1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
% fdmdv_demod_coh.m
%
% Demodulator function for FDMDV modem (Octave version). Requires
% 8kHz sample rate raw files as input. This version uses experimental
% pseudo coherent demodulation.
%
% Copyright David Rowe 2013
% This program is distributed under the terms of the GNU General Public License
% Version 2
%
function fdmdv_demod_coh(rawfilename, nbits, pngname)
fdmdv; % include modem code
modulation = 'dqpsk';
fin = fopen(rawfilename, "rb");
gain = 1000;
frames = nbits/(Nc*Nb);
prev_rx_symbols = ones(Nc+1,1);
foff_phase = 1;
% BER stats
total_bit_errors = 0;
total_bits = 0;
bit_errors_log = [];
sync_log = [];
test_frame_sync_log = [];
test_frame_sync_state = 0;
% SNR states
sig_est = zeros(Nc+1,1);
noise_est = zeros(Nc+1,1);
% logs of various states for plotting
rx_symbols_log = [];
rx_timing_log = [];
foff_log = [];
rx_fdm_log = [];
snr_est_log = [];
% misc states
nin = M; % timing correction for sample rate differences
foff = 0;
track_log = [];
track = 0;
fest_state = 0;
% pseudo coherent demod states
rx_symbols_ph_log = [];
prev_rx_symbols_ph = ones(Nc+1,1);
rx_phase_offsets_log = [];
phase_amb_log = [];
% Main loop ----------------------------------------------------
for f=1:frames
% obtain nin samples of the test input signal
for i=1:nin
rx_fdm(i) = fread(fin, 1, "short")/gain;
end
rx_fdm_log = [rx_fdm_log rx_fdm(1:nin)];
% frequency offset estimation and correction
[pilot prev_pilot pilot_lut_index prev_pilot_lut_index] = get_pilot(pilot_lut_index, prev_pilot_lut_index, nin);
[foff_coarse S1 S2] = rx_est_freq_offset(rx_fdm, pilot, prev_pilot, nin);
if track == 0
foff = foff_coarse;
end
foff_log = [ foff_log foff ];
foff_rect = exp(j*2*pi*foff/Fs);
for i=1:nin
foff_phase *= foff_rect';
rx_fdm(i) = rx_fdm(i)*foff_phase;
end
% baseband processing
rx_baseband = fdm_downconvert(rx_fdm, nin);
rx_filt = rx_filter(rx_baseband, nin);
[rx_symbols rx_timing] = rx_est_timing(rx_filt, rx_baseband, nin);
rx_timing_log = [rx_timing_log rx_timing];
nin = M;
if rx_timing > 2*M/P
nin += M/P;
end
if rx_timing < 0;
nin -= M/P;
end
rx_symbols_log = [rx_symbols_log rx_symbols.*(conj(prev_rx_symbols)./abs(prev_rx_symbols))*exp(j*pi/4)];
% coherent phase offset estimation ------------------------------------
[rx_phase_offsets ferr] = rx_est_phase(rx_symbols);
rx_phase_offsets_log = [rx_phase_offsets_log rx_phase_offsets];
phase_amb_log = [phase_amb_log phase_amb];
rx_symbols_ph = rx_symbols_mem(:,floor(Nph/2)+1) .* exp(-j*(rx_phase_offsets + phase_amb));
rx_symbols_ph_log = [rx_symbols_ph_log rx_symbols_ph .* exp(j*pi/4)];
rx_symbols_ph = -1 + 2*(real(rx_symbols_ph .* exp(j*pi/4)) > 0) + j*(-1 + 2*(imag(rx_symbols_ph .* exp(j*pi/4)) > 0));
% Std differential (used for freq offset est and BPSK sync) and pseudo coherent detection -----------------------
[rx_bits_unused sync f_err pd ] = qpsk_to_bits(prev_rx_symbols, rx_symbols, modulation);
[rx_bits sync_unused ferr_unused pd_unused] = qpsk_to_bits(prev_rx_symbols_ph, rx_symbols_ph, 'dqpsk');
foff -= 0.5*f_err;
prev_rx_symbols = rx_symbols;
prev_rx_symbols_ph = rx_symbols_ph;
sync_log = [sync_log sync];
[sig_est noise_est] = snr_update(sig_est, noise_est, pd);
snr_est = calc_snr(sig_est, noise_est);
snr_est_log = [snr_est_log snr_est];
% freq est state machine
[track fest_state] = freq_state(sync, fest_state);
track_log = [track_log track];
% count bit errors if we find a test frame
[test_frame_sync bit_errors] = put_test_bits(test_bits, rx_bits);
if (test_frame_sync == 1)
total_bit_errors = total_bit_errors + bit_errors;
total_bits = total_bits + Ntest_bits;
bit_errors_log = [bit_errors_log bit_errors/Ntest_bits];
else
bit_errors_log = [bit_errors_log 0];
end
% test frame sync state machine, just for more informative plots
next_test_frame_sync_state = test_frame_sync_state;
if (test_frame_sync_state == 0)
if (test_frame_sync == 1)
next_test_frame_sync_state = 1;
test_frame_count = 0;
end
end
if (test_frame_sync_state == 1)
% we only expect another test_frame_sync pulse every 4 symbols
test_frame_count++;
if (test_frame_count == 4)
test_frame_count = 0;
if ((test_frame_sync == 0))
next_test_frame_sync_state = 0;
end
end
end
test_frame_sync_state = next_test_frame_sync_state;
test_frame_sync_log = [test_frame_sync_log test_frame_sync_state];
end
% ---------------------------------------------------------------------
% Print Stats
% ---------------------------------------------------------------------
ber = total_bit_errors / total_bits;
printf("%d bits %d errors BER: %1.4f\n",total_bits, total_bit_errors, ber);
% ---------------------------------------------------------------------
% Plots
% ---------------------------------------------------------------------
xt = (1:frames)/Rs;
secs = frames/Rs;
figure(1)
clf;
[n m] = size(rx_symbols_log);
plot(real(rx_symbols_log(1:Nc+1,15:m)),imag(rx_symbols_log(1:Nc+1,15:m)),'+')
axis([-2 2 -2 2]);
title('Scatter Diagram');
figure(2)
clf;
subplot(211)
plot(xt, rx_timing_log)
title('timing offset (samples)');
subplot(212)
plot(xt, foff_log, '-;freq offset;')
hold on;
plot(xt, track_log*75, 'r;course-fine;');
hold off;
title('Freq offset (Hz)');
grid
figure(3)
clf;
subplot(211)
[a b] = size(rx_fdm_log);
xt1 = (1:b)/Fs;
plot(xt1, rx_fdm_log);
title('Rx FDM Signal');
subplot(212)
spec(rx_fdm_log,8000);
title('FDM Rx Spectrogram');
figure(4)
clf;
subplot(311)
stem(xt, sync_log)
axis([0 secs 0 1.5]);
title('BPSK Sync')
subplot(312)
stem(xt, bit_errors_log);
title('Bit Errors for test frames')
subplot(313)
plot(xt, test_frame_sync_log);
axis([0 secs 0 1.5]);
title('Test Frame Sync')
figure(5)
clf;
plot(xt, snr_est_log);
title('SNR Estimates')
figure(6)
clf;
[n m] = size(rx_symbols_ph_log);
plot(real(rx_symbols_ph_log(1:Nc+1,15:m)),imag(rx_symbols_ph_log(1:Nc+1,15:m)),'+')
%plot(real(rx_symbols_ph_log(2,15:m)),imag(rx_symbols_ph_log(2,15:m)),'+')
axis([-2 2 -2 2]);
title('Scatter Diagram - after phase correction');
figure(7)
clf;
subplot(211)
plot(rx_phase_offsets_log(1,:))
subplot(212)
plot(phase_amb_log(1,:))
title('Rx Phase Offset Est')
endfunction
|