1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
|
/* File convolutional.h
Description: General functions used to implement convolutional encoding.
Copyright (C) 2006-2008, Matthew C. Valenti
Last updated on May 22, 2008
The functions in this file are part of the Iterative Solutions
Coded Modulation Library. The Iterative Solutions Coded Modulation
Library is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/* define constants used throughout the library */
#define MAXLOG 1e7 /* Define infinity */
/* function itob()
Description: Converts an integer symbol into a vector of bits
Output parameters:
binvec_p: The binary vector
Input parameters:
symbol: The integer-valued symbol
length: The length of the binary vector
This function is used by conv_encode() */
void itob(
int binvec_p[],
int symbol,
int length )
{
int counter;
/* Go through each bit in the vector */
for (counter=0;counter<length;counter++) {
binvec_p[length-counter-1] = (symbol&1);
symbol = symbol>>1;
}
return;
}
/* function parity_counter()
Description: Determines if a symbol has odd (1) or even (0) parity
Output parameters:
(returned int): The symbol's parity = 1 for odd and 0 for even
Input parameters:
symbol: The integer-valued symbol
length: The highest bit position in the symbol
This function is used by nsc_enc_bit(), rsc_enc_bit(), and rsc_tail() */
int parity_counter( int symbol, int length )
{
int counter;
int temp_parity = 0;
for (counter=0;counter<length;counter++) {
temp_parity = temp_parity^(symbol&1);
symbol = symbol>>1;
}
return( temp_parity );
}
/* Function nsc_enc_bit()
Description: Convolutionally encodes a single bit using a rate 1/n encoder.
Takes in one input bit at a time, and produces a n-bit output.
Input parameters:
input The input data bit (i.e. a 0 or 1).
state_in The starting state of the encoder (an int from 0 to 2^m-1).
g[] An n-element vector containing the code generators in binary form.
KK The constraint length of the convolutional code.
Output parameters:
output_p[] An n-element vector containing the encoded bits.
state_out_p[] An integer containing the final state of the encoder
(i.e. the state after encoding this bit)
This function is used by rsc_encode(), nsc_transit(), rsc_transit(), and nsc_transit() */
static int nsc_enc_bit(
int state_out_p[],
int input,
int state_in,
int g[],
int KK,
int nn )
{
/* declare variables */
int state, i;
int out = 0;
/* create a word made up of state and new input */
state = (input<<(KK-1))^state_in;
/* AND the word with the generators */
for (i=0;i<nn;i++)
{
/* update output symbol */
out = (out<<1) + parity_counter( state&g[i], KK );
}
/* shift the state to make the new state */
state_out_p[0] = state>>1;
return(out);
}
/* like nsc_enc_bit() but for a RSC code */
static int rsc_enc_bit(
int state_out_p[],
int input,
int state_in,
int g[],
int KK,
int nn )
{
/* declare variables */
int state, i, out, a_k;
/* systematic output */
out = input;
/* determine feedback bit */
a_k = input^parity_counter( g[0]&state_in, KK );
/* create a word made up of state and feedback bit */
state = (a_k<<(KK-1))^state_in;
/* AND the word with the generators */
for (i=1;i<nn;i++)
{
/* update output symbol */
out = (out<<1) + parity_counter( state&g[i], KK );
}
/* shift the state to make the new state */
state_out_p[0] = state>>1;
return(out);
}
/* function that creates the transit and output vectors */
static void nsc_transit(
int output_p[],
int trans_p[],
int input,
int g[],
int KK,
int nn )
{
int nextstate[1];
int state, states;
states = (1<<(KK-1)); /* The number of states: 2^mm */
/* Determine the output and next state for each possible starting state */
for(state=0;state<states;state++) {
output_p[state] = nsc_enc_bit( nextstate, input, state, g, KK, nn );
trans_p[state] = nextstate[0];
}
return;
}
/* Function rsc_transit()
Description: Calculates the "transition matrix" for the trellis.
This information tells the decoder what the next state and output bits
will be given the current state and input bit.
Input parameters:
input Either 0 or 1 --- the input data bit.
g[] A two element vector containing the code generators.
KK The constraint length of the convolutional code.
Output parameters:
output_p[] A vector of length max_states = 2^(KK-1) containing
the output symbols.
trans_p[] A vector of length max_states that tells the decoder
what the next state will be given the input and current state.
This function is used by turbo_decode() */
static void rsc_transit(
int output_p[],
int trans_p[],
int input,
int g[],
int KK,
int nn )
{
int nextstate[1];
int state, states;
states = 1 << (KK-1); /* The number of states: 2^mm */
/* Determine the output and next state for each possible starting state */
for(state=0;state<states;state++) {
output_p[state] = rsc_enc_bit( nextstate, input, state, g, KK, nn );
trans_p[state] = nextstate[0];
}
return;
}
/* determine the tail for a RSC code */
static void rsc_tail(
int tail_p[],
int g[],
int max_states,
int mm )
{
int state;
/* Determine the tail for each state */
for(state=0;state<max_states;state++) {
/* determine feedback word */
tail_p[state] = parity_counter( g[0]&state, mm );
}
return;
}
/* perform convolutional encoding */
static void conv_encode(
int output_p[],
int input[],
int out0[],
int state0[],
int out1[],
int state1[],
int tail[],
int KK,
int LL,
int nn )
{
int i, j, outsym;
int *bin_vec;
int state = 0;
/* Negative value in "tail" is a flag that this is
a tail-biting NSC code. Determine initial state */
if ( tail[0] < 0 ) {
for (i=LL-KK+1;i<LL;i++) {
if (input[i]) {
/* Determine next state */
state = state1[state];
} else {
/* Determine next state */
state = state0[state];
}
}
}
bin_vec = (int*)calloc( nn, sizeof(int) );
/* encode data bits one bit at a time */
for (i=0;i<LL;i++) {
if (input[i]) {
/* Input is a one */
outsym = out1[state]; /* The output symbol */
/* Determine next state */
state = state1[state];
} else {
/* Input is a zero */
outsym = out0[state]; /* The output symbol */
/* Determine next state */
state = state0[state];
}
/* Convert symbol to a binary vector */
itob( bin_vec, outsym, nn );
/* Assign to output */
for (j=0;j<nn;j++)
output_p[nn*i+j] = bin_vec[j];
}
/* encode tail if needed */
if (tail[0] >= 0) {
for (i=LL;i<LL+KK-1;i++) {
if (tail[state]) {
/* Input is a one */
outsym = out1[state]; /* The output symbol */
/* Determine next state */
state = state1[state];
} else {
/* Input is a zero */
outsym = out0[state]; /* The output symbol */
/* Determine next state */
state = state0[state];
}
/* Convert symbol to a binary vector */
itob( bin_vec, outsym, nn );
/* Assign to output */
for (j=0;j<nn;j++)
output_p[nn*i+j] = bin_vec[j];
}
}
free(bin_vec);
return;
}
/* function Gamma()
Description: Computes the branch metric used for decoding.
Output parameters:
(returned float) The metric between the hypothetical symbol and the recevieved vector
Input parameters:
rec_array The received vector, of length nn
symbol The hypothetical symbol
nn The length of the received vector
This function is used by siso() */
static float Gamma(float rec_array[],
int symbol,
int nn )
{
float rm = 0;
int i;
int mask;
mask = 1;
for (i=0;i<nn;i++) {
if (symbol&mask)
rm += rec_array[nn-i-1];
mask = mask<<1;
}
return(rm);
}
/* Function Viterbi()
Description: Uses the Viterbi algorithm to perform hard-decision decoding of a convolutional code.
Input parameters:
out0[] The output bits for each state if input is a 0 (generated by rsc_transit).
state0[] The next state if input is a 0 (generated by rsc_transit).
out1[] The output bits for each state if input is a 1 (generated by rsc_transit).
state1[] The next state if input is a 1 (generated by rsc_transit).
r[] The received signal in LLR-form. For BPSK, must be in form r = 2*a*y/(sigma^2).
KK The constraint length of the convolutional code.
LL The number of data bits.
Output parameters:
output_u_int[] Hard decisions on the data bits
*/
static void Viterbi(
int output_u_int[],
int out0[],
int state0[],
int out1[],
int state1[],
float input_c[],
int KK,
int nn,
int LL
)
{
int i, t, state, mm, states;
int number_symbols;
float metric;
float *prev_section, *next_section;
int *prev_bit;
int *prev_state;
float *metric_c; /* Set of all possible branch metrics */
float *rec_array; /* Received values for one trellis section */
float max_val;
/* some derived constants */
mm = KK-1;
states = 1 << mm; /* 2^mm */
number_symbols = 1 << nn; /* 2^nn */
/* dynamically allocate memory */
prev_section = (float*)calloc( states, sizeof(float) );
next_section = (float*)calloc( states, sizeof(float) );
prev_bit = (int*)calloc( states*(LL+mm), sizeof(int) );
prev_state = (int*)calloc( states*(LL+mm), sizeof(int) );
rec_array = (float*)calloc( nn, sizeof(float) );
metric_c = (float*)calloc( number_symbols, sizeof(float) );
/* initialize trellis */
for (state=0;state<states;state++) {
prev_section[state] = -MAXLOG;
next_section[state] = -MAXLOG;
}
prev_section[0] = 0; /* start in all-zeros state */
/* go through trellis */
for (t=0;t<LL+mm;t++) {
for (i=0;i<nn;i++)
rec_array[i] = input_c[nn*t+i];
/* precompute all possible branch metrics */
for (i=0;i<number_symbols;i++)
metric_c[i] = Gamma( rec_array, i, nn );
/* step through all states */
for (state=0;state<states;state++) {
/* hypothesis: info bit is a zero */
metric = prev_section[state] + metric_c[ out0[ state ] ];
/* store new metric if more than metric in storage */
if ( metric > next_section[state0[state]] ) {
next_section[state0[state]] = metric;
prev_state[t*states+state0[state]] = state;
prev_bit[t*states+state0[state]] = 0;
}
/* hypothesis: info bit is a one */
metric = prev_section[state] + metric_c[ out1[ state ] ];
/* store new metric if more than metric in storage */
if ( metric > next_section[state1[state]] ) {
next_section[state1[state]] = metric;
prev_state[t*states+state1[state]] = state;
prev_bit[t*states+state1[state]] = 1;
}
}
/* normalize */
max_val = 0;
for (state=0;state<states;state++) {
if (next_section[state]>max_val){
max_val = next_section[state];
}
}
for (state=0;state<states;state++) {
prev_section[state] = next_section[state] - max_val;
next_section[state] = -MAXLOG;
}
}
/* trace-back operation */
state = 0;
/* tail, no need to output */
for (t=LL+mm-1; t>=LL; t--) {
state = prev_state[t*states+state];
}
for (t=LL-1; t>=0; t--) {
output_u_int[t] = prev_bit[t*states+state];
state = prev_state[t*states+state];
}
/* free the dynamically allocated memory */
free(prev_section);
free(next_section);
free(prev_bit);
free(prev_state);
free(rec_array);
free(metric_c);
}
/* Function ViterbiTb()
Description: Uses the Viterbi algorithm to perform hard-decision decoding of a tail-biting convolutional code.
Input parameters:
out0[] The output bits for each state if input is a 0 (generated by rsc_transit).
state0[] The next state if input is a 0 (generated by rsc_transit).
out1[] The output bits for each state if input is a 1 (generated by rsc_transit).
state1[] The next state if input is a 1 (generated by rsc_transit).
r[] The received signal in LLR-form. For BPSK, must be in form r = 2*a*y/(sigma^2).
KK The constraint length of the convolutional code.
LL The number of data bits.
depth head and tail decoding length [Ref. W. Sung, Electronics Letters, vol. 36, no. 7]
Output parameters:
output_u_int[] Hard decisions on the data bits
*/
static void ViterbiTb(
int output_u_int[],
int out0[],
int state0[],
int out1[],
int state1[],
float input_c[],
int KK,
int nn,
int LL,
int depth
)
{
int i, t, state, mm, states, max_state;
int number_symbols, starting_bit;
float metric;
float *prev_section, *next_section;
int *prev_bit;
int *prev_state;
float *metric_c; /* Set of all possible branch metrics */
float *rec_array; /* Received values for one trellis section */
float max_val;
/* some derived constants */
mm = KK-1;
states = 1 << mm; /* 2^mm */
number_symbols = 1 << nn; /* 2^nn */
/* dynamically allocate memory */
prev_section = (float*)calloc( states, sizeof(float) );
next_section = (float*)calloc( states, sizeof(float) );
prev_bit = (int*)calloc( states*(LL+depth), sizeof(int) );
prev_state = (int*)calloc( states*(LL+depth), sizeof(int) );
rec_array = (float*)calloc( nn, sizeof(float) );
metric_c = (float*)calloc( number_symbols, sizeof(float) );
/* initialize trellis */
for (state=0;state<states;state++) {
prev_section[state] = 0; /* equally likely starting state */
next_section[state] = -MAXLOG;
}
/* go through trellis */
for (t=-depth;t<LL+depth;t++) {
/* determine the corresponding data bits */
starting_bit = nn*(t%LL);
if (starting_bit < 0 )
starting_bit = nn*LL + starting_bit;
/* printf( "start at %d\n", starting_bit ); */
for (i=0;i<nn;i++) {
rec_array[i] = input_c[starting_bit+i];
/* printf( "%1f\n", rec_array[i] ); */
}
/* precompute all possible branch metrics */
for (i=0;i<number_symbols;i++)
metric_c[i] = Gamma( rec_array, i, nn );
/* step through all states */
for (state=0;state<states;state++) {
/* hypothesis: info bit is a zero */
metric = prev_section[state] + metric_c[ out0[ state ] ];
/* store new metric if more than metric in storage */
if ( metric > next_section[state0[state]] ) {
next_section[state0[state]] = metric;
if (t>=0) {
prev_state[t*states+state0[state]] = state;
prev_bit[t*states+state0[state]] = 0;
}
}
/* hypothesis: info bit is a one */
metric = prev_section[state] + metric_c[ out1[ state ] ];
/* store new metric if more than metric in storage */
if ( metric > next_section[state1[state]] ) {
next_section[state1[state]] = metric;
if (t>=0) {
prev_state[t*states+state1[state]] = state;
prev_bit[t*states+state1[state]] = 1;
}
}
}
/* normalize */
max_val = 0;
for (state=0;state<states;state++) {
if (next_section[state]>max_val){
max_val = next_section[state];
max_state = state;
}
}
for (state=0;state<states;state++) {
prev_section[state] = next_section[state] - max_val;
next_section[state] = -MAXLOG;
}
}
/* trace-back operation */
state = max_state;
/* tail, no need to output */
for (t=LL+depth-1; t>=LL; t--) {
state = prev_state[t*states+state];
}
for (t=LL-1; t>=0; t--) {
output_u_int[t] = prev_bit[t*states+state];
state = prev_state[t*states+state];
}
/* free the dynamically allocated memory */
free(prev_section);
free(next_section);
free(prev_bit);
free(prev_state);
free(rec_array);
free(metric_c);
}
|