1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
/* File maxstar.h
Description: Performs the max* operations (Jacobian logarithm) defined as:
max*( x, y ) = max( x,y) + log( 1 + exp( - |x-y| ) )
There are several versions of this function, max_starX, where "X":
X = 0 For linear approximation to log-MAP
= 1 For max-log-MAP algorithm (i.e. max*(x,y) = max(x,y) )
= 2 For Constant-log-MAP algorithm
= 3 For log-MAP, correction factor from small nonuniform table and interpolation
= 4 For log-MAP, correction factor uses C function calls
Calling syntax:
output = max_starX( delta1, delta2 )
Where:
output = The result of max*(x,y)
delta1 = T] he first argument (i.e. x) of max*(x,y)
delta2 = The second argument (i.e. y) of max*(x,y)
Copyright (C) 2005, Matthew C. Valenti
Functions max_star0, max_star1, max_star2, max_star3, and max_star4
are part of the Iterative Solutions Coded Modulation Library
The Iterative Solutions Coded Modulation Library is free software;
you can redistribute it and/or modify it under the terms of
the GNU Lesser General Public License as published by the
Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/* values for the jacobian logarithm table (DecoderType=4) */
#define BOUNDARY0 0
#define BOUNDARY1 0.4200
#define BOUNDARY2 0.8500
#define BOUNDARY3 1.3100
#define BOUNDARY4 1.8300
#define BOUNDARY5 2.4100
#define BOUNDARY6 3.1300
#define BOUNDARY7 4.0800
#define BOUNDARY8 5.6000
#define SLOPE0 -0.44788139700522
#define SLOPE1 -0.34691145436176
#define SLOPE2 -0.25432579542705
#define SLOPE3 -0.17326680196715
#define SLOPE4 -0.10822110027877
#define SLOPE5 -0.06002650498009
#define SLOPE6 -0.02739265095522
#define SLOPE7 -0.00860202759280
#define VALUE0 0.68954718055995
#define VALUE1 0.50153699381775
#define VALUE2 0.35256506844219
#define VALUE3 0.23567520254575
#define VALUE4 0.14607646552283
#define VALUE5 0.08360822736113
#define VALUE6 0.04088914377547
#define VALUE7 0.01516612536801
/* values for the constant log-MAP algorithm (DecoderType=3) */
#define CVALUE 0.5
#define TVALUE 1.5
/* values for the linear approximation (DecoderType=1) */
#define TTHRESH 2.508
#define AVALUE -0.236
#define BVALUE 0.592
/* Values for linear approximation (DecoderType=5) */
#define AJIAN -0.24904163195436
#define TJIAN 2.50681740420944
/* The linear-log-MAP algorithm */
static float max_star0(
float delta1,
float delta2 )
{
float diff;
diff = delta2 - delta1;
if ( diff > TJIAN )
return( delta2 );
else if ( diff < -TJIAN )
return( delta1 );
else if ( diff > 0 )
return( delta2 + AJIAN*(diff-TJIAN) );
else
return( delta1 - AJIAN*(diff+TJIAN) );
}
/* The max-log-MAP algorithm */
static float max_star1(
float delta1,
float delta2 )
{
/* Return the maximum of delta1 and delta2 */
if (delta1 > delta2)
return(delta1);
else
return(delta2);
}
/* The constant-log-MAP algorithm */
static float max_star2(
float delta1,
float delta2 )
{
/* Return maximum of delta1 and delta2
and in correction value if |delta1-delta2| < TVALUE */
float diff;
diff = delta2 - delta1;
if ( diff > TVALUE )
return( delta2 );
else if ( diff < -TVALUE )
return( delta1 );
else if ( diff > 0 )
return( delta2 + CVALUE );
else
return( delta1 + CVALUE );
}
/* Accurate approximation of the log-MAP algorithm using an optimized
8 element nonuniform table with linear interpolation */
static float max_star3(
float delta1,
float delta2 )
{
float diff;
diff = (float) fabs( delta2 - delta1 );
if (delta1 > delta2) {
if (diff > BOUNDARY8 )
return( delta1 );
else if ( diff > BOUNDARY4 ) {
if (diff > BOUNDARY6 ) {
if ( diff > BOUNDARY7 )
return( delta1 + VALUE7 + SLOPE7*(diff-BOUNDARY7) );
else
return( delta1 + VALUE6 + SLOPE6*(diff-BOUNDARY6) );
} else {
if ( diff > BOUNDARY5 )
return( delta1 + VALUE5 + SLOPE5*(diff-BOUNDARY5) );
else
return( delta1 + VALUE4 + SLOPE4*(diff-BOUNDARY4) );
}
} else {
if (diff > BOUNDARY2 ) {
if ( diff > BOUNDARY3 )
return( delta1 + VALUE3 + SLOPE3*(diff-BOUNDARY3) );
else
return( delta1 + VALUE2 + SLOPE2*(diff-BOUNDARY2) );
} else {
if ( diff > BOUNDARY1 )
return( delta1 + VALUE1 + SLOPE1*(diff-BOUNDARY1) );
else
return( delta1 + VALUE0 + SLOPE0*(diff-BOUNDARY0) );
}
}
} else {
if (diff > BOUNDARY8 )
return( delta2 );
else if ( diff > BOUNDARY4 ) {
if (diff > BOUNDARY6 ) {
if ( diff > BOUNDARY7 )
return( delta2 + VALUE7 + SLOPE7*(diff-BOUNDARY7) );
else
return( delta2 + VALUE6 + SLOPE6*(diff-BOUNDARY6) );
} else {
if ( diff > BOUNDARY5 )
return( delta2 + VALUE5 + SLOPE5*(diff-BOUNDARY5) );
else
return( delta2 + VALUE4 + SLOPE4*(diff-BOUNDARY4) );
}
} else {
if (diff > BOUNDARY2 ) {
if ( diff > BOUNDARY3 )
return( delta2 + VALUE3 + SLOPE3*(diff-BOUNDARY3) );
else
return( delta2 + VALUE2 + SLOPE2*(diff-BOUNDARY2) );
} else {
if ( diff > BOUNDARY1 )
return( delta2 + VALUE1 + SLOPE1*(diff-BOUNDARY1) );
else
return( delta2 + VALUE0 + SLOPE0*(diff-BOUNDARY0) );
}
}
}
}
/* Exact calculation of the log-MAP algorithm */
static float max_star4(
float delta1,
float delta2 )
{
/* Use C-function calls to compute the correction function */
if (delta1 > delta2) {
return( (float) (delta1 + log( 1 + exp( delta2-delta1) ) ) );
} else {
return( (float) (delta2 + log( 1 + exp( delta1-delta2) ) ) );
}
}
|