1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
function sim_state = SimulateUGI( sim_param, sim_state, code_param )
% SimulateUGI simulates the information outage probability of 1 or 2-D
% modulation with an unconstrained Gaussian input (UGI)
%
% The calling syntax is:
% sim_state = SimulateUGI( sim_param, sim_state )
%
% sim_param = A structure containing simulation parameters.
% sim_state = A structure containing the simulation state.
% code_param = A structure contining derived information.
% Note: See readme.txt for a description of the structure formats.
%
% Copyright (C) 2007, Matthew C. Valenti and David Buckingham
%
% Last updated on Dec. 30, 2007
%
% Function SimulateUGI is part of the Iterative Solutions Coded Modulation
% Library (ISCML).
%
% The Iterative Solutions Coded Modulation Library is free software;
% you can redistribute it and/or modify it under the terms of
% the GNU Lesser General Public License as published by the
% Free Software Foundation; either version 2.1 of the License,
% or (at your option) any later version.
%
% This library is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% Lesser General Public License for more details.
%
% You should have received a copy of the GNU Lesser General Public
% License along with this library; if not, write to the Free Software
% Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
% USA
fprintf( 'Rate = %f\n', code_param.rate );
% determine Es/No
if ( sim_param.SNR_type(2) == 'b' ) % Eb/No
EbNo = 10.^(sim_param.SNR/10);
EsNo = EbNo*(code_param.rate);
else % Es/No
EsNo = 10.^(sim_param.SNR/10);
end
% temporary filename
tempfile = 'tempsave.mat';
% simulate
for snrpoint = 1:length(EsNo)
fprintf( strcat( '\n', sim_param.SNR_type, ' = %f dB\n'), sim_param.SNR(snrpoint) );
current_time = fix(clock);
fprintf( 'Clock %2d:%2d:%2d\n', current_time(4), current_time(5), current_time(6) );
% constant
if ( sim_param.mod_order == 0 )
const = log( 1 + EsNo(snrpoint) );
else
const = 1/2*log(1+2*EsNo(snrpoint));
end
% Noise standard deviation
noise_std = sqrt( 1/(2*EsNo(snrpoint)) );
% loop until either there are enough trials or enough errors
while ( ( sim_state.trials( snrpoint ) < sim_param.max_trials( snrpoint ) )&( sim_state.frame_errors( snrpoint) < sim_param.max_frame_errors(snrpoint) ) )
% increment the trials counter
sim_state.trials(snrpoint) = sim_state.trials(snrpoint) + 1;
% mutual information random vector
if ( sim_param.mod_order == 0) % 2-D
% normalized (complex) Gaussian input
x = sqrt(0.5).*( randn( 1, code_param.symbols_per_frame ) + ...
j*randn( 1, code_param.symbols_per_frame ) );
% Additive White (complex) Gaussian noise
n = noise_std*( randn( 1, code_param.symbols_per_frame ) + ...
j*randn( 1, code_param.symbols_per_frame ) );
% received signal
y = x + n;
info = const + EsNo(snrpoint)*( (abs(y)).^2/( EsNo(snrpoint) + 1 ) - (abs(y-x)).^2 );
else % 1-D so only consider real-part
% normalized real-valued Gaussian input
x = randn( 1, code_param.symbols_per_frame );
% Additive White Gaussian noise
n = noise_std*randn( 1, code_param.symbols_per_frame );
% received signal
y = x + n;
info = const + EsNo(snrpoint)*( (y).^2/( 2*EsNo(snrpoint) + 1 ) - (y-x).^2 );
end
% Divide by ln(2) to convert from nats to bits for rate comparison
result = mean( info )./log(2);
% Compare instantaneous capacity with code rate
if (result < code_param.rate)
% Log error
fprintf( 'x' );
sim_state.frame_errors(snrpoint) = sim_state.frame_errors(snrpoint) + 1;
sim_state.FER(snrpoint) = sim_state.frame_errors(snrpoint)./sim_state.trials(snrpoint);
end
% determine if it is time to save (either (1) last error, (2) last frame, or (3) once per save_rate)
condition1 = ( sim_state.frame_errors(snrpoint) == sim_param.max_frame_errors(snrpoint) );
condition2 = ( sim_state.trials(snrpoint) == sim_param.max_trials( snrpoint ) );
condition3 = ~mod( sim_state.trials(snrpoint),sim_param.save_rate );
if ( condition1|condition2|condition3 )
fprintf('.');
save_state = sim_state;
save_param = sim_param;
save( tempfile, code_param.save_flag, 'save_state', 'save_param');
% Store into local directory (if running locally)
if ( sim_param.compiled_mode )
copyfile( tempfile, sim_param.filename, 'f' );
end
movefile( tempfile, code_param.filename, 'f');
end
end
% Recalculate FER
sim_state.FER(snrpoint) = sim_state.frame_errors(snrpoint)./sim_state.trials(snrpoint);
% Check to see if FER is low enough
if ( sim_state.FER(snrpoint) < sim_param.minFER )
break;
end
end
|