fprintf( strcat( '\n', sim_param.SNR_type, ' = %f dB\n'), sim_param.SNR(snrpoint) );
    current_time = fix(clock);
    fprintf(  'Clock %2d:%2d:%2d\n',  current_time(4), current_time(5), current_time(6) );

    % constant
    if ( sim_param.mod_order == 0 )
        const = log( 1 + EsNo(snrpoint) );        
    else
        const = 1/2*log(1+2*EsNo(snrpoint));
    end

    % Noise standard deviation
    noise_std = sqrt( 1/(2*EsNo(snrpoint)) );

    % loop until either there are enough trials or enough errors
    while ( ( sim_state.trials( snrpoint ) < sim_param.max_trials( snrpoint ) )&( sim_state.frame_errors( snrpoint) < sim_param.max_frame_errors(snrpoint) ) )

        % increment the trials counter
        sim_state.trials(snrpoint) = sim_state.trials(snrpoint) + 1;


        % mutual information random vector
        if ( sim_param.mod_order == 0) % 2-D
            % normalized (complex) Gaussian input
            x = sqrt(0.5).*( randn( 1, code_param.symbols_per_frame ) + ...
                j*randn( 1, code_param.symbols_per_frame ) );

            % Additive White (complex) Gaussian noise
            n = noise_std*( randn( 1, code_param.symbols_per_frame ) + ...
                j*randn( 1, code_param.symbols_per_frame ) );

            % received signal
            y = x + n;

            info = const + EsNo(snrpoint)*( (abs(y)).^2/( EsNo(snrpoint) + 1 ) - (abs(y-x)).^2 );
        else % 1-D so only consider real-part
            % normalized real-valued Gaussian input
            x = randn( 1, code_param.symbols_per_frame );

            % Additive White Gaussian noise
            n = noise_std*randn( 1, code_param.symbols_per_frame );

            % received signal
            y = x + n;

            info = const + EsNo(snrpoint)*( (y).^2/( 2*EsNo(snrpoint) + 1 ) - (y-x).^2 );
        end
        
        % Divide by ln(2) to convert from nats to bits for rate comparison
        result = mean( info )./log(2);
        
        % Compare instantaneous capacity with code rate
        if (result < code_param.rate)
            % Log error
            fprintf( 'x' );
            sim_state.frame_errors(snrpoint) = sim_state.frame_errors(snrpoint) + 1;
            sim_state.FER(snrpoint) = sim_state.frame_errors(snrpoint)./sim_state.trials(snrpoint);
        end
        
        % determine if it is time to save (either (1) last error, (2) last frame, or (3) once per save_rate)
        condition1 = ( sim_state.frame_errors(snrpoint) == sim_param.max_frame_errors(snrpoint) );
        condition2 = ( sim_state.trials(snrpoint) == sim_param.max_trials( snrpoint ) );
        condition3 = ~mod( sim_state.trials(snrpoint),sim_param.save_rate );
        if ( condition1|condition2|condition3 )
            fprintf('.');
            save_state = sim_state;
            save_param = sim_param;           
            save( tempfile, code_param.save_flag, 'save_state', 'save_param');

            % Store into local directory (if running locally)
            if ( sim_param.compiled_mode )
                copyfile( tempfile, sim_param.filename, 'f' );
            end

            movefile( tempfile, code_param.filename, 'f');

        end
    end
    
    % Recalculate FER
    sim_state.FER(snrpoint) = sim_state.frame_errors(snrpoint)./sim_state.trials(snrpoint);
    
    % Check to see if FER is low enough
    if ( sim_state.FER(snrpoint) < sim_param.minFER )
        break;
    end 
end