File: ConvEncode.cpp

package info (click to toggle)
codec2 1.2.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 76,376 kB
  • sloc: ansic: 436,819; cpp: 2,091; objc: 1,736; sh: 1,510; python: 1,405; asm: 683; makefile: 605
file content (167 lines) | stat: -rw-r--r-- 4,877 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
/* file: ConvEncode.c

   Description: Convolutionally encode with either NSC or RSC code.

   The calling syntax is:

      [output] = ConvEncode(input, g_encoder, [code_type] )

      output = code word

      Required inputs:
	  input  = data word
	  g_encoder = generator matrix for convolutional code
	              (If RSC, then feedback polynomial is first)
	  Optional inputs:
	  code_type = 0 for recursive systematic convolutional (RSC) code (default)
	            = 1 for non-systematic convolutional (NSC) code
				= 2 for tail-biting NSC code               

   Copyright (C) 2005-2008, Matthew C. Valenti

   Last updated on May 21, 2008

   Function ConvEncode is part of the Iterative Solutions 
   Coded Modulation Library. The Iterative Solutions Coded Modulation 
   Library is free software; you can redistribute it and/or modify it 
   under the terms of the GNU Lesser General Public License as published 
   by the Free Software Foundation; either version 2.1 of the License, 
   or (at your option) any later version.

   This library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.
  
   You should have received a copy of the GNU Lesser General Public
   License along with this library; if not, write to the Free Software
   Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA

*/
        
#include <math.h>
#include <mex.h>
#include <Matrix.h>
#include <stdlib.h>

/* library of functions */
#include "./include/convolutional.h"

/* Input Arguments */
#define INPUT       prhs[0]
#define GENENCODER  prhs[1]
#define CODETYPE    prhs[2]

/* Output Arguments */
#define OUTPUT      plhs[0]

/* main function that interfaces with MATLAB */
void mexFunction(
				 int            nlhs,
				 mxArray       *plhs[],
				 int            nrhs,
				 const mxArray *prhs[] )
{
	double	*input, *g_array;
	double	*output_p;
	int      DataLength, CodeLength, i, j, index;
	mwIndex  subs[] = {1,1};
	int     *g_encoder;
	int		 nn, KK, mm, code_type, max_states;
	double   elm;
	int		*input_int, *output_int;
	int     *out0, *out1, *state0, *state1, *tail;

	code_type = 0; /* Default:Code is RSC with terminated trellis */

	/* Check for proper number of arguments */
	if ((nrhs < 2 )||(nlhs  > 1)) {
		mexErrMsgTxt("Usage: [output] = ConvEncode(input, g_encoder, code_type )");
	} else {
		/* first input is the data word */
		input = mxGetPr(INPUT);	
		DataLength = mxGetN(INPUT); /* number of data bits */

		/* cast the input into a vector of integers */
		input_int = (int*)calloc( DataLength, sizeof(int) );
		for (i=0;i<DataLength;i++)
			input_int[i] = (int) input[i];

		/* second input specifies the code polynomial */
	    g_array = mxGetPr(GENENCODER);	
		nn = mxGetM(GENENCODER);
		KK = mxGetN(GENENCODER);
		mm = KK - 1;
		max_states = 1 << mm;

		if ( nrhs == 3 ) {		
			/* optional third input indicates if outer is RSC, NSC or tail-biting NSC */
			code_type   = (int) *mxGetPr(CODETYPE);
		}

		/* Determine the length of the output */
		if (code_type < 2)
			CodeLength = nn*(DataLength+mm);
		else
			CodeLength = nn*DataLength;
			
		/* Convert code polynomial to binary */
		g_encoder = (int*)calloc(nn, sizeof(int) );

		for (i = 0;i<nn;i++) {
			subs[0] = i;
			for (j=0;j<KK;j++) {
				subs[1] = j;
				index = mxCalcSingleSubscript(GENENCODER, 2, subs);
				elm = g_array[index];
				if (elm != 0) {
					g_encoder[i] = g_encoder[i] + (int) pow(2,(KK-j-1)); 
				}
			}
			/* mexPrintf("   g_encoder[%d] = %o\n", i, g_encoder[i] ); */
		}

	} 

	/* create the output vector */		
	OUTPUT = mxCreateDoubleMatrix(1, CodeLength, mxREAL );
	output_p = mxGetPr(OUTPUT);	
	output_int = (int*)calloc( CodeLength, sizeof( int ) );

	/* create appropriate transition matrices */
	out0 = (int*)calloc( max_states, sizeof(int) );
	out1 = (int*)calloc( max_states, sizeof(int) );
	state0 = (int*)calloc( max_states, sizeof(int) );
	state1 = (int*)calloc( max_states, sizeof(int) );
	tail = (int*)calloc( max_states, sizeof(int) );

	if ( code_type ) {
		nsc_transit( out0, state0, 0, g_encoder, KK, nn );
		nsc_transit( out1, state1, 1, g_encoder, KK, nn );
		if (code_type == 2)
			tail[0] = -1;
	} else {
		rsc_transit( out0, state0, 0, g_encoder, KK, nn );
		rsc_transit( out1, state1, 1, g_encoder, KK, nn );
		rsc_tail( tail, g_encoder, max_states, mm );
	}

	/* Encode */
	conv_encode( output_int, input_int, out0, state0, out1, state1, tail, KK, DataLength, nn );	

	/* cast to output */
    for (i=0;i<CodeLength;i++) 			
		output_p[i] = output_int[i];
		
	/* Clean up memory */
	free( output_int );
	free( input_int );
	free( g_encoder );
	free( out0 );
	free( out1 );
	free( state0 );
	free( state1 );
	free( tail );

	return;
}