1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
|
% fsk_lib.m
% David Rowe Oct 2015 - present
%
% mFSK modem, started out life as RTTY demodulator for Project
% Horus High Altitude Ballon (HAB) telemetry, also used for:
%
% FreeDV 2400A: 4FSK UHF/UHF digital voice
% Wenet.......: 100 kbit/s HAB High Def image telemetry
%
% Handles frequency offsets, performance right on ideal, C implementation
% in codec2/src
1;
function states = fsk_init(Fs, Rs, M=2, P=8, nsym=50)
states.M = M;
states.bitspersymbol = log2(M);
states.Fs = Fs;
states.Rs = Rs;
states.nsym = nsym; % Number of symbols processed by demodulator in each call, also
% the timing estimator window
Ts = states.Ts = Fs/Rs; % number of samples per symbol
assert(Ts == floor(Ts), "Fs/Rs must be an integer");
N = states.N = Ts*states.nsym; % processing buffer size, nice big window for timing est
bin_width_Hz = 0.1*Rs; % we want enough DFT bins to get within 10% of the tones centre
Ndft = Fs/bin_width_Hz;
states.Ndft = 2.^ceil(log2(Ndft)); % round to nearest power of 2 for efficient FFT
states.Sf = zeros(states.Ndft,1); % current memory of dft mag samples
states.tc = 0.1; % average DFT over longtime window, accurate at low Eb/No, but slow
states.nbit = states.nsym*states.bitspersymbol; % number of bits per processing frame
Nmem = states.Nmem = N+2*Ts; % two symbol memory in down converted signals to allow for timing adj
states.f_dc = zeros(M,Nmem);
states.P = P; % oversample rate out of filter
assert(Ts/states.P == floor(Ts/states.P), "Ts/P must be an integer");
states.tx_tone_separation = 2*Rs;
states.nin = N; % can be N +/- Ts/P samples to adjust for sample clock offsets
states.verbose = 0;
states.phi = zeros(1, M); % keep down converter osc phase continuous
% BER stats
states.ber_state = 0;
states.ber_valid_thresh = 0.05; states.ber_invalid_thresh = 0.1;
states.Tbits = 0;
states.Terrs = 0;
states.nerr_log = 0;
% extra simulation parameters
states.tx_real = 1;
states.dA(1:M) = 1;
states.df(1:M) = 0;
states.f(1:M) = 0;
states.norm_rx_timing = 0;
states.ppm = 0;
states.prev_pkt = [];
% Freq. estimator limits
states.fest_fmax = Fs;
states.fest_fmin = 0;
states.fest_min_spacing = 0.75*Rs;
states.freq_est_type = 'peak';
%printf("Octave: M: %d Fs: %d Rs: %d Ts: %d nsym: %d nbit: %d N: %d Ndft: %d fmin: %d fmax: %d\n",
% states.M, states.Fs, states.Rs, states.Ts, states.nsym, states.nbit, states.N, states.Ndft, states.fest_fmin, states.fest_fmax);
endfunction
% modulator function
function tx = fsk_mod(states, tx_bits)
M = states.M;
Ts = states.Ts;
Fs = states.Fs;
ftx = states.ftx;
df = states.df; % tone freq change in Hz/s
dA = states.dA; % amplitude of each tone
num_bits = length(tx_bits);
num_symbols = num_bits/states.bitspersymbol;
tx = zeros(states.Ts*num_symbols,1);
tx_phase = 0;
s = 1;
for i=1:states.bitspersymbol:num_bits
% map bits to FSK symbol (tone number)
K = states.bitspersymbol;
tone = tx_bits(i:i+(K-1)) * (2.^(K-1:-1:0))' + 1;
tx_phase_vec = tx_phase + (1:Ts)*2*pi*ftx(tone)/Fs;
tx_phase = tx_phase_vec(Ts) - floor(tx_phase_vec(Ts)/(2*pi))*2*pi;
if states.tx_real
tx((s-1)*Ts+1:s*Ts) = dA(tone)*2.0*cos(tx_phase_vec);
else
tx((s-1)*Ts+1:s*Ts) = dA(tone)*exp(j*tx_phase_vec);
end
s++;
% freq drift
ftx += df*Ts/Fs;
end
states.ftx = ftx;
endfunction
% Estimate the frequency of the FSK tones. In some applications (such
% as balloon telemetry) these may not be well controlled by the
% transmitter, so we have to try to estimate them.
function states = est_freq(states, sf, ntones)
N = states.N;
Ndft = states.Ndft;
Fs = states.Fs;
% This assumption is OK for balloon telemetry but may not be true in
% general
min_tone_spacing = states.fest_min_spacing;
% set some limits to search range, which will mean some manual re-tuning
fmin = states.fest_fmin;
fmax = states.fest_fmax;
% note 0 Hz is mapped to Ndft/2+1 via fftshift
st = floor(fmin*Ndft/Fs) + Ndft/2; st = max(1,st);
en = floor(fmax*Ndft/Fs) + Ndft/2; en = min(Ndft,en);
#printf("Fs: %f Ndft: %d fmin: %f fmax: %f st: %d en: %d\n",Fs, Ndft, fmin, fmax, st, en)
% Update mag DFT ---------------------------------------------
% we break up input buffer to a series of overlapping Ndft sequences
numffts = floor(length(sf)/(Ndft/2)) - 1;
h = hanning(Ndft);
for i=1:numffts
a = (i-1)*Ndft/2+1; b = a + Ndft - 1;
Sf = abs(fftshift(fft(sf(a:b) .* h, Ndft)));
% Smooth DFT mag spectrum, slower to respond to changes but more
% accurate. Single order IIR filter is an exponentially weighted
% moving average. This means the freq est window is wider than
% timing est window
tc = states.tc; states.Sf = (1-tc)*states.Sf + tc*Sf;
end
% Search for each tone method 1 - peak pick each tone location ----------------------------------
f = []; a = [];
Sf = states.Sf;
for m=1:ntones
[tone_amp tone_index] = max(Sf(st:en));
tone_index += st - 1;
f = [f (tone_index-1-Ndft/2)*Fs/Ndft];
a = [a tone_amp];
% zero out region min_tone_spacing either side of max so we can find next highest peak
% closest spacing for non-coh mFSK is Rs
stz = tone_index - floor((min_tone_spacing)*Ndft/Fs);
stz = max(1,stz);
enz = tone_index + floor((min_tone_spacing)*Ndft/Fs);
enz = min(Ndft,enz);
Sf(stz:enz) = 0;
end
states.f = sort(f);
% Search for each tone method 2 - correlate with mask with non-zero entries at tone spacings -----
% Create a mask with non-zero entries at tone spacing. Might be
% smarter to use the DFT of a hanning window as mask
mask = zeros(1,Ndft);
mask(1:3) = 1;
for m=1:ntones-1
bin = round(m*states.tx_tone_separation*Ndft/Fs);
mask(bin:bin+2) = 1;
end
mask = mask(1:bin+2);
states.mask = mask;
% drag mask over Sf, looking for peak in correlation
b_max = st; corr_max = 0;
Sf = states.Sf; corr_log = [];
for b=st:en-length(mask)
corr = mask * Sf(b:b+length(mask)-1);
corr_log = [corr_log corr];
if corr > corr_max
corr_max = corr;
b_max = b;
end
end
foff = ((b_max-1)-Ndft/2)*Fs/Ndft;
if bitand(states.verbose, 0x8)
% enable this to single step through frames
figure(1); clf; subplot(211); plot(Sf,'b;sf;');
hold on; plot(max(Sf)*[zeros(1,b_max) mask],'g;mask;'); hold off;
subplot(212); plot(corr_log); ylabel('corr against f');
printf("foff: %4.0f\n", foff);
kbhit;
end
states.f2 = foff + (0:ntones-1)*states.tx_tone_separation;
end
% ------------------------------------------------------------------------------------
% Given a buffer of nin input Rs baud FSK samples, returns nsym bits.
%
% nin is the number of input samples required by demodulator. This is
% time varying. It will nominally be N (8000), and occasionally N +/-
% Ts/2 (e.g. 8080 or 7920). This is how we compensate for differences between the
% remote tx sample clock and our sample clock. This function always returns
% N/Ts (e.g. 50) demodulated bits. Variable number of input samples, constant number
% of output bits.
function [rx_bits states] = fsk_demod(states, sf)
M = states.M;
N = states.N;
Ndft = states.Ndft;
Fs = states.Fs;
Rs = states.Rs;
Ts = states.Ts;
nsym = states.nsym;
P = states.P;
nin = states.nin;
verbose = states.verbose;
Nmem = states.Nmem;
f = states.f;
assert(length(sf) == nin);
% down convert and filter at rate P ------------------------------
% update filter (integrator) memory by shifting in nin samples
nold = Nmem-nin; % number of old samples we retain
f_dc = states.f_dc;
f_dc(:,1:nold) = f_dc(:,Nmem-nold+1:Nmem);
% freq shift down to around DC, ensuring continuous phase from last frame, as nin may vary
for m=1:M
phi_vec = states.phi(m) + (1:nin)*2*pi*f(m)/Fs;
f_dc(m,nold+1:Nmem) = sf .* exp(j*phi_vec)';
states.phi(m) = phi_vec(nin);
states.phi(m) -= 2*pi*floor(states.phi(m)/(2*pi));
end
% save filter (integrator) memory for next time
states.f_dc = f_dc;
% integrate over symbol period, which is effectively a LPF, removing
% the -2Fc frequency image. Can also be interpreted as an ideal
% integrate and dump, non-coherent demod. We run the integrator at
% rate P*Rs (1/P symbol offsets) to get outputs at a range of
% different fine timing offsets. We calculate integrator output
% over nsym+1 symbols so we have extra samples for the fine timing
% re-sampler at either end of the array.
f_int = zeros(M,(nsym+1)*P);
for i=1:(nsym+1)*P
st = 1 + (i-1)*Ts/P;
en = st+Ts-1;
for m=1:M
f_int(m,i) = sum(f_dc(m,st:en));
end
end
states.f_int = f_int;
% fine timing estimation -----------------------------------------------
% Non linearity has a spectral line at Rs, with a phase
% related to the fine timing offset. See:
% http://www.rowetel.com/blog/?p=3573
% We have sampled the integrator output at Fs=P samples/symbol, so
% lets do a single point DFT at w = 2*pi*f/Fs = 2*pi*Rs/(P*Rs)
%
% Note timing non-linearity derived by experiment. Not quite sure what I'm doing here.....
% but it gives 0dB impl loss for 2FSK Eb/No=9dB, testmode 1:
% Fs: 8000 Rs: 50 Ts: 160 nsym: 50
% frames: 200 Tbits: 9700 Terrs: 93 BER 0.010
Np = length(f_int(1,:));
w = 2*pi*(Rs)/(P*Rs);
timing_nl = sum(abs(f_int(:,:)).^2);
x = timing_nl * exp(-j*w*(0:Np-1))';
norm_rx_timing = angle(x)/(2*pi);
rx_timing = norm_rx_timing*P;
states.x = x;
states.timing_nl = timing_nl;
states.rx_timing = rx_timing;
prev_norm_rx_timing = states.norm_rx_timing;
states.norm_rx_timing = norm_rx_timing;
% estimate sample clock offset in ppm
% d_norm_timing is fraction of symbol period shift over nsym symbols
d_norm_rx_timing = norm_rx_timing - prev_norm_rx_timing;
% filter out big jumps due to nin changes
if abs(d_norm_rx_timing) < 0.2
appm = 1E6*d_norm_rx_timing/nsym;
states.ppm = 0.9*states.ppm + 0.1*appm;
end
% work out how many input samples we need on the next call. The aim
% is to keep angle(x) away from the -pi/pi (+/- 0.5 fine timing
% offset) discontinuity. The side effect is to track sample clock
% offsets
next_nin = N;
if norm_rx_timing > 0.25
next_nin += Ts/4;
end
if norm_rx_timing < -0.25;
next_nin -= Ts/4;
end
states.nin = next_nin;
% Now we know the correct fine timing offset, Re-sample integrator
% outputs using fine timing estimate and linear interpolation, then
% extract the demodulated bits
low_sample = floor(rx_timing);
fract = rx_timing - low_sample;
high_sample = ceil(rx_timing);
if bitand(verbose,0x2)
printf("rx_timing: %3.2f low_sample: %d high_sample: %d fract: %3.3f nin_next: %d\n", rx_timing, low_sample, high_sample, fract, next_nin);
end
f_int_resample = zeros(M,nsym);
rx_bits = zeros(1,nsym*states.bitspersymbol);
tone_max = zeros(1,nsym);
rx_nse_pow = 1E-12; rx_sig_pow = 0.0;
for i=1:nsym
st = i*P+1;
f_int_resample(:,i) = f_int(:,st+low_sample)*(1-fract) + f_int(:,st+high_sample)*fract;
% Hard decision decoding, Largest amplitude tone is the winner.
% Map this FSK "symbol" back to bits, depending on M
[tone_max(i) tone_index] = max(f_int_resample(:,i));
st = (i-1)*states.bitspersymbol + 1;
en = st + states.bitspersymbol-1;
arx_bits = dec2bin(tone_index - 1, states.bitspersymbol) - '0';
rx_bits(st:en) = arx_bits;
% each filter is the DFT of a chunk of spectrum. If there is no tone in the
% filter it can be considered an estimate of noise in that bandwidth
rx_pows = f_int_resample(:,i) .* conj(f_int_resample(:,i));
rx_sig_pow += rx_pows(tone_index);
rx_nse_pow += (sum(rx_pows) - rx_pows(tone_index))/(M-1);
end
states.f_int_resample = f_int_resample;
% Eb/No estimation (todo: this needs some work, like calibration, low Eb/No perf, work for all M)
tone_max = abs(tone_max);
states.EbNodB = -6 + 20*log10(1E-6+mean(tone_max)/(1E-6+std(tone_max)));
% Estimators for LDPC decoder, might be a bit rough if nsym is small
rx_sig_pow = rx_sig_pow/nsym;
rx_nse_pow = rx_nse_pow/nsym;
states.v_est = sqrt(rx_sig_pow-rx_nse_pow);
states.SNRest = rx_sig_pow/rx_nse_pow;
endfunction
% BER counter and test frame sync logic -------------------------------------------
% We look for test_frame in rx_bits_buf, rx_bits_buf must be twice as long as test_frame
function states = ber_counter(states, test_frame, rx_bits_buf)
nbit = length(test_frame);
assert (length(rx_bits_buf) == 2*nbit);
state = states.ber_state;
next_state = state;
if state == 0
% try to sync up with test frame
nerrs_min = nbit;
for i=1:nbit
error_positions = xor(rx_bits_buf(i:nbit+i-1), test_frame);
nerrs = sum(error_positions);
if nerrs < nerrs_min
nerrs_min = nerrs;
states.coarse_offset = i;
end
end
if nerrs_min/nbit < states.ber_valid_thresh
next_state = 1;
end
if bitand(states.verbose,0x4)
printf("coarse offset: %d nerrs_min: %d next_state: %d\n", states.coarse_offset, nerrs_min, next_state);
end
states.nerr = nerrs_min;
end
if state == 1
% we're synced up, lets measure bit errors
error_positions = xor(rx_bits_buf(states.coarse_offset:states.coarse_offset+nbit-1), test_frame);
nerrs = sum(error_positions);
if nerrs/nbit > states.ber_invalid_thresh
next_state = 0;
if bitand(states.verbose,0x4)
printf("coarse offset: %d nerrs: %d next_state: %d\n", states.coarse_offset, nerrs, next_state);
end
else
states.Terrs += nerrs;
states.Tbits += nbit;
states.nerr_log = [states.nerr_log nerrs];
end
states.nerr = nerrs;
end
states.ber_state = next_state;
endfunction
% Alternative stateless BER counter that works on packets that may have gaps between them
function states = ber_counter_packet(states, test_frame, rx_bits_buf)
ntestframebits = states.ntestframebits;
nbit = states.nbit;
% look for offset with min errors
nerrs_min = ntestframebits; coarse_offset = 1;
for i=1:nbit
error_positions = xor(rx_bits_buf(i:ntestframebits+i-1), test_frame);
nerrs = sum(error_positions);
%printf("i: %d nerrs: %d\n", i, nerrs);
if nerrs < nerrs_min
nerrs_min = nerrs;
coarse_offset = i;
end
end
% if less than threshold count errors
if nerrs_min/ntestframebits < 0.05
states.Terrs += nerrs_min;
states.Tbits += ntestframebits;
states.nerr_log = [states.nerr_log nerrs_min];
if bitand(states.verbose, 0x4)
printf("coarse_offset: %d nerrs_min: %d\n", coarse_offset, nerrs_min);
end
end
endfunction
|