1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
/* File: Somap.c
Description: Soft demapper (M-ary to binary LLR conversion)
The calling syntax is:
[output] = Somap( input, [demod_type], [extrinsic_info] )
Where:
output = Length N*log2(M) stream of LLR values
input = M by N matrix of symbol likelihoods
demod_type = The type of max_star algorithm that is used
= 0 For linear approximation to log-MAP (DEFAULT)
= 1 For max-log-MAP algorithm (i.e. max*(x,y) = max(x,y) )
= 2 For Constant-log-MAP algorithm
= 3 For log-MAP, correction factor from small nonuniform table and interpolation
= 4 For log-MAP, correction factor uses C function calls
extrinsic_info = 1 by N*log2(M) vector of extrinsic info (defaults to all-zero)
Copyright (C) 2005-2006, Matthew C. Valenti
Last updated on Jan. 11, 2006
Function Somap is part of the Iterative Solutions
Coded Modulation Library. The Iterative Solutions Coded Modulation
Library is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <math.h>
#include <mex.h>
#include <Matrix.h>
#include <stdlib.h>
#include "./include/maxstar.h"
/* Input Arguments
prhs[0] is input
prhs[1] is demod_type
prhs[2] is ex_info */
/* Output Arguments
plhs[0] is output */
/* main function that interfaces with MATLAB */
void mexFunction(
int nlhs,
mxArray *plhs[],
int nrhs,
const mxArray *prhs[] )
{
double *input;
double *llr_in;
double *output_p;
int demod_type = 0;
int M, m, DataLength;
int i, j, k, n, mask;
int NumberSymbols;
float metric;
float *den, *num;
int temp_int;
float *llr;
int Number_LLR_bits;
/* put the different max_star functions into array so easy to call */
float (*max_star[])(float, float) =
{
max_star0, max_star1, max_star2, max_star3, max_star4
};
/* Check for proper number of arguments */
if (nrhs == 0) {
mexErrMsgTxt("Usage: [output] = Somap( input, [demod_type], [extrinsic_info] )");
}
if (nrhs > 0 ) {
/* first (and only required) input is M-ary symbols for conversion */
input = mxGetPr(prhs[0]);
}
if (nrhs > 1) {
/* second (optional) input is the demodulator type */
demod_type = (int) *mxGetPr(prhs[1]);
if ( (demod_type < 0)||(demod_type > 4) )
mexErrMsgTxt("demod_type must be be 0 through 4");
}
/* initialize the input data */
NumberSymbols = mxGetN(prhs[0]);
M = mxGetM(prhs[0]);
/* determine number of bits per symbol */
m = 0;
temp_int = M;
while (temp_int>1) {
temp_int = temp_int/2;
m++;
}
/* printf( "%d bits per symbol\n", m ); */
if (temp_int < 1)
mexErrMsgTxt("Number of symbols M must be a power of 2");
DataLength = m*NumberSymbols; /* total number of bits */
/* allocate memory */
den = (float*)calloc( m, sizeof(float) );
num = (float*)calloc( m, sizeof(float) );
llr = (float*)calloc( DataLength, sizeof(float) ); /* llr input defaults to all-zeros */
if (nrhs > 2) {
/* third (optional) input is the llr
if not long enough, assume that end is all-zeros */
Number_LLR_bits = mxGetN(prhs[2]);
if ( Number_LLR_bits > DataLength )
mexErrMsgTxt("Too many a prior LLR inputs");
llr_in = mxGetPr(prhs[2]);
for (k=0;k<Number_LLR_bits;k++) {
llr[k] = (float) llr_in[k];
}
}
/* the bit-wise LLRs */
plhs[0] = mxCreateDoubleMatrix(1, DataLength, mxREAL );
output_p = mxGetPr(plhs[0]);
for (n=0;n<NumberSymbols;n++) { /* loop over symbols */
for (k=0;k<m;k++) {
/* initialize */
num[k] = -1000000;
den[k] = -1000000;
}
for (i=0;i<M;i++) {
metric = input[n*M+i]; /* channel metric for this symbol */
mask = 1 << (m - 1);
for (j=0;j<m;j++) { /* incorporate extrinsic info */
if (mask&i) {
metric += llr[n*m+j];
}
mask = mask >> 1;
}
mask = 1 << (m - 1);
for (k=0;k<m;k++) { /* loop over bits */
if (mask&i) {
/* this bit is a one */
num[k] = ( *max_star[demod_type] )( num[k], metric - llr[n*m+k] );
} else {
/* this bit is a zero */
den[k] = ( *max_star[demod_type] )( den[k], metric );
}
mask = mask >> 1;
}
}
for (k=0;k<m;k++) {
output_p[m*n+k] = num[k] - den[k];
}
}
/* free memory */
free( den );
free( num );
free( llr );
return;
}
|