File: SisoDecode.cpp

package info (click to toggle)
codec2 1.2.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 76,376 kB
  • sloc: ansic: 436,819; cpp: 2,091; objc: 1,736; sh: 1,510; python: 1,405; asm: 683; makefile: 605
file content (201 lines) | stat: -rw-r--r-- 6,186 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
/* file: SisoDecode.c

   Description: Soft-in/soft-out decoding algorithm for a convolutional code

   The calling syntax is:

      [output_u, output_c] = SisoDecode(input_u, input_c, g_encoder, [code_type], [dec_type] )

      output_u = LLR of the data bits
	  output_c = LLR of the code bits

      Required inputs:
	  input_u = APP of the data bits
	  input_c = APP of the code bits
	  g_encoder = generator matrix for convolutional code
	              (If RSC, then feedback polynomial is first)
	  
	  Optional inputs:
	  code_type = 0 for RSC outer code (default)
	            = 1 for NSC outer code
	  dec_type = the decoder type:
			= 0 For linear approximation to log-MAP (DEFAULT)
			= 1 For max-log-MAP algorithm (i.e. max*(x,y) = max(x,y) )
			= 2 For Constant-log-MAP algorithm
			= 3 For log-MAP, correction factor from small nonuniform table and interpolation
			= 4 For log-MAP, correction factor uses C function calls (slow)  
   
   Copyright (C) 2005-2006, Matthew C. Valenti

   Last updated on Jan. 11, 2006

   Function SisoDecode is part of the Iterative Solutions 
   Coded Modulation Library. The Iterative Solutions Coded Modulation 
   Library is free software; you can redistribute it and/or modify it 
   under the terms of the GNU Lesser General Public License as published 
   by the Free Software Foundation; either version 2.1 of the License, 
   or (at your option) any later version.

   This library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.
  
   You should have received a copy of the GNU Lesser General Public
   License along with this library; if not, write to the Free Software
   Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA

*/

#include <math.h>
#include <mex.h>
#include <Matrix.h>
#include <stdlib.h>

/* library of functions */
#include "./include/maxstar.h"
#include "./include/convolutional.h"
#include "./include/siso.h"

/* Input Arguments */
#define INPUT_U     prhs[0]
#define INPUT_C     prhs[1]
#define GENENCODER  prhs[2]
#define CODETYPE    prhs[3]
#define DECTYPE     prhs[4]

/* Output Arguments */
#define OUTPUT_U    plhs[0]
#define OUTPUT_C    plhs[1] 

/* main function that interfaces with MATLAB */
void mexFunction(
				 int            nlhs,
				 mxArray       *plhs[],
				 int            nrhs,
				 const mxArray *prhs[] )
{
	double	*input_u, *input_c, *g_array; /* input arrays */
	double  *output_u_p, *output_c_p; /* output arrays */
	int      DataLength, CodeLength, i, j, index;
	mwIndex  subs[] = {1,1};
	int     *g_encoder;
	int		 nn, KK, mm, max_states, code_type, dec_type;
	double   elm;
	float   *input_u_float, *input_c_float;
	float   *output_u_float, *output_c_float;
	int     *out0, *out1, *state0, *state1;

	/* default values */
	code_type = 0;
	dec_type  = 0;

	/* Check for proper number of arguments */
	if (nrhs < 3 ) {
		mexErrMsgTxt("Usage: [output_u, output_c] = SisoDecode(input_u, input_c, g_encoder, code_type, decoder_type )");
	} else {
		/* first two inputs are the LLRs of the data and code bits */
		input_u = mxGetPr(INPUT_U);	
		input_c = mxGetPr(INPUT_C);

		/* third input specifies the code */
		g_array = mxGetPr(GENENCODER);
		nn = mxGetM(GENENCODER);
		KK = mxGetN(GENENCODER);
		mm = KK - 1;	
		max_states = 1 << mm;			/* 2^mm */
		
		DataLength = mxGetN(INPUT_U); /* number of data bits */
		CodeLength = mxGetN(INPUT_C); /* number of code bits */

		/* make sure these agree */
		if ( CodeLength != nn*(DataLength+mm) ) 
			mexErrMsgTxt( "SisoDecode: Length of input_u and input_c don't agree" );

		/* convert the inputs into float */			
		input_u_float = (float*)calloc( DataLength, sizeof(float) );
		for (i=0;i<DataLength;i++)
			input_u_float[i] = input_u[i];
		
		input_c_float = (float*)calloc( CodeLength, sizeof(float) );
		for (i=0;i<CodeLength;i++)
			input_c_float[i] = input_c[i];

		/* Convert code polynomial to binary */
		g_encoder = (int*)calloc(nn, sizeof(int) );

		for (i = 0;i<nn;i++) {
			subs[0] = i;
			for (j=0;j<KK;j++) {
				subs[1] = j;
				index = mxCalcSingleSubscript(GENENCODER, 2, subs);
				elm = g_array[index];
				if (elm != 0) {
					g_encoder[i] = g_encoder[i] + (int) pow(2,(KK-j-1)); 
				}
			}
			/* mexPrintf("   g_encoder[%d] = %o\n", i, g_encoder[i] ); */
		}
	} 

	if (nrhs > 3 ) {
		/* 4th input (optional) is the type of code */
		code_type   = (int) *mxGetPr(CODETYPE);
	} if (nrhs > 4 ) {
		/* 5th input (optional) is the decoder type */
		dec_type  = (int) *mxGetPr(DECTYPE);
	} 

	if (nlhs  > 2) {
		mexErrMsgTxt("Usage: [output_u, output_c] = SisoDecode(input_u, input_c, g_encoder, code_type, decoder_type )" );
	} 

	/* the outputs */		
	OUTPUT_U = mxCreateDoubleMatrix(1, DataLength, mxREAL );
	output_u_p = mxGetPr(OUTPUT_U);	
	output_u_float = (float*)calloc( DataLength, sizeof(float) );
	
	OUTPUT_C = mxCreateDoubleMatrix(1, CodeLength, mxREAL );
	output_c_p = mxGetPr(OUTPUT_C);	
	output_c_float = (float*)calloc( CodeLength, sizeof(float) );

	/* create appropriate transition matrices */
	out0 = (int*)calloc( max_states, sizeof(int) );
	out1 = (int*)calloc( max_states, sizeof(int) );
	state0 = (int*)calloc( max_states, sizeof(int) );
	state1 = (int*)calloc( max_states, sizeof(int) );

	if ( code_type ) {
		nsc_transit( out0, state0, 0, g_encoder, KK, nn );
		nsc_transit( out1, state1, 1, g_encoder, KK, nn );
	} else {
		rsc_transit( out0, state0, 0, g_encoder, KK, nn );
		rsc_transit( out1, state1, 1, g_encoder, KK, nn );
	}

	/* Run the SISO algorithm */
	siso( output_u_float, output_c_float, out0, state0, out1, state1,
		input_u_float, input_c_float, KK, nn, DataLength, dec_type );

	/* cast to outputs */
	for (j=0;j<DataLength;j++) {
		output_u_p[j] = output_u_float[j];
	}

	for (j=0;j<CodeLength;j++) {
		output_c_p[j] = output_c_float[j];
	}
		
	/* Clean up memory */
	free( out0 );
	free( out1 );
	free( state0 );
	free( state1 );
	free( g_encoder );
	free( input_u_float );
	free( input_c_float );
	free( output_u_float );
	free( output_c_float );

	return;
}