1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
|
% newamp_700c.m
%
% Copyright David Rowe 2017
% This program is distributed under the terms of the GNU General Public License
% Version 2
%
% Library of Octave functions for rate K, mel spaced
% vector quantisation of spectral magnitudes used in Codec 2 700C mode.
1;
melvq; % mbest VQ functions
% --------------------------------------------------------------------------------
% Functions used by rate K mel work
% --------------------------------------------------------------------------------
% General 2nd order parabolic interpolator. Used splines originally,
% but this is much simpler and we don't need much accuracy. Given two
% vectors of points xp and yp, find interpolated values y at points x
function y = interp_para(xp, yp, x)
assert( (length(xp) >=3) && (length(yp) >= 3) );
y = zeros(1,length(x));
k = 1;
for i=1:length(x)
xi = x(i);
% k is index into xp of where we start 3 points used to form parabola
while ((xp(k+1) < xi) && (k < (length(xp)-2)))
k++;
end
x1 = xp(k); y1 = yp(k); x2 = xp(k+1); y2 = yp(k+1); x3 = xp(k+2); y3 = yp(k+2);
%printf("k: %d i: %d xi: %f x1: %f y1: %f\n", k, i, xi, x1, y1);
a = ((y3-y2)/(x3-x2)-(y2-y1)/(x2-x1))/(x3-x1);
b = ((y3-y2)/(x3-x2)*(x2-x1)+(y2-y1)/(x2-x1)*(x3-x2))/(x3-x1);
y(i) = a*(xi-x2)^2 + b*(xi-x2) + y2;
end
endfunction
% simple linear interpolator
function y = interp_linear(xp, yp, x)
assert( (length(xp) == 2) && (length(yp) == 2) );
m = (yp(2) - yp(1))/(xp(2) - xp(1));
c = yp(1) - m*xp(1);
y = zeros(1,length(x));
for i=1:length(x)
y(i) = m*x(i) + c;
end
endfunction
% quantise input sample to nearest value in table, optionally return binary code
function [quant_out best_i bits] = quantise(levels, quant_in)
% find closest quantiser level
best_se = 1E32;
for i=1:length(levels)
se = (levels(i) - quant_in)^2;
if se < best_se
quant_out = levels(i);
best_se = se;
best_i = i;
end
end
% convert index to binary bits
numbits = ceil(log2(length(levels)));
bits = zeros(1, numbits);
for b=1:numbits
bits(b) = bitand(best_i-1,2^(numbits-b)) != 0;
end
endfunction
% Quantisation functions for Wo in log freq domain
function index = encode_log_Wo(Wo, bits)
Wo_levels = 2.^bits;
Wo_min = 2*pi/160;
Wo_max = 2*pi/20;
norm = (log10(Wo) - log10(Wo_min))/(log10(Wo_max) - log10(Wo_min));
index = floor(Wo_levels * norm + 0.5);
index = max(index, 0);
index = min(index, Wo_levels-1);
endfunction
function Wo = decode_log_Wo(index, bits)
Wo_levels = 2.^bits;
Wo_min = 2*pi/160;
Wo_max = 2*pi/20;
step = (log10(Wo_max) - log10(Wo_min))/Wo_levels;
Wo = log10(Wo_min) + step*index;
Wo = 10 .^ Wo;
endfunction
% convert index to binary bits
function bits = index_to_bits(value, numbits)
levels = 2.^numbits;
bits = zeros(1, numbits);
for b=1:numbits
bits(b) = bitand(value,2^(numbits-b)) != 0;
end
end
function value = bits_to_index(bits, numbits)
value = 2.^(numbits-1:-1:0) * bits;
endfunction
% Determine a phase spectra from a magnitude spectra
% from http://www.dsprelated.com/showcode/20.php
% Haven't _quite_ figured out how this works but have to start somewhere ....
%
% TODO: we may be able to sample at a lower rate, like mWo
% but start with something that works
function [phase Gdbfk s Aw] = determine_phase(model, f, Nfft=512, ak)
Fs = 8000;
max_amp = 80;
L = min([model(f,2) max_amp-1]);
Wo = model(f,1);
sample_freqs_kHz = (Fs/1000)*[0:Nfft/2]/Nfft; % fft frequency grid (nonneg freqs)
Am = model(f,3:(L+2));
AmdB = 20*log10(Am);
rate_L_sample_freqs_kHz = (1:L)*Wo*4/pi;
Gdbfk = interp_para(rate_L_sample_freqs_kHz, AmdB, sample_freqs_kHz);
% optional input of aks for testing
if nargin == 4
Aw = 1 ./ fft(ak,Nfft);
Gdbfk = 20*log10(abs(Aw(1:Nfft/2+1)));
end
[phase s] = mag_to_phase(Gdbfk, Nfft);
endfunction
% Non linear sampling of frequency axis, reducing the "rate" is a
% first step before VQ
function mel = ftomel(fHz)
mel = floor(2595*log10(1+fHz/700)+0.5);
endfunction
function rate_K_sample_freqs_kHz = mel_sample_freqs_kHz(K)
mel_start = ftomel(200); mel_end = ftomel(3700);
step = (mel_end-mel_start)/(K-1);
mel = mel_start:step:mel_end;
rate_K_sample_freqs_Hz = 700*((10 .^ (mel/2595)) - 1);
rate_K_sample_freqs_kHz = rate_K_sample_freqs_Hz/1000;
endfunction
function [rate_K_surface rate_K_sample_freqs_kHz] = resample_const_rate_f_mel(model, K)
rate_K_sample_freqs_kHz = mel_sample_freqs_kHz(K);
rate_K_surface = resample_const_rate_f(model, rate_K_sample_freqs_kHz);
endfunction
% Resample Am from time-varying rate L=floor(pi/Wo) to fixed rate K. This can be viewed
% as a 3D surface with time, freq, and ampitude axis.
function [rate_K_surface rate_K_sample_freqs_kHz] = resample_const_rate_f(model, rate_K_sample_freqs_kHz)
% convert rate L=pi/Wo amplitude samples to fixed rate K
max_amp = 80;
[frames col] = size(model);
K = length(rate_K_sample_freqs_kHz);
rate_K_surface = zeros(frames, K);
for f=1:frames
Wo = model(f,1);
L = min([model(f,2) max_amp-1]);
Am = model(f,3:(L+2));
AmdB = 20*log10(Am);
%pre = 10*log10((1:L)*Wo*4/(pi*0.3));
%AmdB += pre;
% clip between peak and peak -50dB, to reduce dynamic range
AmdB_peak = max(AmdB);
AmdB(find(AmdB < (AmdB_peak-50))) = AmdB_peak-50;
rate_L_sample_freqs_kHz = (1:L)*Wo*4/pi;
%rate_K_surface(f,:) = interp1(rate_L_sample_freqs_kHz, AmdB, rate_K_sample_freqs_kHz, "spline", "extrap");
rate_K_surface(f,:) = interp_para(rate_L_sample_freqs_kHz, AmdB, rate_K_sample_freqs_kHz);
%printf("\r%d/%d", f, frames);
end
%printf("\n");
endfunction
% Take a rate K surface and convert back to time varying rate L
function [model_ AmdB_] = resample_rate_L(model, rate_K_surface, rate_K_sample_freqs_kHz)
max_amp = 80;
[frames col] = size(model);
model_ = zeros(frames, max_amp+2);
for f=1:frames
Wo = model(f,1);
L = model(f,2);
rate_L_sample_freqs_kHz = (1:L)*Wo*4/pi;
% back down to rate L
% AmdB_ = interp1(rate_K_sample_freqs_kHz, rate_K_surface(f,:), rate_L_sample_freqs_kHz, "spline", 0);
AmdB_ = interp_para([ 0 rate_K_sample_freqs_kHz 4], [0 rate_K_surface(f,:) 0], rate_L_sample_freqs_kHz);
model_(f,1) = Wo; model_(f,2) = L; model_(f,3:(L+2)) = 10 .^ (AmdB_(1:L)/20);
end
endfunction
% Post Filter, has a big impact on speech quality after VQ. When used
% on a mean removed rate K vector, it raises formants, and suppresses
% anti-formants. As it manipulates amplitudes, we normalise energy to
% prevent clipping or large level variations. pf_gain of 1.2 to 1.5
% (dB) seems to work OK. Good area for further investigations and
% improvements in speech quality.
function vec = post_filter(vec, sample_freq_kHz, pf_gain = 1.5, voicing)
% vec is rate K vector describing spectrum of current frame
% lets pre-emp before applying PF. 20dB/dec over 300Hz
pre = 20*log10(sample_freq_kHz/0.3);
vec += pre;
levels_before_linear = 10 .^ (vec/20);
e_before = sum(levels_before_linear .^2);
vec *= pf_gain;
levels_after_linear = 10 .^ (vec/20);
e_after = sum(levels_after_linear .^2);
gain = e_after/e_before;
gaindB = 10*log10(gain);
vec -= gaindB;
vec -= pre;
endfunction
% construct energy quantiser table, and save to text file to include in C
function energy_q = create_energy_q
energy_q = 10 + 40/16*(0:15);
endfunction
function save_energy_q(fn)
energy_q = create_energy_q;
f = fopen(fn, "wt");
fprintf(f, "1 %d\n", length(energy_q));
for n=1:length(energy_q)
fprintf(f, "%f\n", energy_q(n));
end
fclose(f);
endfunction
% save's VQ in format that can be compiled by Codec 2 build system
function save_vq(vqset, filenameprefix)
[Nvec order stages] = size(vqset);
for s=1:stages
fn = sprintf("%s_%d.txt", filenameprefix, s);
f = fopen(fn, "wt");
fprintf(f, "%d %d\n", order, Nvec);
for n=1:Nvec
for k=1:order
fprintf(f, "% 8.4f ", vqset(n,k,s));
end
fprintf(f, "\n");
end
fclose(f);
end
endfunction
% Decoder side interpolation of Wo and voicing, to go from 25 Hz
% sample rate used over channel to 100Hz internal sample rate of Codec
% 2.
function [Wo_ voicing_] = interp_Wo_v(Wo1, Wo2, voicing1, voicing2)
M = 4;
max_amp = 80;
Wo_ = zeros(1,M);
voicing_ = zeros(1,M);
if !voicing1 && !voicing2
Wo_(1:M) = 2*pi/100;
end
if voicing1 && !voicing2
Wo_(1:M/2) = Wo1;
Wo_(M/2+1:M) = 2*pi/100;
voicing_(1:M/2) = 1;
end
if !voicing1 && voicing2
Wo_(1:M/2) = 2*pi/100;
Wo_(M/2+1:M) = Wo2;
voicing_(M/2+1:M) = 1;
end
if voicing1 && voicing2
Wo_samples = [Wo1 Wo2];
Wo_(1:M) = interp_linear([1 M+1], Wo_samples, 1:M);
voicing_(1:M) = 1;
end
#{
printf("f: %d f+M/2: %d Wo: %f %f (%f %%) v: %d %d \n", f, f+M/2, model(f,1), model(f+M/2,1), 100*abs(model(f,1) - model(f+M/2,1))/model(f,1), voicing(f), voicing(f+M/2));
for i=f:f+M/2-1
printf(" f: %d v: %d v_: %d Wo: %f Wo_: %f\n", i, voicing(i), voicing_(i), model(i,1), model_(i,1));
end
#}
endfunction
% Equaliser in front of EQ, see vq_700c_eq.m for development version
function [rate_K_vec eq] = front_eq(rate_K_vec, eq)
[tmp K] = size(rate_K_vec);
ideal = [ 8 10 12 14 14*ones(1,K-1-4) -20];
gain = 0.02;
update = rate_K_vec - ideal;
eq = (1-gain)*eq + gain*update;
eq(find(eq < 0)) = 0;
endfunction
|