1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
/* file: ViterbiDecode.c
Description: Soft-in/hard-out decoding for a convolutional code using the Viterbi algorithm
The calling syntax is:
[output_u] = ViterbiDecode( input_c, g_encoder, [code_type], [depth] )
output_u = hard decisions on the data bits (0 or 1)
Required inputs:
input_c = LLR of the code bits (based on channel observations)
g_encoder = generator matrix for convolutional code
(If RSC, then feedback polynomial is first)
Optional inputs:
code_type = 0 for recursive systematic convolutional (RSC) code (default)
= 1 for non-systematic convolutional (NSC) code
= 2 for tail-biting NSC code
depth = wrap depth used for tail-biting decoding
default is 6 times the constraint length
Copyright (C) 2005-2008, Matthew C. Valenti
Last updated on May 21, 2008
Function ViterbiDecode is part of the Iterative Solutions
Coded Modulation Library. The Iterative Solutions Coded Modulation
Library is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <math.h>
#include <mex.h>
#include <Matrix.h>
#include <stdlib.h>
/* library of functions */
#include "./include/convolutional.h"
/* Input Arguments */
#define INPUT_C prhs[0]
#define GENENCODER prhs[1]
#define CODETYPE prhs[2]
#define DEPTH prhs[3]
/* Output Arguments */
#define OUTPUT_U plhs[0]
/* main function that interfaces with MATLAB */
void mexFunction(
int nlhs,
mxArray *plhs[],
int nrhs,
const mxArray *prhs[] )
{
double *input_c, *g_array; /* input arrays */
double *output_u_p; /* output arrays */
int DataLength, CodeLength, i, j, index, depth;
mwIndex subs[] = {1,1};
int *g_encoder;
int nn, KK, mm, max_states, code_type;
double elm;
float *input_c_float;
int *output_u_int;
int *out0, *out1, *state0, *state1;
/* Check for proper number of arguments */
if (nrhs < 2 ) {
mexErrMsgTxt("Usage: [output_u] = ViterbiDecode( input_c, g_encoder, [code_type], [depth] )");
} else {
/* first input is the LLRs of the code bits */
input_c = mxGetPr(INPUT_C);
/* second input specifies the code */
g_array = mxGetPr(GENENCODER);
nn = mxGetM(GENENCODER);
KK = mxGetN(GENENCODER);
mm = KK - 1;
max_states = 1 << mm; /* 2^mm */
CodeLength = mxGetN(INPUT_C); /* number of code bits */
/* Make sure CodeLength is a multiple of nn */
if ( CodeLength % nn > 0)
mexErrMsgTxt("Length of input_c must be a multiple of n, the number of rows in g");
/* default values */
code_type = 0;
/* 3rd input (optional) is the type of code */
if (nrhs > 2 ) {
code_type = (int) *mxGetPr(CODETYPE);
}
/* determine the DataLength */
if ( code_type < 2 ) {
DataLength = (CodeLength/nn)-mm;
} else {
DataLength = CodeLength/nn;
/* 4th input (optional) is the wrap depth */
if (nrhs > 3) {
depth = (int) *mxGetPr(DEPTH);
depth = depth*KK;
} else {
depth = 6*KK;
}
}
/* convert the input into float */
input_c_float = (float*)calloc( CodeLength, sizeof(float) );
for (i=0;i<CodeLength;i++)
input_c_float[i] = input_c[i];
/* Convert code polynomial to binary */
g_encoder = (int*)calloc(nn, sizeof(int) );
for (i = 0;i<nn;i++) {
subs[0] = i;
for (j=0;j<KK;j++) {
subs[1] = j;
index = mxCalcSingleSubscript(GENENCODER, 2, subs);
elm = g_array[index];
if (elm != 0) {
g_encoder[i] = g_encoder[i] + (int) pow(2,(KK-j-1));
}
}
/* mexPrintf(" g_encoder[%d] = %o\n", i, g_encoder[i] ); */
}
}
if (nlhs > 1) {
mexErrMsgTxt("Usage: [output_u] = ViterbiDecode( input_c, g_encoder, [code_type], [depth] )" );
}
/* the outputs */
OUTPUT_U = mxCreateDoubleMatrix(1, DataLength, mxREAL );
output_u_p = mxGetPr(OUTPUT_U);
output_u_int = (int*)calloc( DataLength, sizeof(int) );
/* create appropriate transition matrices */
out0 = (int*)calloc( max_states, sizeof(int) );
out1 = (int*)calloc( max_states, sizeof(int) );
state0 = (int*)calloc( max_states, sizeof(int) );
state1 = (int*)calloc( max_states, sizeof(int) );
if ( code_type ) {
nsc_transit( out0, state0, 0, g_encoder, KK, nn );
nsc_transit( out1, state1, 1, g_encoder, KK, nn );
} else {
rsc_transit( out0, state0, 0, g_encoder, KK, nn );
rsc_transit( out1, state1, 1, g_encoder, KK, nn );
}
/* Run the Viterbi algorithm */
if ( code_type < 2 ) {
Viterbi( output_u_int, out0, state0, out1, state1,
input_c_float, KK, nn, DataLength );
} else {
ViterbiTb( output_u_int, out0, state0, out1, state1,
input_c_float, KK, nn, DataLength, depth );
}
/* cast to outputs */
for (j=0;j<DataLength;j++) {
output_u_p[j] = output_u_int[j];
}
/* Clean up memory */
free( out0 );
free( out1 );
free( state0 );
free( state1 );
free( g_encoder );
free( input_c_float );
free( output_u_int );
return;
}
|