1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
/* file: ConvEncode.c
Description: Convolutionally encode with either NSC or RSC code.
The calling syntax is:
[output] = ConvEncode(input, g_encoder, [code_type] )
output = code word
Required inputs:
input = data word
g_encoder = generator matrix for convolutional code
(If RSC, then feedback polynomial is first)
Optional inputs:
code_type = 0 for recursive systematic convolutional (RSC) code (default)
= 1 for non-systematic convolutional (NSC) code
= 2 for tail-biting NSC code
Copyright (C) 2005-2008, Matthew C. Valenti
Last updated on May 21, 2008
Function ConvEncode is part of the Iterative Solutions
Coded Modulation Library. The Iterative Solutions Coded Modulation
Library is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <math.h>
#include <mex.h>
#include <Matrix.h>
#include <stdlib.h>
/* library of functions */
#include "./include/convolutional.h"
/* Input Arguments */
#define INPUT prhs[0]
#define GENENCODER prhs[1]
#define CODETYPE prhs[2]
/* Output Arguments */
#define OUTPUT plhs[0]
/* main function that interfaces with MATLAB */
void mexFunction(
int nlhs,
mxArray *plhs[],
int nrhs,
const mxArray *prhs[] )
{
double *input, *g_array;
double *output_p;
int DataLength, CodeLength, i, j, index;
mwIndex subs[] = {1,1};
int *g_encoder;
int nn, KK, mm, code_type, max_states;
double elm;
int *input_int, *output_int;
int *out0, *out1, *state0, *state1, *tail;
code_type = 0; /* Default:Code is RSC with terminated trellis */
/* Check for proper number of arguments */
if ((nrhs < 2 )||(nlhs > 1)) {
mexErrMsgTxt("Usage: [output] = ConvEncode(input, g_encoder, code_type )");
} else {
/* first input is the data word */
input = mxGetPr(INPUT);
DataLength = mxGetN(INPUT); /* number of data bits */
/* cast the input into a vector of integers */
input_int = (int*)calloc( DataLength, sizeof(int) );
for (i=0;i<DataLength;i++)
input_int[i] = (int) input[i];
/* second input specifies the code polynomial */
g_array = mxGetPr(GENENCODER);
nn = mxGetM(GENENCODER);
KK = mxGetN(GENENCODER);
mm = KK - 1;
max_states = 1 << mm;
if ( nrhs == 3 ) {
/* optional third input indicates if outer is RSC, NSC or tail-biting NSC */
code_type = (int) *mxGetPr(CODETYPE);
}
/* Determine the length of the output */
if (code_type < 2)
CodeLength = nn*(DataLength+mm);
else
CodeLength = nn*DataLength;
/* Convert code polynomial to binary */
g_encoder = (int*)calloc(nn, sizeof(int) );
for (i = 0;i<nn;i++) {
subs[0] = i;
for (j=0;j<KK;j++) {
subs[1] = j;
index = mxCalcSingleSubscript(GENENCODER, 2, subs);
elm = g_array[index];
if (elm != 0) {
g_encoder[i] = g_encoder[i] + (int) pow(2,(KK-j-1));
}
}
/* mexPrintf(" g_encoder[%d] = %o\n", i, g_encoder[i] ); */
}
}
/* create the output vector */
OUTPUT = mxCreateDoubleMatrix(1, CodeLength, mxREAL );
output_p = mxGetPr(OUTPUT);
output_int = (int*)calloc( CodeLength, sizeof( int ) );
/* create appropriate transition matrices */
out0 = (int*)calloc( max_states, sizeof(int) );
out1 = (int*)calloc( max_states, sizeof(int) );
state0 = (int*)calloc( max_states, sizeof(int) );
state1 = (int*)calloc( max_states, sizeof(int) );
tail = (int*)calloc( max_states, sizeof(int) );
if ( code_type ) {
nsc_transit( out0, state0, 0, g_encoder, KK, nn );
nsc_transit( out1, state1, 1, g_encoder, KK, nn );
if (code_type == 2)
tail[0] = -1;
} else {
rsc_transit( out0, state0, 0, g_encoder, KK, nn );
rsc_transit( out1, state1, 1, g_encoder, KK, nn );
rsc_tail( tail, g_encoder, max_states, mm );
}
/* Encode */
conv_encode( output_int, input_int, out0, state0, out1, state1, tail, KK, DataLength, nn );
/* cast to output */
for (i=0;i<CodeLength;i++)
output_p[i] = output_int[i];
/* Clean up memory */
free( output_int );
free( input_int );
free( g_encoder );
free( out0 );
free( out1 );
free( state0 );
free( state1 );
free( tail );
return;
}
|