File: Capacity.cpp

package info (click to toggle)
codec2 1.2.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 76,376 kB
  • sloc: ansic: 436,819; cpp: 2,091; objc: 1,736; sh: 1,510; python: 1,405; asm: 683; makefile: 605
file content (139 lines) | stat: -rw-r--r-- 4,218 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
/* File: Capacity.c

   Description: Determines capacity of M-ary modulation

   The calling syntax is:
      [output] = capacity( input, data )

   Where:
      output  = Instantaneous capacity of this frame

      input   = M by N matrix of symbol likelihoods 
	  data    = 1 by N*log2(M) vector of data bits

   Note: if M = 1, then the input must be bitwise LLRs. 

   Copyright (C) 2005-2006, Matthew C. Valenti

   Last updated on Jan. 11, 2006

   Function Capacity is part of the Iterative Solutions 
   Coded Modulation Library. The Iterative Solutions Coded Modulation 
   Library is free software; you can redistribute it and/or modify it 
   under the terms of the GNU Lesser General Public License as published 
   by the Free Software Foundation; either version 2.1 of the License, 
   or (at your option) any later version.

   This library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.
  
   You should have received a copy of the GNU Lesser General Public
   License along with this library; if not, write to the Free Software
   Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA

*/
#include <math.h>
#include <mex.h>
#include <Matrix.h>
#include <stdlib.h>
#include "./include/maxstar.h"

/* Input Arguments
prhs[0] is input
prhs[1] is data */

/* Output Arguments
plhs[0] is output */

/* main function that interfaces with MATLAB */
void mexFunction(
				 int            nlhs,
				 mxArray       *plhs[],
				 int            nrhs,
				 const mxArray *prhs[] )
{
  int    M;
  int    number_symbols, number_bits, bits_per_symbol;
  double *input, *output, *data; 
  int    i,j,index,temp_int;
  double cap_sum, temp_cap;

  /* make sure there are enough inputs */
  if (nrhs<2)
	  mexErrMsgTxt("Usage: [output] = capacity( input, data )");

  /* read in input received symbols */
  number_symbols = mxGetN(prhs[0]);
  M = mxGetM(prhs[0]);
  input = mxGetPr(prhs[0]);

  /* read in data bits */
  number_bits = mxGetN(prhs[1]);
  if ( mxGetM(prhs[1])!=1)
	  mexErrMsgTxt("data must be a row vector");
  data = mxGetPr(prhs[1]);

  /* determine the number of bits per symbol */
  if (M == 1) 
	  bits_per_symbol = 1; /* input is bitwise LLRs */
  else {
	  bits_per_symbol = 0;
	  temp_int = M;
	  while (temp_int>1) {
		  temp_int = temp_int/2;
		  bits_per_symbol++;
	  }
  }
  /* printf( "number of symbols = %d\n", number_symbols);
  printf( "number of bits = %d\n", number_bits );
  printf( "M = %d\n", M);
  printf( "Bits per symbol = %d\n", bits_per_symbol ); */
  
  /* make sure that number of bits is consistent */
  if ( number_bits%bits_per_symbol )
	  mexErrMsgTxt( "Number of bits does not divide log_2(M)" );
  if ( (number_symbols*bits_per_symbol) != number_bits )
	  mexErrMsgTxt( "Number of bits inconsistent with number of symbols" );

  /* output is a real scalar */
  plhs[0] = mxCreateDoubleMatrix(1, 1, mxREAL);
  output = mxGetPr( plhs[0] );

  /* determine capacity */
  cap_sum = 0;
  if ( M == 1 ) {
	  /* the input is bitwise LLRs */
	  for (i=0;i<number_symbols;i++) {
		  if ( data[i] > 0 )
			  cap_sum += max_star4( 0, -input[i] );
		  else
			  cap_sum += max_star4( 0, input[i] );
	  }
	  /* printf( "cap_sum = %f\n", cap_sum ); */
	  output[0] = 1 - cap_sum/(number_symbols*log(2));
  } else {
	  for (i=0;i<number_symbols;i++) { /* create each modulated symbol */
		  /* determine the index */
		  index = 0;
		  for (j=0;j<bits_per_symbol;j++) { /* go through each associated bit */
			  index = index << 1; /* shift to the left (multiply by 2) */
			  index += data[i*bits_per_symbol+j];
		  }
		  temp_cap = -1000000;
		  for (j=0;j<M;j++) {
			  /* printf( "metric[%d] = %f\n", M, input[i*M+j]-input[i*M+index] ); */
			  temp_cap = max_star4( temp_cap, input[i*M+j] - input[i*M+index] );
		  }
		  /* printf( "temp_cap = %f\n\n", temp_cap ); */
		  cap_sum += temp_cap;
	  }
	  output[0] = 1 - cap_sum/(number_symbols*log(M));
  }

  /* printf( "cap_sum = %f\n", cap_sum ); */
  /* printf( "instantaneous capacity = %f\n", output[0] ); */

}