1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
/* File interleaver.h
Description: Functions used to create the UMTS/3GPP and CCSDS interleavers.
Copyright (C) 2005-2006, Matthew C. Valenti
Last updated on June 24, 2006
Functions gcd and CreateUmtsInterleaver are part of the Iterative Solutions
Coded Modulation Library. The Iterative Solutions Coded Modulation
Library is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/* Function gcd()
Copyright 2001, Matthew C. Valenti.
Description: Finds the greatest common divisor of the two integer-valued inputs.
Input parameters:
m Input argument one (an integer).
n Input argument two (also an integer).
Output parameters:
out[] The greatest common divisor of m and n.
This function is used by UmtsTurboEncode() */
int gcd( int m, int n )
{
/* The following is no longer needed 7/29/01 MCV
int Rn;
do {
Rn = a % b;
a = b;
b = Rn;
}while(Rn != 0);
return a; */
/* Note: For the UMTS interleaver, the first of these two
values is prime. Therefore we just have to check to see if the
first number divides into the second one */
if ( n%m == 0 ) {
/* printf( "%d",m ); */
return m;
} else {
/* printf( "x" ); */
return 1;
}
}
/* Function CreateCcsdsInterleaver()
Copyright 2006, Matthew C. Valenti.
Description: Creates the CCSDS interleaver.
Input parameters:
input The input data frame of length LL bits.
Ideally, this should be a vector containing the integers
0 to L-1 in ascending order.
LL The number of data bits in the input frame.
Output parameters:
output[] The interleaved output.
*/
void CreateCcsdsInterleaver(
int LL,
int *output )
{
int m, index, k1, k1by2, k2, i, j, t, q, c;
int pTable[8] = { 31, 37, 43, 47, 53, 59, 61, 67 };
/* deteremine parameter values */
k1 = 8;
k1by2 = 4;
if ( ( LL == 1784 )||( LL == 3568 )||( LL == 7136 )||( LL == 8920 ) ) {
k2 = (int) (LL/k1);
} else {
printf( "Error: CCSDS Interleaver size must be 7184, 3568, 7136, or 8920" );
return;
}
/* determine interleaving pattern */
for (index=0;index<LL;index++) {
m = index%2;
i = (int) (index/(2*k2));
j = ( (int) (index/2) ) - i*k2;
t = ( 19*i + 1 )%(k1by2);
q = t%8;
c = (pTable[q]*j+21*m)%k2;
output[index] = 2*(t+c*k1by2+1)-m-1;
/* printf( "%d %d %d %d %d %d %d\n", m, i, j, t, q, c, output[index] ); */
}
}
/* Function CreateUmtsInterleaver()
Copyright 2001-2006, Matthew C. Valenti.
Description: Creates the UMTS interleaver.
Input parameters:
input The input data frame of length LL bits.
Ideally, this should be a vector containing the integers
0 to L-1 in ascending order.
LL The number of data bits in the input frame.
Output parameters:
output[] The interleaved output.
*/
void CreateUmtsInterleaver(
int LL,
int *input,
int *output )
{
int RR, CC;
int index, i, j, itemp;
int pValue, vValue;
int pTable[52] = { 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
101,103,107,109,113,127,131,137,139,149,151,
157,163,167,173,179,181,191,193,197,199,211,
223,227,229,233,239,241,251,257 };
int vTable[52] = { 3, 2, 2, 3, 2, 5, 2, 3, 2, 6, 3,
5, 2, 2, 2, 2, 7, 5, 3, 2, 3, 5,
2, 5, 2, 6, 3, 3, 2, 3, 2, 2, 6,
5, 2, 5, 2, 2, 2, 19, 5, 2, 3, 2,
3, 2, 6, 3, 7, 7, 6, 3 };
int T5[5] = { 4, 3, 2, 1, 0 };
int T10[10] = { 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 };
int T20a[20] = { 19, 9, 14, 4, 0, 2, 5, 7, 12, 18,
16, 13, 17, 15, 3, 1, 6, 11, 8, 10 };
int T20b[20] = { 19, 9, 14, 4, 0, 2, 5, 7, 12, 18,
10, 8, 13, 17, 3, 1, 16, 6, 15, 11 };
int *Matrix, *IntraMatrix, *InterMatrix, *s, *q, *r;
/* Step (1): Determine number of rows */
if ( ( 40<=LL )&&( LL <= 159 ) ) {
RR = 5;
} else if ( ( 160<=LL )&&( LL <= 200 ) ) {
RR = 10;
} else if ( ( 481<=LL )&&( LL <= 530 ) ) {
RR = 10;
} else {
RR = 20;
}
/* Step (2): Determine the prime number for intra-permutation
and the number of columns */
if ( ( 481<=LL )&&( LL <= 530 ) ) {
pValue = 53;
CC = pValue;
vValue = 2;
} else {
for (index=0;index<52;index++) {
if ( LL <= RR*(pTable[index] + 1) ) {
break;
}
}
pValue = pTable[index];
vValue = vTable[index];
if ( LL <=RR*(pValue-1) ) {
CC = pValue - 1;
} else if ( RR*pValue < LL ) {
CC = pValue + 1;
} else {
CC = pValue;
}
}
/* Step (3): Stuff the bits into a rectangular matrix */
Matrix = (int*)calloc( RR*CC, sizeof( int ) );
InterMatrix = (int*)calloc( RR*CC, sizeof( int ) );
IntraMatrix = (int*)calloc( RR*CC, sizeof( int ) );
index = 0;
for( i=0; i<RR; i++ ) {
for ( j=0;j<CC;j++ ) {
if ( index < LL ) {
Matrix[i+j*RR] = input[index];
} else {
/* Insert Dummy Bits */
Matrix[i+j*RR] = -1;
}
index++;
}
}
/* Step (4): Construct base sequence for intra-row permutations */
s = (int*)calloc( pValue-1, sizeof( int) );
s[0] = 1;
for (j=1;j<pValue-1;j++) {
s[j] = (vValue*s[j-1])%pValue;
/* printf( "s[%d] = %d\n", j, s[j] ); */
}
/* Step (5): Construct q-sequence --- this is a little confusing */
q = (int*)calloc( RR, sizeof( int ) );
q[0] = 1;
index = 0;
for (i=1;i<RR;i++) {
itemp = index;
for (index=itemp;index<52;index++ ) {
if ( ( gcd( pTable[index], pValue-1 ) == 1 )&&( pTable[index] > q[i-1] ) ) {
q[i] = pTable[index];
break;
}
}
}
/* Step (6): Permute the q-sequence to make the r-sequence */
r = (int*)calloc( RR, sizeof( int ) );
if ( RR == 5 ) {
for (i=0;i<RR;i++) {
r[ T5[i] ] = q[i];
}
} else if (RR == 10) {
for (i=0;i<RR;i++) {
r[ T10[i] ] = q[i];
}
} else if ( ( ( 2281<=LL )&&( LL<=2480) )||( ( 3161<=LL )&&( LL<=3210 ) ) ) {
for (i=0;i<RR;i++) {
r[ T20a[i] ] = q[i];
}
} else {
for (i=0;i<RR;i++) {
r[ T20b[i] ] = q[i];
}
}
/* for (i=0;i<RR;i++)
printf( "r[%d] = %d\n", i, r[i] ); */
/* Step (7): Perform intra-row permutations */
for (i=0;i<RR;i++) {
if ( CC == pValue ) {
for (j=0;j<=pValue-2;j++) {
index = s[ (j*r[i])%(pValue-1) ];
IntraMatrix[ i+j*RR ] = Matrix[ i+index*RR ];
}
IntraMatrix[ i + (pValue-1)*RR ] = Matrix[ i ];
} else if ( CC == pValue + 1 ) {
for (j=0;j<=pValue-2;j++) {
index = s[ (j*r[i])%(pValue-1) ];
IntraMatrix[ i+j*RR ] = Matrix[ i+index*RR ];
}
IntraMatrix[ i + (pValue-1)*RR ] = Matrix[ i ];
IntraMatrix[ i + pValue*RR ] = Matrix[ i + pValue*RR ];
/* Exchange */
if ( ( LL == RR*CC )&&(i==RR-1) ) {
/* Just exchange bits in the last row */
itemp = IntraMatrix[RR-1];
IntraMatrix[RR-1] = IntraMatrix[(RR-1)+RR*pValue];
IntraMatrix[(RR-1)+RR*pValue]=itemp;
}
} else {
for (j=0;j<=pValue-2;j++) {
index = s[ (j*r[i])%(pValue-1) ] - 1;
IntraMatrix[ i+j*RR ] = Matrix[ i+index*RR ];
}
}
}
/* Step (8): Perform inter-row permutations */
for (i=0;i<RR;i++) {
if ( RR == 5 ) {
index = T5[i];
} else if (RR == 10) {
index = T10[i];
} else if ( ( ( 2281<=LL )&&( LL<=2480) )||( ( 3161<=LL )&&( LL<=3210 ) ) ) {
index = T20a[i];
} else {
index = T20b[i];
}
for (j=0;j<CC;j++) {
InterMatrix[ i+j*RR ] = IntraMatrix[ index+j*RR];
}
}
/* Step (9): Read the bits back out from the matrix */
index = 0;
for( j=0; j<CC; j++ ) {
for ( i=0;i<RR;i++ ) {
if ( InterMatrix[i+j*RR] >= 0 ) {
output[index] = InterMatrix[i+j*RR];
index++;
}
}
}
free( Matrix );
free( InterMatrix );
free( IntraMatrix );
free( s );
free( q );
free( r );
}
|