1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
/* file: SisoDecode.c
Description: Soft-in/soft-out decoding algorithm for a convolutional code
The calling syntax is:
[output_u, output_c] = SisoDecode(input_u, input_c, g_encoder, [code_type], [dec_type] )
output_u = LLR of the data bits
output_c = LLR of the code bits
Required inputs:
input_u = APP of the data bits
input_c = APP of the code bits
g_encoder = generator matrix for convolutional code
(If RSC, then feedback polynomial is first)
Optional inputs:
code_type = 0 for RSC outer code (default)
= 1 for NSC outer code
dec_type = the decoder type:
= 0 For linear approximation to log-MAP (DEFAULT)
= 1 For max-log-MAP algorithm (i.e. max*(x,y) = max(x,y) )
= 2 For Constant-log-MAP algorithm
= 3 For log-MAP, correction factor from small nonuniform table and interpolation
= 4 For log-MAP, correction factor uses C function calls (slow)
Copyright (C) 2005-2006, Matthew C. Valenti
Last updated on Jan. 11, 2006
Function SisoDecode is part of the Iterative Solutions
Coded Modulation Library. The Iterative Solutions Coded Modulation
Library is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <math.h>
#include <mex.h>
#include <Matrix.h>
#include <stdlib.h>
/* library of functions */
#include "./include/maxstar.h"
#include "./include/convolutional.h"
#include "./include/siso.h"
/* Input Arguments */
#define INPUT_U prhs[0]
#define INPUT_C prhs[1]
#define GENENCODER prhs[2]
#define CODETYPE prhs[3]
#define DECTYPE prhs[4]
/* Output Arguments */
#define OUTPUT_U plhs[0]
#define OUTPUT_C plhs[1]
/* main function that interfaces with MATLAB */
void mexFunction(
int nlhs,
mxArray *plhs[],
int nrhs,
const mxArray *prhs[] )
{
double *input_u, *input_c, *g_array; /* input arrays */
double *output_u_p, *output_c_p; /* output arrays */
int DataLength, CodeLength, i, j, index;
mwIndex subs[] = {1,1};
int *g_encoder;
int nn, KK, mm, max_states, code_type, dec_type;
double elm;
float *input_u_float, *input_c_float;
float *output_u_float, *output_c_float;
int *out0, *out1, *state0, *state1;
/* default values */
code_type = 0;
dec_type = 0;
/* Check for proper number of arguments */
if (nrhs < 3 ) {
mexErrMsgTxt("Usage: [output_u, output_c] = SisoDecode(input_u, input_c, g_encoder, code_type, decoder_type )");
} else {
/* first two inputs are the LLRs of the data and code bits */
input_u = mxGetPr(INPUT_U);
input_c = mxGetPr(INPUT_C);
/* third input specifies the code */
g_array = mxGetPr(GENENCODER);
nn = mxGetM(GENENCODER);
KK = mxGetN(GENENCODER);
mm = KK - 1;
max_states = 1 << mm; /* 2^mm */
DataLength = mxGetN(INPUT_U); /* number of data bits */
CodeLength = mxGetN(INPUT_C); /* number of code bits */
/* make sure these agree */
if ( CodeLength != nn*(DataLength+mm) )
mexErrMsgTxt( "SisoDecode: Length of input_u and input_c don't agree" );
/* convert the inputs into float */
input_u_float = (float*)calloc( DataLength, sizeof(float) );
for (i=0;i<DataLength;i++)
input_u_float[i] = input_u[i];
input_c_float = (float*)calloc( CodeLength, sizeof(float) );
for (i=0;i<CodeLength;i++)
input_c_float[i] = input_c[i];
/* Convert code polynomial to binary */
g_encoder = (int*)calloc(nn, sizeof(int) );
for (i = 0;i<nn;i++) {
subs[0] = i;
for (j=0;j<KK;j++) {
subs[1] = j;
index = mxCalcSingleSubscript(GENENCODER, 2, subs);
elm = g_array[index];
if (elm != 0) {
g_encoder[i] = g_encoder[i] + (int) pow(2,(KK-j-1));
}
}
/* mexPrintf(" g_encoder[%d] = %o\n", i, g_encoder[i] ); */
}
}
if (nrhs > 3 ) {
/* 4th input (optional) is the type of code */
code_type = (int) *mxGetPr(CODETYPE);
} if (nrhs > 4 ) {
/* 5th input (optional) is the decoder type */
dec_type = (int) *mxGetPr(DECTYPE);
}
if (nlhs > 2) {
mexErrMsgTxt("Usage: [output_u, output_c] = SisoDecode(input_u, input_c, g_encoder, code_type, decoder_type )" );
}
/* the outputs */
OUTPUT_U = mxCreateDoubleMatrix(1, DataLength, mxREAL );
output_u_p = mxGetPr(OUTPUT_U);
output_u_float = (float*)calloc( DataLength, sizeof(float) );
OUTPUT_C = mxCreateDoubleMatrix(1, CodeLength, mxREAL );
output_c_p = mxGetPr(OUTPUT_C);
output_c_float = (float*)calloc( CodeLength, sizeof(float) );
/* create appropriate transition matrices */
out0 = (int*)calloc( max_states, sizeof(int) );
out1 = (int*)calloc( max_states, sizeof(int) );
state0 = (int*)calloc( max_states, sizeof(int) );
state1 = (int*)calloc( max_states, sizeof(int) );
if ( code_type ) {
nsc_transit( out0, state0, 0, g_encoder, KK, nn );
nsc_transit( out1, state1, 1, g_encoder, KK, nn );
} else {
rsc_transit( out0, state0, 0, g_encoder, KK, nn );
rsc_transit( out1, state1, 1, g_encoder, KK, nn );
}
/* Run the SISO algorithm */
siso( output_u_float, output_c_float, out0, state0, out1, state1,
input_u_float, input_c_float, KK, nn, DataLength, dec_type );
/* cast to outputs */
for (j=0;j<DataLength;j++) {
output_u_p[j] = output_u_float[j];
}
for (j=0;j<CodeLength;j++) {
output_c_p[j] = output_c_float[j];
}
/* Clean up memory */
free( out0 );
free( out1 );
free( state0 );
free( state1 );
free( g_encoder );
free( input_u_float );
free( input_c_float );
free( output_u_float );
free( output_c_float );
return;
}
|