1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
|
/* file: MpDecode.c
Description: Decode a block code using the message passing algorithm.
The calling syntax is:
[output, errors] = MpDecode(input, H_rows, H_cols, [max_iter], [dec_type], [r_scale_factor], [q_scale_factor], [data] )
output = matrix of dimension maxiter by N that has the decoded code bits for each iteration
errors = (optional) column vector showing the number of (data bit) errors after each iteration.
input = the decoder input in LLR form
H_cols = a N row matrix specifying the locations of the nonzero entries in each column of the H matrix.
The number or columns in the matrix is the max column weight.
OR
a (K + shift) row matrix specifying locations of the nonzero entries in each coulmn of an extended IRA type
sparse H1 matrix
H_rows = a N-K row matrix specifying the locations of the nonzero entries in each row of the H matrix.
The number or columns in the matrix is the max row weight, unless this is for an H1 matrix,
in which case the last n-k-shift columns of the H matrix are equal to a known H2 matrix.
max_iter = (optional) the maximum number of decoder iterations (default = 30).
dec_type = (optional) the decoder type:
= 0 Sum-product (default)
= 1 Min-sum
= 2 Approximate-min-star
r_scale_factor = (optional) amount to scale extrinsic output of c-nodes in min-sum decoding (default = 1)
q_scale_factor = (optional) amount to scale extrinsic output of v-nodes in min-sum decoding (default = 1)
data = (optional) a vector containing the data bits (used for counting errors and for early halting) (default all zeros)
Copyright (C) 2006-2007, Matthew C. Valenti and Rohit Iyer Seshadri
Last updated on Aug. 8, 2007
Function MpDecode is part of the Iterative Solutions
Coded Modulation Library. The Iterative Solutions Coded Modulation
Library is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <math.h>
#include <mex.h>
#include <Matrix.h>
#include <stdlib.h>
#include <stdio.h>
/* Input Arguments */
#define INPUT prhs[0]
#define HROWS prhs[1]
#define HCOLS prhs[2]
#define MAXITER prhs[3]
#define DECTYPE prhs[4]
#define RSCALEFACTOR prhs[5]
#define QSCALEFACTOR prhs[6]
#define DATA prhs[7]
/* Output Arguments */
#define OUTPUT plhs[0]
#define ERRORS plhs[1]
struct v_node {
int degree;
float initial_value;
int *index; /* the index of a c_node it is connected to */
int *socket; /* socket number at the c_node */
float *message;
int *sign;
};
struct c_node {
int degree;
int *index;
float *message;
int *socket; /* socket number at the v_node */
};
/* Phi function */
static float phi0(
float x )
{
float z;
if (x>10)
return( 0 );
else if (x< 9.08e-5 )
return( 10 );
else if (x > 9)
return( 1.6881e-4 );
/* return( 1.4970e-004 ); */
else if (x > 8)
return( 4.5887e-4 );
/* return( 4.0694e-004 ); */
else if (x > 7)
return( 1.2473e-3 );
/* return( 1.1062e-003 ); */
else if (x > 6)
return( 3.3906e-3 );
/* return( 3.0069e-003 ); */
else if (x > 5)
return( 9.2168e-3 );
/* return( 8.1736e-003 ); */
else {
z = (float) exp(x);
return( (float) log( (z+1)/(z-1) ) );
}
}
static float correction(
float xinput )
{
if (xinput > 2.625 )
return( 0 );
else if (xinput < 1 )
return( -0.375*xinput + 0.6825 );
else
return( -0.1875*xinput + 0.5 );
}
static float LambdaAPPstar( float mag1,
float mag2 )
{
if (mag1 > mag2)
return( fabs( mag2 + correction( mag1 + mag2 ) - correction( mag1 - mag2 ) ) );
else
return( fabs( mag1 + correction( mag1 + mag2 ) - correction( mag2 - mag1 ) ) );
}
/* function for doing the MP decoding */
static void ApproximateMinStar( int BitErrors[],
int DecodedBits[],
struct c_node c_nodes[],
struct v_node v_nodes[],
int CodeLength,
int NumberParityBits,
int max_iter )
{
int i,j, iter;
int sign;
float temp_sum;
float Qi;
float delta, minval, deltaAPP;
int mink;
for (iter=0;iter<max_iter;iter++) {
/* update r */
for (j=0;j<NumberParityBits;j++) {
/* start new code for approximate-min-star */
mink = 0;
sign = v_nodes[ c_nodes[j].index[0] ].sign[ c_nodes[j].socket[0] ];
minval = v_nodes[ c_nodes[j].index[0] ].message[ c_nodes[j].socket[0] ];
for (i=1;i<c_nodes[j].degree;i++) {
/* first find the minimum magnitude input message */
if ( v_nodes[ c_nodes[j].index[i] ].message[ c_nodes[j].socket[i] ] < minval ) {
mink = i;
minval = v_nodes[ c_nodes[j].index[i] ].message[ c_nodes[j].socket[i] ];
}
/* update the aggregate sign */
sign ^= v_nodes[ c_nodes[j].index[i] ].sign[ c_nodes[j].socket[i] ];
}
/* find the magnitude to send out the minimum input magnitude branch */
if ( mink == 0 ) {
delta = v_nodes[ c_nodes[j].index[1] ].message[ c_nodes[j].socket[1] ];
for (i=2;i<c_nodes[j].degree;i++) {
delta = LambdaAPPstar( delta, v_nodes[ c_nodes[j].index[i] ].message[ c_nodes[j].socket[i] ] );
}
} else {
delta = v_nodes[ c_nodes[j].index[0] ].message[ c_nodes[j].socket[0] ];
for (i=1;i<c_nodes[j].degree;i++) {
if ( i != mink )
delta = LambdaAPPstar( delta, v_nodes[ c_nodes[j].index[i] ].message[ c_nodes[j].socket[i] ] );
}
}
deltaAPP = LambdaAPPstar( delta, v_nodes[ c_nodes[j].index[mink] ].message[ c_nodes[j].socket[mink] ] );
/* compute outgoing messages */
for (i=0;i<c_nodes[j].degree;i++) {
if ( i == mink ) {
if ( sign^v_nodes[ c_nodes[j].index[i] ].sign[ c_nodes[j].socket[i] ] )
c_nodes[j].message[i] = - delta;
else
c_nodes[j].message[i] = delta;
} else {
if ( sign^v_nodes[ c_nodes[j].index[i] ].sign[ c_nodes[j].socket[i] ] )
c_nodes[j].message[i] = - deltaAPP;
else
c_nodes[j].message[i] = deltaAPP;
}
}
}
/* update q */
for (i=0;i<CodeLength;i++) {
/* first compute the LLR */
Qi = v_nodes[i].initial_value;
for (j=0;j<v_nodes[i].degree;j++) {
Qi += c_nodes[ v_nodes[i].index[j] ].message[ v_nodes[i].socket[j] ];
}
/* make hard decision */
if (Qi < 0) {
DecodedBits[iter+max_iter*i] = 1;
BitErrors[iter]++;
}
/* now subtract to get the extrinsic information */
for (j=0;j<v_nodes[i].degree;j++) {
temp_sum = Qi - c_nodes[ v_nodes[i].index[j] ].message[ v_nodes[i].socket[j] ];
v_nodes[i].message[j] = fabs( temp_sum );
if (temp_sum > 0)
v_nodes[i].sign[j] = 0;
else
v_nodes[i].sign[j] = 1;
}
}
/* detect errors */
if (BitErrors[iter] == 0)
break;
}
}
/* function for doing the MP decoding */
static void MinSum( int BitErrors[],
int DecodedBits[],
struct c_node c_nodes[],
struct v_node v_nodes[],
int CodeLength,
int NumberParityBits,
int max_iter,
float r_scale_factor,
float q_scale_factor,
int data[] )
{
int i,j, iter, i_prime, j_prime;
float min_beta;
int sign;
float temp_sum;
float Qi;
for (iter=0;iter<max_iter;iter++) {
/* update r */
for (j=0;j<NumberParityBits;j++) {
sign = 0;
for (i=0;i<c_nodes[j].degree;i++)
sign ^= v_nodes[ c_nodes[j].index[i] ].sign[ c_nodes[j].socket[i] ];
for (i=0;i<c_nodes[j].degree;i++) {
min_beta = 1000;
for (i_prime=0;i_prime<c_nodes[j].degree;i_prime++)
if ( ( v_nodes[ c_nodes[j].index[i_prime] ].message[c_nodes[j].socket[i_prime]] < min_beta )&&(i_prime != i) )
min_beta = v_nodes[ c_nodes[j].index[i_prime] ].message[c_nodes[j].socket[i_prime]];
if ( sign^v_nodes[ c_nodes[j].index[i] ].sign[ c_nodes[j].socket[i] ] )
c_nodes[j].message[i] = -min_beta*r_scale_factor;
else
c_nodes[j].message[i] = min_beta*r_scale_factor;
}
}
/* update q */
for (i=0;i<CodeLength;i++) {
/* first compute the LLR */
Qi = v_nodes[i].initial_value;
for (j=0;j<v_nodes[i].degree;j++) {
Qi += c_nodes[ v_nodes[i].index[j] ].message[ v_nodes[i].socket[j] ];
}
/* make hard decision */
if (Qi < 0) {
DecodedBits[iter+max_iter*i] = 1;
}
/* now subtract to get the extrinsic information */
for (j=0;j<v_nodes[i].degree;j++) {
temp_sum = Qi - c_nodes[ v_nodes[i].index[j] ].message[ v_nodes[i].socket[j] ];
v_nodes[i].message[j] = fabs( temp_sum )*q_scale_factor;
if (temp_sum > 0)
v_nodes[i].sign[j] = 0;
else
v_nodes[i].sign[j] = 1;
}
}
/* count data bit errors, assuming that it is systematic */
for (i=0;i<CodeLength-NumberParityBits;i++)
if ( DecodedBits[iter+max_iter*i] != data[i] )
BitErrors[iter]++;
/* detect errors */
if (BitErrors[iter] == 0)
break;
}
}
/* function for doing the MP decoding */
static void SumProduct( int BitErrors[],
int DecodedBits[],
struct c_node c_nodes[],
struct v_node v_nodes[],
int CodeLength,
int NumberParityBits,
int max_iter,
float r_scale_factor,
float q_scale_factor,
int data[] )
{
int i,j, iter;
float phi_sum;
int sign;
float temp_sum;
float Qi;
int ssum;
for (iter=0;iter<max_iter;iter++) {
ssum = 0;
/* update r */
for (j=0;j<NumberParityBits;j++) {
sign = v_nodes[ c_nodes[j].index[0] ].sign[ c_nodes[j].socket[0] ];
phi_sum = v_nodes[ c_nodes[j].index[0] ].message[ c_nodes[j].socket[0] ];
for (i=1;i<c_nodes[j].degree;i++) {
phi_sum += v_nodes[ c_nodes[j].index[i] ].message[ c_nodes[j].socket[i] ];
sign ^= v_nodes[ c_nodes[j].index[i] ].sign[ c_nodes[j].socket[i] ];
}
if (sign==0) ssum++;
for (i=0;i<c_nodes[j].degree;i++) {
if ( sign^v_nodes[ c_nodes[j].index[i] ].sign[ c_nodes[j].socket[i] ] ) {
c_nodes[j].message[i] = -phi0( phi_sum - v_nodes[ c_nodes[j].index[i] ].message[ c_nodes[j].socket[i] ] )*r_scale_factor;
} else
c_nodes[j].message[i] = phi0( phi_sum - v_nodes[ c_nodes[j].index[i] ].message[ c_nodes[j].socket[i] ] )*r_scale_factor;
}
}
/* update q */
for (i=0;i<CodeLength;i++) {
/* first compute the LLR */
Qi = v_nodes[i].initial_value;
for (j=0;j<v_nodes[i].degree;j++) {
Qi += c_nodes[ v_nodes[i].index[j] ].message[ v_nodes[i].socket[j] ];
}
/* make hard decision */
if (Qi < 0) {
DecodedBits[iter+max_iter*i] = 1;
}
/* now subtract to get the extrinsic information */
for (j=0;j<v_nodes[i].degree;j++) {
temp_sum = Qi - c_nodes[ v_nodes[i].index[j] ].message[ v_nodes[i].socket[j] ];
v_nodes[i].message[j] = phi0( fabs( temp_sum ) )*q_scale_factor;
if (temp_sum > 0)
v_nodes[i].sign[j] = 0;
else
v_nodes[i].sign[j] = 1;
}
}
/* count data bit errors, assuming that it is systematic */
for (i=0;i<CodeLength-NumberParityBits;i++)
if ( DecodedBits[iter+max_iter*i] != data[i] )
BitErrors[iter]++;
/* Halt if zero errors */
if (BitErrors[iter] == 0)
break;
// added by Bill -- reuse the BitErrors array to count PCs
// count the number of PC satisfied and exit if all OK
BitErrors[iter] = ssum;
if (ssum==NumberParityBits) break;
}
//fprintf(stderr, " iter: %d ssum is %d \n", iter, ssum);
}
/* main function that interfaces with MATLAB */
void mexFunction(
int nlhs,
mxArray *plhs[],
int nrhs,
const mxArray *prhs[] )
{ int max_iter, dec_type;
int max_row_weight, max_col_weight;
int NumberParityBits, CodeLength;
double *H_rows, *H_cols; /* Parity check matrix info */
double *input;
int i, j, count, v_index, c_index;
int *DecodedBits; /* Output of the decoder. Is an array of size iter by CodeLength */
int *BitErrors; /* Number of errors at each iteration */
double *errors_p, *output_p;
struct c_node *c_nodes;
struct v_node *v_nodes;
float q_scale_factor, r_scale_factor;
double *data;
int *data_int;
int DataLength;
int NumberRowsHcols;
int H1;
int shift;
int cnt;
int k;
/* default values */
max_iter = 30;
dec_type = 0;
q_scale_factor = 1;
r_scale_factor = 1;
/* Check for proper number of arguments */
if ( (nrhs < 3 )|(nlhs > 2) ) {
mexErrMsgTxt("Usage: [output, errors] = MpDecode(input, H_rows, H_cols, max_iter, dec_type, r_scale_factor, q_scale_factor, data )");
} else {
/* first input is the received data in LLR form */
input = mxGetPr(INPUT);
/* second input is H_rows matrix */
H_rows = mxGetPr( HROWS );
/* third input is H_cols matrix */
H_cols = mxGetPr( HCOLS );
/* derive some parameters */
CodeLength = mxGetN(INPUT); /* number of coded bits */
NumberParityBits = mxGetM( HROWS );
NumberRowsHcols=mxGetM( HCOLS );
shift=(NumberParityBits+ NumberRowsHcols)-CodeLength;
if (NumberRowsHcols ==CodeLength){
H1=0;
shift=0;
} else {
H1=1;
}
if (( CodeLength != NumberRowsHcols ) && (CodeLength-NumberParityBits + shift!= NumberRowsHcols))
mexErrMsgTxt("Error: Number of rows in H_cols must equal number of received bits or number of data bits");
max_row_weight = mxGetN( HROWS );
max_col_weight = mxGetN( HCOLS );
}
/* initialize c-node structures */
c_nodes = (struct c_node*)calloc( NumberParityBits, sizeof( struct c_node ) );
/* first determine the degree of each c-node */
if (shift ==0){
for (i=0;i<NumberParityBits;i++) {
count = 0;
for (j=0;j<max_row_weight;j++) {
if ( H_rows[i+j*NumberParityBits] > 0 ) {
count++;
}
}
c_nodes[i].degree = count;
if (H1){
if (i==0){
c_nodes[i].degree=count+1;
}
else{
c_nodes[i].degree=count+2;
}
}
}
}
else{
cnt=0;
for (i=0;i<(NumberParityBits/shift);i++) {
for (k=0;k<shift;k++){
count = 0;
for (j=0;j<max_row_weight;j++) {
if ( H_rows[cnt+j*NumberParityBits] > 0 ) {
count++;
}
}
c_nodes[cnt].degree = count;
if ((i==0)||(i==(NumberParityBits/shift)-1)){
c_nodes[cnt].degree=count+1;
}
else{
c_nodes[cnt].degree=count+2;
}
cnt++;
}
}
}
if (H1){
if (shift ==0){
for (i=0;i<NumberParityBits;i++) {
/* now that we know the size, we can dynamically allocate memory */
c_nodes[i].index = (int*)calloc( c_nodes[i].degree, sizeof( int ) );
c_nodes[i].message = (float*)calloc( c_nodes[i].degree, sizeof( float ) );
c_nodes[i].socket = (int*)calloc( c_nodes[i].degree, sizeof( int ) );
for (j=0;j<c_nodes[i].degree-2;j++) {
c_nodes[i].index[j] = (int) (H_rows[i+j*NumberParityBits] - 1);
}
j=c_nodes[i].degree-2;
if (i==0){
c_nodes[i].index[j] = (int) (H_rows[i+j*NumberParityBits] - 1);
}
else {
c_nodes[i].index[j] = (CodeLength-NumberParityBits)+i-1;
}
j=c_nodes[i].degree-1;
c_nodes[i].index[j] = (CodeLength-NumberParityBits)+i;
}
}
if (shift >0){
cnt=0;
for (i=0;i<(NumberParityBits/shift);i++){
for (k =0;k<shift;k++){
c_nodes[cnt].index = (int*)calloc( c_nodes[cnt].degree, sizeof( int ) );
c_nodes[cnt].message = (float*)calloc( c_nodes[cnt].degree, sizeof( float ) );
c_nodes[cnt].socket = (int*)calloc( c_nodes[cnt].degree, sizeof( int ) );
for (j=0;j<c_nodes[cnt].degree-2;j++) {
c_nodes[cnt].index[j] = (int) (H_rows[cnt+j*NumberParityBits] - 1);
}
j=c_nodes[cnt].degree-2;
if ((i ==0)||(i==(NumberParityBits/shift-1))){
c_nodes[cnt].index[j] = (int) (H_rows[cnt+j*NumberParityBits] - 1);
}
else{
c_nodes[cnt].index[j] = (CodeLength-NumberParityBits)+k+shift*(i);
}
j=c_nodes[cnt].degree-1;
c_nodes[cnt].index[j] = (CodeLength-NumberParityBits)+k+shift*(i+1);
if (i== (NumberParityBits/shift-1))
{
c_nodes[cnt].index[j] = (CodeLength-NumberParityBits)+k+shift*(i);
}
cnt++;
}
}
}
} else {
for (i=0;i<NumberParityBits;i++) {
/* now that we know the size, we can dynamically allocate memory */
c_nodes[i].index = (int*)calloc( c_nodes[i].degree, sizeof( int ) );
c_nodes[i].message = (float*)calloc( c_nodes[i].degree, sizeof( float ) );
c_nodes[i].socket = (int*)calloc( c_nodes[i].degree, sizeof( int ) );
for (j=0;j<c_nodes[i].degree;j++){
c_nodes[i].index[j] = (int) (H_rows[i+j*NumberParityBits] - 1);
}
}
}
/* initialize v-node structures */
v_nodes = (struct v_node*)calloc( CodeLength, sizeof( struct v_node));
/* determine degree of each v-node */
for(i=0;i<(CodeLength-NumberParityBits+shift);i++){
count=0;
for (j=0;j<max_col_weight;j++) {
if ( H_cols[i+j*NumberRowsHcols] > 0 ) {
count++;
}
}
v_nodes[i].degree = count;
}
for(i=CodeLength-NumberParityBits+shift;i<CodeLength;i++){
count=0;
if (H1){
if(i!=CodeLength-1){
v_nodes[i].degree=2;
} else{
v_nodes[i].degree=1;
}
} else{
for (j=0;j<max_col_weight;j++) {
if ( H_cols[i+j*NumberRowsHcols] > 0 ) {
count++;
}
}
v_nodes[i].degree = count;
}
}
if (shift>0){
v_nodes[CodeLength-1].degree =v_nodes[CodeLength-1].degree+1;
}
for (i=0;i<CodeLength;i++) {
/* allocate memory according to the degree of the v-node */
v_nodes[i].index = (int*)calloc( v_nodes[i].degree, sizeof( int ) );
v_nodes[i].message = (float*)calloc( v_nodes[i].degree, sizeof( float ) );
v_nodes[i].sign = (int*)calloc( v_nodes[i].degree, sizeof( int ) );
v_nodes[i].socket = (int*)calloc( v_nodes[i].degree, sizeof( int ) );
/* index tells which c-nodes this v-node is connected to */
v_nodes[i].initial_value = input[i];
count=0;
for (j=0;j<v_nodes[i].degree;j++) {
if ((H1)&& (i>=CodeLength-NumberParityBits+shift)){
v_nodes[i].index[j]=i-(CodeLength-NumberParityBits+shift)+count;
if (shift ==0){
count=count+1;
}
else{
count=count+shift;
}
} else {
v_nodes[i].index[j] = (int) (H_cols[i+j*NumberRowsHcols] - 1);
}
/* search the connected c-node for the proper message value */
for (c_index=0;c_index<c_nodes[ v_nodes[i].index[j] ].degree;c_index++)
if ( c_nodes[ v_nodes[i].index[j] ].index[c_index] == i ) {
v_nodes[i].socket[j] = c_index;
break;
}
/* initialize v-node with received LLR */
if ( dec_type == 1)
v_nodes[i].message[j] = fabs(input[i]);
else
v_nodes[i].message[j] = phi0( fabs(input[i]) );
if (input[i] < 0)
v_nodes[i].sign[j] = 1;
}
}
/* now finish setting up the c_nodes */
for (i=0;i<NumberParityBits;i++) {
/* index tells which v-nodes this c-node is connected to */
for (j=0;j<c_nodes[i].degree;j++) {
/* search the connected v-node for the proper message value */
for (v_index=0;v_index<v_nodes[ c_nodes[i].index[j] ].degree;v_index++)
if (v_nodes[ c_nodes[i].index[j] ].index[v_index] == i ) {
c_nodes[i].socket[j] = v_index;
break;
}
}
}
if (nrhs > 3 ) {
/* fourth input (optional) is maximum number of iterations */
max_iter = (int) *mxGetPr(MAXITER);
} if (nrhs > 4 ) {
/* fifth input (optional) is the decoder type */
dec_type = (int) *mxGetPr(DECTYPE);
} if (nrhs > 5 ) {
/* next input is the factor for extrinsic info scaling */
r_scale_factor = (float) *mxGetPr(RSCALEFACTOR);
} if (nrhs > 6 ) {
/* next input is the factor for extrinsic info scaling */
q_scale_factor = (float) *mxGetPr(QSCALEFACTOR);
}
DataLength = CodeLength - NumberParityBits;
data_int = (int*)calloc( DataLength, sizeof(int) );
if (nrhs > 7 ) {
/* next input is the data */
data = mxGetPr(DATA);
if ( DataLength != mxGetN(DATA) ) /* number of data bits */
mexErrMsgTxt("Error: Incorrect number of data bits");
/* cast the input into a vector of integers */
for (i=0;i<DataLength;i++) {
data_int[i] = (int) data[i];
}
}
/* create matrices for the decoded data */
OUTPUT = mxCreateDoubleMatrix(max_iter, CodeLength, mxREAL );
output_p = mxGetPr(OUTPUT);
/* Decode */
DecodedBits = (int*)calloc( max_iter*CodeLength, sizeof( int ) );
BitErrors = (int*)calloc( max_iter, sizeof(int) );
/* Call function to do the actual decoding */
if ( dec_type == 1) {
MinSum( BitErrors, DecodedBits, c_nodes, v_nodes, CodeLength,
NumberParityBits, max_iter, r_scale_factor, q_scale_factor, data_int );
} else if ( dec_type == 2) {
mexErrMsgTxt("dec_type = 2 not currently supported");
/* ApproximateMinStar( BitErrors, DecodedBits, c_nodes, v_nodes,
CodeLength, NumberParityBits, max_iter, r_scale_factor, q_scale_factor );*/
} else {
SumProduct( BitErrors, DecodedBits, c_nodes, v_nodes, CodeLength,
NumberParityBits, max_iter, r_scale_factor, q_scale_factor, data_int );
}
/* cast to output */
for (i=0;i<max_iter;i++) {
for (j=0;j<CodeLength;j++) {
output_p[i + j*max_iter] = DecodedBits[i+j*max_iter];
}
}
if (nlhs > 1 ) {
/* second output is a count of the number of errors */
ERRORS = mxCreateDoubleMatrix(max_iter, 1, mxREAL);
errors_p = mxGetPr(ERRORS);
/* cast to output */
for (i=0;i<max_iter;i++) {
errors_p[i] = BitErrors[i];
}
}
/* Clean up memory */
free( BitErrors );
free( DecodedBits );
free( data_int );
/* printf( "Cleaning c-node elements\n" ); */
for (i=0;i<NumberParityBits;i++) {
free( c_nodes[i].index );
free( c_nodes[i].message );
free( c_nodes[i].socket );
}
/* printf( "Cleaning c-nodes \n" ); */
free( c_nodes );
/* printf( "Cleaning v-node elements\n" ); */
for (i=0;i<CodeLength;i++) {
free( v_nodes[i].index);
free( v_nodes[i].sign );
free( v_nodes[i].message );
free( v_nodes[i].socket );
}
/* printf( "Cleaning v-nodes \n" ); */
free( v_nodes );
return;
}
|