File: cpp5_grammar.y.full

package info (click to toggle)
codelite 12.0+dfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,112 kB
  • sloc: cpp: 424,040; ansic: 18,284; php: 9,569; lex: 4,186; yacc: 2,820; python: 2,294; sh: 312; makefile: 51; xml: 13
file content (2321 lines) | stat: -rw-r--r-- 90,890 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
%{

    /* Copyright (C) 1989-1991 James A. Roskind, All rights reserved. 
    This grammar was developed  and  written  by  James  A.  Roskind. 
    Copying  of  this  grammar  description, as a whole, is permitted 
    providing this notice is intact and applicable  in  all  complete 
    copies.   Translations as a whole to other parser generator input 
    languages  (or  grammar  description  languages)   is   permitted 
    provided  that  this  notice is intact and applicable in all such 
    copies,  along  with  a  disclaimer  that  the  contents  are   a 
    translation.   The reproduction of derived text, such as modified 
    versions of this grammar, or the output of parser generators,  is 
    permitted,  provided  the  resulting  work includes the copyright 
    notice "Portions Copyright (c)  1989,  1990  James  A.  Roskind". 
    Derived products, such as compilers, translators, browsers, etc., 
    that  use  this  grammar,  must also provide the notice "Portions 
    Copyright  (c)  1989,  1990  James  A.  Roskind"  in   a   manner 
    appropriate  to  the  utility,  and in keeping with copyright law 
    (e.g.: EITHER displayed when first invoked/executed; OR displayed 
    continuously on display terminal; OR via placement in the  object 
    code  in  form  readable in a printout, with or near the title of 
    the work, or at the end of the file).  No royalties, licenses  or 
    commissions  of  any  kind are required to copy this grammar, its 
    translations, or derivative products, when the copies are made in 
    compliance with this notice. Persons or corporations that do make 
    copies in compliance with this notice may charge  whatever  price 
    is  agreeable  to  a  buyer, for such copies or derivative works. 
    LE_THIS GRAMMAR IS PROVIDED ``AS IS'' AND  WITHOUT  ANY  EXPRESS  OR 
    IMPLIED  WARRANTIES,  INCLUDING,  WITHOUT LIMITATION, THE IMPLIED 
    WARRANTIES  OF  MERCHANTABILITY  AND  FITNESS  LE_FOR  A  PARTICULAR 
    PURPOSE.

    James A. Roskind
    Independent Consultant
    516 Latania Palm Drive
    Indialantic FL, 32903
    (407)729-4348
    jar@hq.ileaf.com


    ---end of copyright notice---

MOTIVATION-

My  goal  is  to  see  software  developers  adopt  this grammar as a 
standard until such time as a better  standard  is  accessible.   The 
only  way  to  get it to become a standard, is to be sure that people 
know that derivations are based on a specific work.   The  intent  of 
releasing  this  grammar is to provide a publicly accessible standard 
grammar for C++.  The intent of the  copyright  notice  is  to  allow 
arbitrary  commercial  and non-commercial use of the grammar, as long 
as reference is given to the original standard.  Without reference to 
a specific standard, many alternative  grammars  would  develop.   By 
referring  to  the  standard,  this grammar is given publicity, which 
should lead to further use in compatible products and  systems.   The 
benefits  of  such  a  standard  to  commercial  products  (browsers, 
beautifiers, translators, compilers, ...) should be  obvious  to  the 
developers,  in  that  other compatible products will emerge, and the 
value of all conforming products  will  rise.   Most  developers  are 
aware  of  the  value  of  acquiring  a fairly complete grammar for a 
language, and the copyright notice  (and  the  resulting  affiliation 
with my work) should not be too high a price to pay.  By copyrighting 
this  grammar,  I have some minor control over what this standard is, 
and I can (hopefully) keep it from degrading without my approval.   I 
will  consistently  attempt  to  provide  upgraded  grammars that are 
compliant  with  the  current  art,  and  the  ANSI   C++   Committee 
recommendation  in  particular.   A developer is never prevented from 
modifying the grammar to improve it in  whatever  way  is  seen  fit.  
There  is  also  no  restriction on the sale of copies, or derivative 
works, providing the requests in the copyright notice are satisfied.

If you are not "copying" my work, but  are  rather  only  abstracting 
some  of  the  standard,  an acknowledgment with references to such a 
standard would be appreciated.  Specifically,  agreements  with  this 
standard  as  to  the  resolution  of otherwise ambiguous constructs, 
should be noted.

Simply put: "make whatever use you would like  of  the  grammar,  but 
include  the  ``portions  Copyright  ...''  as  a  reference  to this 
standard."


*/


/* Last modified 7/4/91, Version 2.0  */

/* File CPP5.Y is translated by YACC to Y.TAB.C */

/*  ACKNOWLEDGMENT: Without Bjarne Stroustrup and his many co-workers 
at Bell Labs, there would be no C++ Language for which to  provide  a 
syntax  description. Bjarne has also been especially helpful and open 
in discussions, and by permitting me to review  his  texts  prior  to 
their publication, allowed me a wonderful vantage point of clarity.

Without  the effort expended by the ANSI C standardizing committee, I 
would have been lost.  Although the ANSI C standard does not  include 
a  fully disambiguated syntax description, the committee has at least 
provided most of the disambiguating rules in  narratives.   This  C++ 
grammar  is intended to be a superset of an ANSI C compatible grammar 
that is provided in an related file.

Several reviewers have also  recently  critiqued  this  grammar,  the 
related  C  grammar,  and  or  assisted  in  discussions  during it's 
preparation.  These reviewers are certainly not responsible  for  the 
errors  I  have committed here, but they are responsible for allowing 
me  to  provide  fewer  errors.   These  colleagues  include:   Bruce 
Blodgett,  Mark Langley, Joe Fialli, Greg Perkins, Ron Guilmette, and 
Eric Krohn. */

/* Required fixes from last release :

done: 0) Allow direct call to destructors

done: 1) Allow placement of declarations in labeled statements.   The 
easiest  fix involves using a larger variance from the C grammar, and 
simply making "statement" include declarations.  Note that it  should 
also  be  legal  for  declarations  to  be  in  the  branches  of  if 
statements, as long as there is no other code in the block (I think).  
Consider:

        ...
        {
           if (0 == a)
                int b=5;
           else
                int c=4;
         }

1) template support: Not  done:  pending  syntax  specification  from 
ANSI.  (This looks like a major effort, as ANSI has decided to extend 
the  "LE_TYPEDEFname"-feedback-to-the-lexer-hack  to  support   template 
names as a new kind of terminal token.)

2)  exception  handling:  Not done: pending syntax specification from 
ANSI (but it doesn't look hard)

done: 3) Support nested types, including identifier::name,  where  we 
realize  that  identifier was a hidden type.  Force the lexer to keep 
pace in this situation.   This  will  require  an  extension  of  the 
yacc-lex feedback loop.

done: 4) Support nested types even when derivations are used in class 
definitions.

5)  Provide  advanced  tutorial  on  YACC  conflicts:  almost done in 
documentation about machine generated documentation.

done: 6) Allow declaration specifiers to be left out of  declarations 
at file and structure scope so that operator conversion functions can 
be  declared and/or defined.  Note that checking to see that it was a 
function type that does not require declaration_specifiers is  now  a 
constraint  check,  and  not  a  syntax  issue.  Within function body 
scopes, declaration specifiers are required, and this is critical  to 
distinguishing expressions.


*/

%}

/*

Interesting ambiguity:
Usually
        typename ( typename2 ) ...
or
        typename ( typename2 [4] ) ...
etc.
is a redeclaration of typename2.

Inside  a structure elaboration, it is sometimes the declaration of a 
constructor!  Note, this only  counts  if  typename  IS  the  current 
containing  class name. (Note this can't conflict with ANSI C because 
ANSI C would call it a redefinition, but  claim  it  is  semantically 
illegal because you can't have a member declared the same type as the 
containing struct!) Since the ambiguity is only reached when a ';' is 
found,   there  is  no  problem  with  the  fact  that  the  semantic 
interpretation  is  providing  the  true  resolution.   As  currently 
implemented, the constructor semantic actions must be able to process 
an  ordinary  declaration.  I may reverse this in the future, to ease 
semantic implementation.

*/



/*

INTRO TO ANSI C GRAMMAR (provided in a separate file):

The refined grammar resolves several typedef ambiguities in the draft 
proposed ANSI C standard syntax down to 1 shift/reduce  conflict,  as 
reported by a YACC process.  Note that the one shift reduce conflicts 
is  the  traditional  if-if-else conflict that is not resolved by the 
grammar.  This ambiguity can be removed using the method described in 
the Dragon Book (2nd edition), but this does  not  appear  worth  the 
effort.

There  was quite a bit of effort made to reduce the conflicts to this 
level, and an additional effort was made to make  the  grammar  quite 
similar  to  the  C++ grammar being developed in parallel.  Note that 
this grammar resolves the following ANSI C ambiguities:

ANSI C section 3.5.6, "If the [typedef  name]  is  redeclared  at  an 
inner  scope,  the  type specifiers shall not be omitted in the inner 
declaration".  Supplying type specifiers prevents consideration of  T 
as a typedef name in this grammar.  Failure to supply type specifiers 
forced the use of the LE_TYPEDEFname as a type specifier.  This is taken 
to an (unnecessary) extreme by this implementation.  The ambiguity is 
only  a  problem  with  the first declarator in a declaration, but we 
restrict  ALL  declarators  whenever  the  users  fails  to   use   a 
type_specifier.

ANSI C section 3.5.4.3, "In a parameter declaration, a single typedef 
name  in  parentheses  is  taken  to  be  an abstract declarator that 
specifies a function  with  a  single  parameter,  not  as  redundant 
parentheses  around  the  identifier".  This is extended to cover the 
following cases:

typedef float T;
int noo(const (T[5]));
int moo(const (T(int)));
...

Where again the '(' immediately to the left of 'T' is interpreted  as 
being  the  start  of  a  parameter type list, and not as a redundant 
paren around a redeclaration of T.  Hence an equivalent code fragment 
is:

typedef float T;
int noo(const int identifier1 (T identifier2 [5]));
int moo(const int identifier1 (T identifier2 (int identifier3)));
...

*/


%{
/*************** Includes and Defines *****************************/
#define YYDEBUG_LEXER_TEXT (yylval) /* our lexer loads this up each time.
				     We are telling the graphical debugger
				     where to find the spelling of the 
				     tokens.*/
#define YYDEBUG 0        /* get the pretty debugging code to compile*/
#include "stdio.h"
int yyparse();
void yyerror(char *string);
extern int yylex();
extern char* yytext;
void setLexerInput(const char *line);

/*************** Standard ytab.c continues here *********************/
%}

%union {
	char value[128];
}

/*************************************************************************/


/* This group is used by the C/C++ language parser */
%token <value> LE_AUTO            LE_DOUBLE          LE_INT             LE_STRUCT
%token <value> LE_BREAK           LE_ELSE            LE_LONG            LE_SWITCH
%token <value> LE_CASE            LE_ENUM            LE_REGISTER        LE_TYPEDEF
%token <value> LE_CHAR            LE_EXTERN          LE_RETURN          LE_UNION
%token <value> LE_CONST           LE_FLOAT           LE_SHORT           LE_UNSIGNED
%token <value> LE_CONTINUE        LE_FOR             LE_SIGNED          LE_VOID
%token <value> LE_DEFAULT         LE_GOTO            LE_SIZEOF          LE_VOLATILE
%token <value> LE_DO              LE_IF              LE_STATIC          LE_WHILE

/* The following are used in C++ only.  ANSI C would call these IDENTIFIERs */
%token <value> LE_NEW             LE_DELETE
%token <value> LE_THIS
%token <value> LE_OPERATOR
%token <value> LE_CLASS
%token <value> LE_PUBLIC          LE_PROTECTED       LE_PRIVATE
%token <value> LE_VIRTUAL         LE_FRIEND
%token <value> LE_INLINE          LE_OVERLOAD

/* ANSI C Grammar suggestions */
%token <value> LE_IDENTIFIER              LE_STRINGliteral
%token <value> LE_FLOATINGconstant        LE_INTEGERconstant        LE_CHARACTERconstant
%token <value> LE_OCTALconstant           LE_HEXconstant
%token <value> LE_POUNDPOUND LE_CComment LE_CPPComment LE_NAMESPACE

/* New Lexical element, whereas ANSI C suggested non-terminal */
%token LE_TYPEDEFname

/* Multi-Character operators */
%token  <value> LE_ARROW            /*    ->                              */
%token  <value> LE_ICR LE_DECR         /*    ++      --                      */
%token  <value> LE_LS LE_RS            /*    <<      >>                      */
%token  <value> LE_LE LE_GE LE_EQ LE_NE      /*    <=      >=      ==      !=      */
%token  <value> LE_ANDAND LE_OROR      /*    &&      ||                      */
%token  <value> LE_ELLIPSIS         /*    ...                             */
                 /* Following are used in C++, not ANSI C        */
%token  <value> LE_CLCL             /*    ::                              */
%token  <value> LE_DOTstar LE_ARROWstar/*    .*       ->*                    */

/* modifying assignment operators */
%token <value> LE_MULTassign  LE_DIVassign    LE_MODassign   /*   *=      /=      %=      */
%token <value> LE_PLUSassign  LE_MINUSassign              /*   +=      -=              */
%token <value> LE_LSassign    LE_RSassign                 /*   <<=     >>=             */
%token <value> LE_ANDassign   LE_ERassign     LE_ORassign    /*   &=      ^=      |=      */
%token <value> LE_TEMPLATE
%token <value> LE_TYPENAME

/*************************************************************************/

%start translation_unit

/*************************************************************************/

%%

/*********************** CONSTANTS *********************************/
constant:
        LE_INTEGERconstant
        | LE_FLOATINGconstant
        /*  We  are not including ENUMERATIONconstant here because we 
          are treating it like a variable with a type of "enumeration 
          constant".  */
        | LE_OCTALconstant
        | LE_HEXconstant
        | LE_CHARACTERconstant
        ;

string_literal_list:
                LE_STRINGliteral
                | string_literal_list LE_STRINGliteral
                ;


/************************* EXPRESSIONS ********************************/


    /* Note that I provide  a  "scope_opt_identifier"  that  *cannot* 
    begin  with ::.  This guarantees we have a viable declarator, and 
    helps to disambiguate :: based uses in the grammar.  For example:

            ...
            {
            int (* ::b()); // must be an expression
            int (T::b); // officially a declaration, which fails on constraint grounds

    This *syntax* restriction reflects the current syntax in the ANSI 
    C++ Working Papers.   This  means  that  it  is  *incorrect*  for 
    parsers to misparse the example:

            int (* ::b()); // must be an expression

    as a declaration, and then report a constraint error.

    In contrast, declarations such as:

        class T;
        class A;
        class B;
        main(){
              T( F());  // constraint error: cannot declare local function
              T (A::B::a); // constraint error: cannot declare member as a local value

    are  *parsed*  as  declarations,  and *then* given semantic error 
    reports.  It is incorrect for a parser to "change its mind" based 
    on constraints.  If your C++ compiler claims  that  the  above  2 
    lines are expressions, then *I* claim that they are wrong. */

paren_identifier_declarator:
        scope_opt_identifier
        | scope_opt_complex_name
        | '(' paren_identifier_declarator ')'
        ;


    /* Note that LE_CLCL LE_IDENTIFIER is NOT part of scope_opt_identifier, 
    but  it  is  part of global_opt_scope_opt_identifier.  It is ONLY 
    valid for referring to an identifier, and NOT valid for declaring 
    (or importing an external declaration of)  an  identifier.   This 
    disambiguates  the  following  code,  which  would  otherwise  be 
    syntactically and semantically ambiguous:

            class base {
                static int i; // element i;
                float member_function(void);
                };
            base i; // global i
            float base::member_function(void) {
                i; // refers to static int element "i" of base
                ::i; // refers to global "i", with type "base"
                    {
                    base :: i; // import of global "i", like "base (::i);"?
                                // OR reference to global??
                    }
                }
        */

primary_expression:
        global_opt_scope_opt_identifier
        | global_opt_scope_opt_complex_name
        | LE_THIS   /* C++, not ANSI C */
        | constant
        | string_literal_list
        | '(' comma_expression ')'
        ;


    /* I had to disallow struct, union, or enum  elaborations  during 
    operator_function_name.   The  ANSI  C++  Working  paper is vague 
    about whether this should be part of the syntax, or a constraint.  
    The ambiguities that resulted were more than LALR  could  handle, 
    so  the  easiest  fix was to be more specific.  This means that I 
    had to in-line expand type_specifier_or_name far  enough  that  I 
    would  be  able to exclude elaborations.  This need is what drove 
    me to distinguish a whole series of tokens based on whether  they 
    include elaborations:

         struct A { ... }

    or simply a reference to an aggregate or enumeration:

         enum A

    The  latter,  as  well  an  non-aggregate  types are what make up 
    non_elaborating_type_specifier */

    /* Note that the following does not include  type_qualifier_list. 
    Hence,   whenever   non_elaborating_type_specifier  is  used,  an 
    adjacent rule is supplied containing type_qualifier_list.  It  is 
    not  generally  possible  to  know  immediately  (i_e., reduce) a 
    type_qualifier_list, as a LE_TYPEDEFname that follows might  not  be 
    part of a type specifier, but might instead be "LE_TYPEDEFname ::*".  
    */

non_elaborating_type_specifier:
        sue_type_specifier
        | basic_type_specifier
        | typedef_type_specifier

        | basic_type_name
        | LE_TYPEDEFname
        | global_or_scoped_typedefname
        ;


    /*  The  following  introduces  MANY  conflicts.   Requiring  and 
    allowing '(' ')' around the `type' when the type is complex would 
    help a lot. */

operator_function_name:
        LE_OPERATOR any_operator
        | LE_OPERATOR type_qualifier_list            operator_function_ptr_opt
        | LE_OPERATOR non_elaborating_type_specifier operator_function_ptr_opt
        ;


    /* The following causes several ambiguities on *  and  &.   These 
    conflicts  would also be removed if parens around the `type' were 
    required in the derivations for operator_function_name */

    /*  Interesting  aside:  The  use  of  right  recursion  in   the 
    production  for  operator_function_ptr_opt gives both the correct 
    parsing, AND removes a conflict!   Right  recursion  permits  the 
    parser  to  defer  reductions  (a.k.a.:  delay  resolution),  and 
    effectively make a second pass! */

operator_function_ptr_opt:
        /* nothing */
        | unary_modifier        operator_function_ptr_opt
        | asterisk_or_ampersand operator_function_ptr_opt
        ;


    /* List of operators we can overload */
any_operator:
        '+'
        | '-'
        | '*'
        | '/'
        | '%'
        | '^'
        | '&'
        | '|'
        | '~'
        | '!'
        | '<'
        | '>'
        | LE_LS
        | LE_RS
        | LE_ANDAND
        | LE_OROR
        | LE_ARROW
        | LE_ARROWstar
        | '.'
        | LE_DOTstar
        | LE_ICR
        | LE_DECR
        | LE_LE
        | LE_GE
        | LE_EQ
        | LE_NE
        | assignment_operator
        | '(' ')'
        | '[' ']'
        | LE_NEW
        | LE_DELETE
        | ','
        ;


    /* The following production for type_qualifier_list was specially 
    placed BEFORE the definition of postfix_expression to  resolve  a 
    reduce-reduce    conflict    set    correctly.    Note   that   a 
    type_qualifier_list is only used  in  a  declaration,  whereas  a 
    postfix_expression is clearly an example of an expression.  Hence 
    we  are helping with the "if it can be a declaration, then it is" 
    rule.  The reduce conflicts are on ')', ',' and '='.  Do not move 
    the following productions */

type_qualifier_list_opt:
        /* Nothing */
        | type_qualifier_list
        ;


    /*  Note  that  the next set of productions in this grammar gives 
    post-increment a higher precedence that pre-increment.   This  is 
    not  clearly  stated  in  the  C++  Reference manual, and is only 
    implied by the grammar in the ANSI C Standard. */

    /* I *DON'T* use  argument_expression_list_opt  to  simplify  the 
    grammar  shown  below.   I am deliberately deferring any decision 
    until    *after*     the     closing     paren,     and     using 
    "argument_expression_list_opt" would commit prematurely.  This is 
    critical to proper conflict resolution. */

    /*  The  {}  in  the following rules allow the parser to tell the 
    lexer to search for the member name  in  the  appropriate  scope, 
    much the way the LE_CLCL operator works.*/

postfix_expression:
        primary_expression
        | postfix_expression '[' comma_expression ']'
        | postfix_expression '(' ')'
        | postfix_expression '(' argument_expression_list ')'
        | postfix_expression {} '.'   member_name
        | postfix_expression {} LE_ARROW member_name
        | postfix_expression LE_ICR
        | postfix_expression LE_DECR

                /* The next 4 rules are the source of cast ambiguity */
        | LE_TYPEDEFname                  '(' ')'
        | global_or_scoped_typedefname '(' ')'
        | LE_TYPEDEFname                  '(' argument_expression_list ')'
        | global_or_scoped_typedefname '(' argument_expression_list ')'
        | basic_type_name '(' assignment_expression ')'
            /* If the following rule is added to the  grammar,  there 
            will  be 3 additional reduce-reduce conflicts.  They will 
            all be resolved in favor of NOT using the following rule, 
            so no harm will be done.   However,  since  the  rule  is 
            semantically  illegal  we  will  omit  it  until  we  are 
            enhancing the grammar for error recovery */
/*      | basic_type_name '(' ')'  /* Illegal: no such constructor*/
        ;


    /* The last two productions in the next set are questionable, but 
    do not induce any conflicts.  I need to ask X3J16 :  Having  them 
    means that we have complex member function deletes like:

          const unsigned int :: ~ const unsigned int
    */

member_name:
        scope_opt_identifier
        | scope_opt_complex_name
        | basic_type_name LE_CLCL '~' basic_type_name  /* C++, not ANSI C */

        | declaration_qualifier_list  LE_CLCL '~'   declaration_qualifier_list
        | type_qualifier_list         LE_CLCL '~'   type_qualifier_list
        ;

argument_expression_list:
        assignment_expression
        | argument_expression_list ',' assignment_expression
        ;

unary_expression:
        postfix_expression
        | LE_ICR  unary_expression
        | LE_DECR unary_expression
        | asterisk_or_ampersand cast_expression
        | '-'                   cast_expression
        | '+'                   cast_expression
        | '~'                   cast_expression
        | '!'                   cast_expression
        | LE_SIZEOF unary_expression
        | LE_SIZEOF '(' type_name ')'
        | allocation_expression
        ;


    /* Note that I could have moved the  newstore  productions  to  a 
    lower  precedence  level  than  multiplication  (binary '*'), and 
    lower than bitwise AND (binary '&').  These moves  are  the  nice 
    way  to  disambiguate a trailing unary '*' or '&' at the end of a 
    freestore expression.  Since the freestore expression (with  such 
    a  grammar  and  hence  precedence  given)  can never be the left 
    operand of a binary '*' or '&', the ambiguity would  be  removed. 
    These  problems  really  surface when the binary operators '*' or 
    '&' are overloaded, but this must be syntactically  disambiguated 
    before the semantic checking is performed...  Unfortunately, I am 
    not  creating  the language, only writing a grammar that reflects 
    its specification, and  hence  I  cannot  change  its  precedence 
    assignments.   If  I  had  my  druthers,  I would probably prefer 
    surrounding the type with parens all the time, and  avoiding  the 
    dangling * and & problem all together.*/

       /* Following are C++, not ANSI C */
allocation_expression:
        global_opt_scope_opt_operator_new                                    '(' type_name ')'
                operator_new_initializer_opt

        | global_opt_scope_opt_operator_new '(' argument_expression_list ')' '(' type_name ')'
                operator_new_initializer_opt

                /* next two rules are the source of * and & ambiguities */
        | global_opt_scope_opt_operator_new                                  operator_new_type
        | global_opt_scope_opt_operator_new '(' argument_expression_list ')' operator_new_type
        ;


       /* Following are C++, not ANSI C */
global_opt_scope_opt_operator_new:
        LE_NEW
        | global_or_scope LE_NEW
        ;

operator_new_type:
        type_qualifier_list              operator_new_declarator_opt
                        operator_new_initializer_opt

        | non_elaborating_type_specifier operator_new_declarator_opt
                        operator_new_initializer_opt
        ;

    
    /*  Right  recursion  is critical in the following productions to 
    avoid a conflict on LE_TYPEDEFname */

operator_new_declarator_opt:
        /* Nothing */
        | operator_new_array_declarator
        | asterisk_or_ampersand operator_new_declarator_opt
        | unary_modifier        operator_new_declarator_opt
        ;

operator_new_array_declarator:
                                        '['                  ']'
        |                               '[' comma_expression ']'
        | operator_new_array_declarator '[' comma_expression ']'
        ;

operator_new_initializer_opt:
        /* Nothing */
        | '('                          ')'
        | '(' argument_expression_list ')'
        ;

cast_expression:
        unary_expression
        | '(' type_name ')' cast_expression
        ;


    /* Following are C++, not ANSI C */
deallocation_expression:
        cast_expression
        | global_opt_scope_opt_delete deallocation_expression
        | global_opt_scope_opt_delete '[' comma_expression ']' deallocation_expression  /* archaic C++, what a concept */
        | global_opt_scope_opt_delete '[' ']' deallocation_expression
        ;


    /* Following are C++, not ANSI C */
global_opt_scope_opt_delete:
        LE_DELETE
        | global_or_scope LE_DELETE
        ;


    /* Following are C++, not ANSI C */
point_member_expression:
        deallocation_expression
        | point_member_expression LE_DOTstar  deallocation_expression
        | point_member_expression LE_ARROWstar  deallocation_expression
        ;

multiplicative_expression:
        point_member_expression
        | multiplicative_expression '*' point_member_expression
        | multiplicative_expression '/' point_member_expression
        | multiplicative_expression '%' point_member_expression
        ;

additive_expression:
        multiplicative_expression
        | additive_expression '+' multiplicative_expression
        | additive_expression '-' multiplicative_expression
        ;

shift_expression:
        additive_expression
        | shift_expression LE_LS additive_expression
        | shift_expression LE_RS additive_expression
        ;

relational_expression:
        shift_expression
        | relational_expression '<' shift_expression
        | relational_expression '>' shift_expression
        | relational_expression LE_LE  shift_expression
        | relational_expression LE_GE  shift_expression
        ;

equality_expression:
        relational_expression
        | equality_expression LE_EQ relational_expression
        | equality_expression LE_NE relational_expression
        ;

AND_expression:
        equality_expression
        | AND_expression '&' equality_expression
        ;

exclusive_OR_expression:
        AND_expression
        | exclusive_OR_expression '^' AND_expression
        ;

inclusive_OR_expression:
        exclusive_OR_expression
        | inclusive_OR_expression '|' exclusive_OR_expression
        ;

logical_AND_expression:
        inclusive_OR_expression
        | logical_AND_expression LE_ANDAND inclusive_OR_expression
        ;

logical_OR_expression:
        logical_AND_expression
        | logical_OR_expression LE_OROR logical_AND_expression
        ;

conditional_expression:
        logical_OR_expression

        | logical_OR_expression '?' comma_expression ':'
                conditional_expression
        ;

assignment_expression:
        conditional_expression
        | unary_expression assignment_operator assignment_expression
        ;

assignment_operator:
        '='
        | LE_MULTassign
        | LE_DIVassign
        | LE_MODassign
        | LE_PLUSassign
        | LE_MINUSassign
        | LE_LSassign
        | LE_RSassign
        | LE_ANDassign
        | LE_ERassign
        | LE_ORassign
        ;

comma_expression:
        assignment_expression
        | comma_expression ',' assignment_expression
        ;

constant_expression:
        conditional_expression
        ;


    /* The following was used for clarity */
comma_expression_opt:
        /* Nothing */
        | comma_expression
        ;


/******************************* DECLARATIONS *********************************/


    /*  The  following are notably different from the ANSI C Standard 
    specified grammar, but  are  present  in  my  ANSI  C  compatible 
    grammar.  The changes were made to disambiguate typedefs presence 
    in   declaration_specifiers   (vs.    in   the   declarator   for 
    redefinition); to allow struct/union/enum/class tag  declarations 
    without  declarators,  and  to  better  reflect  the  parsing  of 
    declarations    (declarators    must     be     combined     with 
    declaration_specifiers  ASAP, so that they can immediately become 
    visible in the current scope). */

declaration:
        declaring_list ';'						 	{printf("declaring_list\n");}
        | default_declaring_list ';'		 	{printf("default_declaring_list\n");}
        | sue_declaration_specifier ';' 	 	{printf("sue_declaration_specifier\n");}
        | sue_type_specifier ';'				 	{printf("sue_type_specifier\n");}
        | sue_type_specifier_elaboration ';'	{printf("sue_type_specifier_elaboration\n");}
        ;


    /* Note that if a typedef were  redeclared,  then  a  declaration 
    specifier  must be supplied (re: ANSI C spec).  The following are 
    declarations wherein no declaration_specifier  is  supplied,  and 
    hence the 'default' must be used.  An example of this is

        const a;

    which by default, is the same as:

        const int a;

    `a' must NOT be a typedef in the above example. */


    /*  The  presence of `{}' in the following rules indicates points 
    at which the symbol table MUST be updated so that  the  tokenizer 
    can  IMMEDIATELY  continue  to  maintain  the  proper distinction 
    between a LE_TYPEDEFname and an LE_IDENTIFIER. */

default_declaring_list:  /* Can't  redeclare typedef names */
        declaration_qualifier_list   identifier_declarator {} initializer_opt
        | type_qualifier_list        identifier_declarator {} initializer_opt
        | default_declaring_list ',' identifier_declarator {} initializer_opt

        | declaration_qualifier_list constructed_identifier_declarator
        | type_qualifier_list        constructed_identifier_declarator
        | default_declaring_list ',' constructed_identifier_declarator
        ;


    /* Note how type_qualifier_list is  NOT  used  in  the  following 
    productions.    Qualifiers   are   NOT   sufficient  to  redefine 
    typedef-names (as prescribed by the ANSI C standard).*/

declaring_list:
        declaration_specifier          declarator {} initializer_opt	{printf("1\n");}
        | type_specifier               declarator {} initializer_opt {printf("2\n");}
        | basic_type_name              declarator {} initializer_opt {printf("3\n");}
        | LE_TYPEDEFname                  declarator {} initializer_opt {printf("4\n");}
        | global_or_scoped_typedefname declarator {} initializer_opt {printf("5\n");}
        | declaring_list ','           declarator {} initializer_opt {printf("6\n");}

        | declaration_specifier        constructed_declarator {printf("7\n");}
        | type_specifier               constructed_declarator {printf("8\n");}
        | basic_type_name              constructed_declarator {printf("9\n");}
        | LE_TYPEDEFname                  constructed_declarator {printf("10\n");}
        | global_or_scoped_typedefname constructed_declarator {printf("11\n");}
        | declaring_list ','           constructed_declarator {printf("12\n");}
        ;


    /* Declarators with  parenthesized  initializers  present  a  big 
    problem.  Typically  a  declarator  that looks like: "*a(...)" is 
    supposed to bind FIRST to the "(...)", and then to the "*".  This 
    binding  presumes  that  the  "(...)" stuff is a prototype.  With 
    constructed declarators, we must (officially) finish the  binding 
    to the "*" (finishing forming a good declarator) and THEN connect 
    with  the argument list. Unfortunately, by the time we realize it 
    is an argument list (and not a  prototype)  we  have  pushed  the 
    separate  declarator  tokens  "*"  and  "a"  onto  the yacc stack 
    WITHOUT combining them. The solution is to use odd productions to 
    carry  the  incomplete  declarator  along  with   the   "argument 
    expression  list" back up the yacc stack.  We would then actually 
    instantiate the symbol table after we have  fully  decorated  the 
    symbol  with all the leading "*" stuff.  Actually, since we don't 
    have all the type information in one spot till  we  reduce  to  a 
    declaring_list,  this delay is not a problem.  Note that ordinary 
    initializers REQUIRE (ANSI C Standard) that the symbol be  placed 
    into  the symbol table BEFORE its initializer is read, but in the 
    case of parenthesized initializers,  this  is  not  possible  (we 
    don't  even  know  we  have  an  initializer till have passed the 
    opening "(". ) */

constructed_declarator:
        nonunary_constructed_identifier_declarator
        | constructed_paren_typedef_declarator
        | simple_paren_typedef_declarator '(' argument_expression_list ')'

        | simple_paren_typedef_declarator postfixing_abstract_declarator
                                          '(' argument_expression_list ')'  /* constraint error */

        | constructed_parameter_typedef_declarator
        | asterisk_or_ampersand constructed_declarator
        | unary_modifier        constructed_declarator
        ;

constructed_paren_typedef_declarator:
        '(' paren_typedef_declarator ')'
                    '(' argument_expression_list ')'

        | '(' paren_typedef_declarator ')' postfixing_abstract_declarator
                   '(' argument_expression_list ')'

        | '(' simple_paren_typedef_declarator postfixing_abstract_declarator ')'
                   '(' argument_expression_list ')'

        | '(' LE_TYPEDEFname postfixing_abstract_declarator ')'
                   '(' argument_expression_list ')'
        ;


constructed_parameter_typedef_declarator:
        LE_TYPEDEFname    '(' argument_expression_list ')'

        | LE_TYPEDEFname  postfixing_abstract_declarator
                       '(' argument_expression_list ')'  /* constraint error */

        | '(' clean_typedef_declarator ')'
                       '(' argument_expression_list ')'

        | '(' clean_typedef_declarator ')'  postfixing_abstract_declarator
                       '(' argument_expression_list ')'
        ;


constructed_identifier_declarator:
        nonunary_constructed_identifier_declarator
        | asterisk_or_ampersand constructed_identifier_declarator
        | unary_modifier        constructed_identifier_declarator
        ;


    /* The following are restricted to NOT  begin  with  any  pointer 
    operators.   This  includes both "*" and "T::*" modifiers.  Aside 
    from  this  restriction,   the   following   would   have   been: 
    identifier_declarator '(' argument_expression_list ')' */

nonunary_constructed_identifier_declarator:
        paren_identifier_declarator   '(' argument_expression_list ')'

        | paren_identifier_declarator postfixing_abstract_declarator
                       '(' argument_expression_list ')'  /* constraint error*/

        | '(' unary_identifier_declarator ')'
                       '(' argument_expression_list ')'

        | '(' unary_identifier_declarator ')' postfixing_abstract_declarator
                       '(' argument_expression_list ')'
        ;


declaration_specifier:
        basic_declaration_specifier          /* Arithmetic or void */
        | sue_declaration_specifier          /* struct/union/enum/class */
        | typedef_declaration_specifier      /* typedef*/
        ;

type_specifier:
        basic_type_specifier                 /* Arithmetic or void */
        | sue_type_specifier                 /* Struct/Union/Enum/Class */
        | sue_type_specifier_elaboration     /* elaborated Struct/Union/Enum/Class */
        | typedef_type_specifier             /* Typedef */
        ;

declaration_qualifier_list:  /* storage class and optional const/volatile */
        storage_class
        | type_qualifier_list storage_class
        | declaration_qualifier_list declaration_qualifier
        ;

type_qualifier_list:
        type_qualifier
        | type_qualifier_list type_qualifier
        ;

declaration_qualifier:
        storage_class
        | type_qualifier                  /* const or volatile */
        ;

type_qualifier:
        LE_CONST
        | LE_VOLATILE
        ;

basic_declaration_specifier:      /*Storage Class+Arithmetic or void*/
        declaration_qualifier_list    basic_type_name
        | basic_type_specifier        storage_class
        | basic_type_name             storage_class
        | basic_declaration_specifier declaration_qualifier
        | basic_declaration_specifier basic_type_name
        ;

basic_type_specifier:
        type_qualifier_list    basic_type_name /* Arithmetic or void */
        | basic_type_name      basic_type_name
        | basic_type_name      type_qualifier
        | basic_type_specifier type_qualifier
        | basic_type_specifier basic_type_name
        ;

sue_declaration_specifier:          /* Storage Class + struct/union/enum/class */
        declaration_qualifier_list       elaborated_type_name
        | declaration_qualifier_list     elaborated_type_name_elaboration
        | sue_type_specifier             storage_class
        | sue_type_specifier_elaboration storage_class
        | sue_declaration_specifier      declaration_qualifier
        ;

sue_type_specifier_elaboration:
        elaborated_type_name_elaboration     /* elaborated struct/union/enum/class */
        | type_qualifier_list elaborated_type_name_elaboration
        | sue_type_specifier_elaboration type_qualifier
        ;

sue_type_specifier:
        elaborated_type_name              /* struct/union/enum/class */
        | type_qualifier_list elaborated_type_name
        | sue_type_specifier type_qualifier
        ;

typedef_declaration_specifier:       /*Storage Class + typedef types */
        declaration_qualifier_list   LE_TYPEDEFname
        | declaration_qualifier_list global_or_scoped_typedefname

        | typedef_type_specifier       storage_class
        | LE_TYPEDEFname                  storage_class
        | global_or_scoped_typedefname storage_class

        | typedef_declaration_specifier declaration_qualifier
        ;

typedef_type_specifier:              /* typedef types */
        type_qualifier_list      LE_TYPEDEFname
        | type_qualifier_list    global_or_scoped_typedefname

        | LE_TYPEDEFname                  type_qualifier
        | global_or_scoped_typedefname type_qualifier

        | typedef_type_specifier type_qualifier
        ;


/*  There  are  really  several distinct sets of storage_classes. The 
sets vary depending on whether the declaration is at file scope, is a 
declaration within a struct/class, is within a function body, or in a 
function declaration/definition (prototype  parameter  declarations).  
They   are   grouped  here  to  simplify  the  grammar,  and  can  be 
semantically checked.  Note that this  approach  tends  to  ease  the 
syntactic restrictions in the grammar slightly, but allows for future 
language  development,  and tends to provide superior diagnostics and 
error recovery (i_e.: a syntax error does not disrupt the parse).


                File    File    Member  Member  Local   Local  Formal
                Var     Funct   Var     Funct   Var     Funct  Params
LE_TYPEDEF         x       x       x       x       x       x
LE_EXTERN          x       x                       x       x
LE_STATIC          x       x       x       x       x
LE_AUTO                                            x              x
LE_REGISTER                                        x              x
LE_FRIEND                                  x
LE_OVERLOAD                x               x               x
LE_INLINE                  x               x               x
LE_VIRTUAL                                 x               x
*/

storage_class:
        LE_EXTERN
        | LE_TYPEDEF
        | LE_STATIC
        | LE_AUTO
        | LE_REGISTER
        | LE_FRIEND   /* C++, not ANSI C */
        | LE_OVERLOAD /* C++, not ANSI C */
        | LE_INLINE   /* C++, not ANSI C */
        | LE_VIRTUAL  /* C++, not ANSI C */
        ;

basic_type_name:
        LE_INT
        | LE_CHAR
        | LE_SHORT
        | LE_LONG
        | LE_FLOAT
        | LE_DOUBLE
        | LE_SIGNED
        | LE_UNSIGNED
        | LE_VOID
        ;

elaborated_type_name_elaboration:
        aggregate_name_elaboration
        | enum_name_elaboration
        ;

elaborated_type_name:
        aggregate_name
        | enum_name
        ;


    /* Since the expression "new type_name" MIGHT use  an  elaborated 
    type  and a derivation, it MIGHT have a ':'.  This fact conflicts 
    with the requirement that a new expression can be placed  between 
    a '?' and a ':' in a conditional expression (at least it confuses 
    LR(1)   parsers).   Hence   the   aggregate_name_elaboration   is 
    responsible for a series of SR conflicts on ':'.*/

    /* The intermediate actions {}  represent  points  at  which  the 
    database  of  typedef  names  must  be  updated  in C++.  This is 
    critical to the lexer, which must begin to tokenize based on this 
    new information. */

aggregate_name_elaboration:
        aggregate_name derivation_opt  '{' member_declaration_list_opt '}'
        | aggregate_key derivation_opt '{' member_declaration_list_opt '}'
        ;


    /* We distinguish between the above, which  support  elaboration, 
    and  this  set  of  productions  so  that  we can provide special 
    declaration specifiers for operator_new_type, and for  conversion 
    functions.  Note that without this restriction a large variety of 
    conflicts  appear  when  processing  operator_new and conversions 
    operators (which can be  followed  by  a  ':'  in  a  ternary  ?: 
    expression) */

    /*  Note that at the end of each of the following rules we should 
    be sure that the tag name is  in,  or  placed  in  the  indicated 
    scope.   If  no  scope  is  specified, then we must add it to our 
    current scope IFF it cannot  be  found  in  an  external  lexical 
    scope. */

aggregate_name:
                             aggregate_key tag_name
        | global_scope scope aggregate_key tag_name
        | global_scope       aggregate_key tag_name
        | scope              aggregate_key tag_name
        ;

derivation_opt:
        /* nothing */
        | ':' derivation_list
        ;

derivation_list:
        parent_class
        | derivation_list ',' parent_class
        ;

parent_class:
                                       global_opt_scope_opt_typedefname
        | LE_VIRTUAL access_specifier_opt global_opt_scope_opt_typedefname
        | access_specifier virtual_opt global_opt_scope_opt_typedefname
        ;

virtual_opt:
        /* nothing */
        | LE_VIRTUAL
        ;

access_specifier_opt:
        /* nothing */
        | access_specifier
        ;

access_specifier:
        LE_PUBLIC
        | LE_PRIVATE
        | LE_PROTECTED
        ;

aggregate_key:
        LE_STRUCT
        | LE_UNION
        | LE_CLASS /* C++, not ANSI C */
        ;


    /* Note that an empty list is ONLY allowed under C++. The grammar 
    can  be modified so that this stands out.  The trick is to define 
    member_declaration_list, and have that referenced for non-trivial 
    lists. */

member_declaration_list_opt:
        /* nothing */
        | member_declaration_list_opt member_declaration
        ;

member_declaration:
        member_declaring_list ';'
        | member_default_declaring_list ';'

        | access_specifier ':'               /* C++, not ANSI C */

        | new_function_definition            /* C++, not ANSI C */
        | constructor_function_in_class      /* C++, not ANSI C */

        | sue_type_specifier             ';' /* C++, not ANSI C */
        | sue_type_specifier_elaboration ';' /* C++, not ANSI C */
        | identifier_declarator          ';' /* C++, not ANSI C
                                                access modification
                                                conversion functions,
                                                unscoped destructors */

        | typedef_declaration_specifier ';' /* friend T */       /* C++, not ANSI C */
        | sue_declaration_specifier ';'     /* friend class C*/  /* C++, not ANSI C */
        ;

member_default_declaring_list:        /* doesn't redeclare typedef*/
        type_qualifier_list
                identifier_declarator member_pure_opt

        | declaration_qualifier_list
                identifier_declarator member_pure_opt /* C++, not ANSI C */

        | member_default_declaring_list ','
                identifier_declarator member_pure_opt

        | type_qualifier_list                bit_field_identifier_declarator
        | declaration_qualifier_list         bit_field_identifier_declarator /* C++, not ANSI C */
        | member_default_declaring_list ','  bit_field_identifier_declarator
        ;


    /* There is a conflict when "struct A" is used as  a  declaration 
    specifier,  and  there  is a chance that a bit field name will be 
    provided.  To fix this syntactically would require distinguishing 
    non_elaborating_declaration_specifiers   the   way   I    handled 
    non_elaborating_type_specifiers.   I   think  this  should  be  a 
    constraint error anyway :-). */

member_declaring_list:        /* Can possibly redeclare typedefs */
        type_specifier                 declarator member_pure_opt
        | basic_type_name              declarator member_pure_opt

        | global_or_scoped_typedefname declarator member_pure_opt
        | member_conflict_declaring_item
        | member_declaring_list ','    declarator member_pure_opt

        | type_specifier                bit_field_declarator
        | basic_type_name               bit_field_declarator
        | LE_TYPEDEFname                   bit_field_declarator
        | global_or_scoped_typedefname  bit_field_declarator
        | declaration_specifier         bit_field_declarator /* constraint violation: storage class used */
        | member_declaring_list ','     bit_field_declarator
        ;


    /* The following conflict with constructors-
      member_conflict_declaring_item:
        LE_TYPEDEFname             declarator member_pure_opt
        | declaration_specifier declarator member_pure_opt /* C++, not ANSI C * /
        ;
    so we inline expand declarator to get the following productions...
    */
member_conflict_declaring_item:
        LE_TYPEDEFname             identifier_declarator            member_pure_opt
        | LE_TYPEDEFname           parameter_typedef_declarator     member_pure_opt
        | LE_TYPEDEFname           simple_paren_typedef_declarator  member_pure_opt

        | declaration_specifier identifier_declarator            member_pure_opt
        | declaration_specifier parameter_typedef_declarator     member_pure_opt
        | declaration_specifier simple_paren_typedef_declarator  member_pure_opt

        | member_conflict_paren_declaring_item
        ;


    /* The following still conflicts with constructors-
      member_conflict_paren_declaring_item:
        LE_TYPEDEFname             paren_typedef_declarator     member_pure_opt
        | declaration_specifier paren_typedef_declarator     member_pure_opt
        ;
    so paren_typedef_declarator is expanded inline to get...*/

member_conflict_paren_declaring_item:
        LE_TYPEDEFname   asterisk_or_ampersand
                '(' simple_paren_typedef_declarator ')' member_pure_opt
        | LE_TYPEDEFname unary_modifier
                '(' simple_paren_typedef_declarator ')' member_pure_opt
        | LE_TYPEDEFname asterisk_or_ampersand
                '(' LE_TYPEDEFname ')'                     member_pure_opt
        | LE_TYPEDEFname unary_modifier
                '(' LE_TYPEDEFname ')'                     member_pure_opt
        | LE_TYPEDEFname asterisk_or_ampersand
                 paren_typedef_declarator               member_pure_opt
        | LE_TYPEDEFname unary_modifier
                 paren_typedef_declarator               member_pure_opt

        | declaration_specifier asterisk_or_ampersand
                '(' simple_paren_typedef_declarator ')' member_pure_opt
        | declaration_specifier unary_modifier
                '(' simple_paren_typedef_declarator ')' member_pure_opt
        | declaration_specifier asterisk_or_ampersand
                '(' LE_TYPEDEFname ')'                     member_pure_opt
        | declaration_specifier unary_modifier
                '(' LE_TYPEDEFname ')'                     member_pure_opt
        | declaration_specifier asterisk_or_ampersand
                paren_typedef_declarator                member_pure_opt
        | declaration_specifier unary_modifier
                paren_typedef_declarator                member_pure_opt

        | member_conflict_paren_postfix_declaring_item
        ;


    /* but we still have the following conflicts with constructors-
   member_conflict_paren_postfix_declaring_item:
      LE_TYPEDEFname             postfix_paren_typedef_declarator member_pure_opt
      | declaration_specifier postfix_paren_typedef_declarator member_pure_opt
      ;
    so we expand paren_postfix_typedef inline and get...*/

member_conflict_paren_postfix_declaring_item:
        LE_TYPEDEFname     '(' paren_typedef_declarator ')'
                                                           member_pure_opt
        | LE_TYPEDEFname   '(' simple_paren_typedef_declarator
                        postfixing_abstract_declarator ')' member_pure_opt
        | LE_TYPEDEFname   '(' LE_TYPEDEFname
                        postfixing_abstract_declarator ')' member_pure_opt
        | LE_TYPEDEFname   '(' paren_typedef_declarator ')'
                        postfixing_abstract_declarator     member_pure_opt

        | declaration_specifier '(' paren_typedef_declarator ')'
                                                           member_pure_opt
        | declaration_specifier '(' simple_paren_typedef_declarator
                        postfixing_abstract_declarator ')' member_pure_opt
        | declaration_specifier '(' LE_TYPEDEFname
                        postfixing_abstract_declarator ')' member_pure_opt
        | declaration_specifier '(' paren_typedef_declarator ')'
                        postfixing_abstract_declarator     member_pure_opt
        ;
    /* ...and we are done.  Now all  the  conflicts  appear  on  ';', 
    which can be semantically evaluated/disambiguated */


member_pure_opt:
        /* nothing */
        | '=' LE_OCTALconstant /* C++, not ANSI C */ /* Pure function*/
        ;


    /*  Note  that  bit  field  names, where redefining TYPEDEFnames, 
    cannot be parenthesized in C++ (due to  ambiguities),  and  hence 
    this  part of the grammar is simpler than ANSI C. :-) The problem 
    occurs because:

         LE_TYPEDEFname ( LE_TYPEDEFname) : .....

    doesn't look like a bit field, rather it looks like a constructor 
    definition! */

bit_field_declarator:
        bit_field_identifier_declarator
        | LE_TYPEDEFname {} ':' constant_expression
        ;


    /* The actions taken in the "{}" above and below are intended  to 
    allow  the  symbol  table  to  be  updated when the declarator is 
    complete.  It is critical for code like:

            foo : sizeof(foo + 1);
    */

bit_field_identifier_declarator:
                                   ':' constant_expression
        | identifier_declarator {} ':' constant_expression
        ;

enum_name_elaboration:
        global_opt_scope_opt_enum_key '{' enumerator_list '}'
        | enum_name                   '{' enumerator_list '}'
        ;


    /* As with structures, the distinction between "elaborating"  and 
    "non-elaborating"  enum  types  is  maintained.  In actuality, it 
    probably does not cause much in the way of conflicts, since a ':' 
    is not allowed.  For symmetry, we maintain the distinction.   The 
    {}  actions are intended to allow the symbol table to be updated.  
    These updates are significant to code such as:

        enum A { first=sizeof(A)};
    */

enum_name:
        global_opt_scope_opt_enum_key tag_name
        ;

global_opt_scope_opt_enum_key:
        LE_ENUM
        | global_or_scope LE_ENUM
        ;

enumerator_list:
        enumerator_list_no_trailing_comma
        | enumerator_list_no_trailing_comma ',' /* C++, not ANSI C */
        ;


    /* Note that we do not need to rush to add an enumerator  to  the 
    symbol  table  until  *AFTER* the enumerator_value_opt is parsed. 
    The enumerated value is only in scope  AFTER  its  definition  is 
    complete.   Hence the following is legal: "enum {a, b=a+10};" but 
    the following is (assuming no external matching of names) is  not 
    legal:  "enum {c, d=sizeof(d)};" ("d" not defined when sizeof was 
    applied.) This is  notably  contrasted  with  declarators,  which 
    enter scope as soon as the declarator is complete. */

enumerator_list_no_trailing_comma:
        enumerator_name enumerator_value_opt
        | enumerator_list_no_trailing_comma ',' enumerator_name enumerator_value_opt
        ;

enumerator_name:
        LE_IDENTIFIER
        | LE_TYPEDEFname
        ;

enumerator_value_opt:
        /* Nothing */
        | '=' constant_expression
        ;


    /*  We special case the lone type_name which has no storage class 
    (even though it should be an example of  a  parameter_type_list). 
    This helped to disambiguate type-names in parenthetical casts.*/

parameter_type_list:
        '(' ')'                             type_qualifier_list_opt
        | '(' type_name ')'                 type_qualifier_list_opt
        | '(' type_name initializer ')'     type_qualifier_list_opt /* C++, not ANSI C */
        | '(' named_parameter_type_list ')' type_qualifier_list_opt
        ;


    /* The following are used in old style function definitions, when 
    a complex return type includes the "function returning" modifier. 
    Note  the  subtle  distinction  from  parameter_type_list.  These 
    parameters are NOT the parameters for the function being defined, 
    but are simply part of the type definition.  An example would be:

        int(*f(   a  ))(float) long a; {...}

    which is equivalent to the full new style definition:

        int(*f(long a))(float) {...}

    The   type   list    `(float)'    is    an    example    of    an 
    old_parameter_type_list.   The  bizarre point here is that an old 
    function definition declarator can be followed by  a  type  list, 
    which  can  start  with a qualifier `const'.  This conflicts with 
    the new syntactic construct for const member  functions!?!  As  a 
    result,  an  old  style function definition cannot be used in all 
    cases for a member function.  */

old_parameter_type_list:
        '(' ')'
        | '(' type_name ')'
        | '(' type_name initializer ')'  /* C++, not ANSI C */
        | '(' named_parameter_type_list ')'
        ;

named_parameter_type_list:  /* WARNING: excludes lone type_name*/
        parameter_list
        | parameter_list comma_opt_ellipsis
        | type_name comma_opt_ellipsis
        | type_name initializer comma_opt_ellipsis  /* C++, not ANSI C */
        | LE_ELLIPSIS /* C++, not ANSI C */
        ;

comma_opt_ellipsis:
        LE_ELLIPSIS       /* C++, not ANSI C */
        | ',' LE_ELLIPSIS
        ;

parameter_list:
        non_casting_parameter_declaration
        | non_casting_parameter_declaration initializer /* C++, not ANSI C */
        | type_name             ',' parameter_declaration
        | type_name initializer ',' parameter_declaration  /* C++, not ANSI C */
        | parameter_list        ',' parameter_declaration
        ;


    /* There is some very subtle disambiguation going  on  here.   Do 
    not be tempted to make further use of the following production in 
    parameter_list,  or else the conflict count will grow noticeably. 
    Specifically, the next set  of  rules  has  already  been  inline 
    expanded for the first parameter in a parameter_list to support a 
    deferred disambiguation. The subtle disambiguation has to do with 
    contexts where parameter type lists look like old-style-casts. */

parameter_declaration:
        type_name
        | type_name                         initializer  /* C++, not ANSI C */
        | non_casting_parameter_declaration
        | non_casting_parameter_declaration initializer /* C++, not ANSI C */
        ;


    /* There is an LR ambiguity between old-style parenthesized casts 
    and parameter-type-lists.  This tends to happen in contexts where 
    either  an  expression or a parameter-type-list is possible.  For 
    example, assume that T is an  externally  declared  type  in  the 
    code:

           int (T ((int

    it might continue:

           int (T ((int)0));

    which would make it:

           (int) (T) (int)0 ;

    which  is  an  expression,  consisting  of  a  series  of  casts.  
    Alternatively, it could be:

           int (T ((int a)));

    which would make it the redeclaration of T, equivalent to:

           int T (dummy_name (int a));

    if we see a type that either has a named variable (in  the  above 
    case "a"), or a storage class like:

           int (T ((int register

    then  we  know  it  can't  be  a cast, and it is "forced" to be a 
    parameter_list.

    It is not yet clear that the ANSI C++ committee would  decide  to 
    place this disambiguation into the syntax, rather than leaving it 
    as  a  constraint check (i.e., a valid parser would have to parse 
    everything as though it were  a  parameter  list  (in  these  odd 
    contexts),  and  then  give an error if is to a following context 
    (like "0" above) that invalidated this syntax evaluation. */

    /* One big thing implemented here is that a LE_TYPEDEFname CANNOT be 
    redeclared when we don't have declaration_specifiers! Notice that 
    when we do use a LE_TYPEDEFname based declarator, only the "special" 
    (non-ambiguous  in  this  context)  typedef_declarator  is  used. 
    Everything else that is "missing" shows up as a type_name. */

non_casting_parameter_declaration: /*have names or storage classes */
        declaration_specifier
        | declaration_specifier abstract_declarator
        | declaration_specifier identifier_declarator
        | declaration_specifier parameter_typedef_declarator

        | declaration_qualifier_list
        | declaration_qualifier_list abstract_declarator
        | declaration_qualifier_list identifier_declarator

        | type_specifier identifier_declarator
        | type_specifier parameter_typedef_declarator

        | basic_type_name identifier_declarator
        | basic_type_name parameter_typedef_declarator

        | LE_TYPEDEFname                   identifier_declarator
        | LE_TYPEDEFname                   parameter_typedef_declarator

        | global_or_scoped_typedefname  identifier_declarator
        | global_or_scoped_typedefname  parameter_typedef_declarator

        | type_qualifier_list identifier_declarator
        ;

type_name:
        type_specifier
        | basic_type_name
        | LE_TYPEDEFname
        | global_or_scoped_typedefname
        | type_qualifier_list

        | type_specifier               abstract_declarator
        | basic_type_name              abstract_declarator
        | LE_TYPEDEFname                  abstract_declarator
        | global_or_scoped_typedefname abstract_declarator
        | type_qualifier_list          abstract_declarator
        ;

initializer_opt:
        /* nothing */
        | initializer
        ;

initializer:
        '=' initializer_group
        ;

initializer_group:
        '{' initializer_list '}'
        | '{' initializer_list ',' '}'
        | assignment_expression
        ;

initializer_list:
        initializer_group
        | initializer_list ',' initializer_group
        ;


/*************************** STATEMENTS *******************************/

statement:
        labeled_statement
        | compound_statement
        | expression_statement
        | selection_statement
        | iteration_statement
        | jump_statement
        | declaration /* C++, not ANSI C */
        ;

labeled_statement:
        label                      ':' statement
        | LE_CASE constant_expression ':' statement
        | LE_DEFAULT                  ':' statement
        ;


    /*  I sneak declarations into statement_list to support C++.  The 
    grammar is a little clumsy this  way,  but  the  violation  of  C 
    syntax is heavily localized */

compound_statement:
        '{' statement_list_opt '}'
        ;

declaration_list:
        declaration
        | declaration_list declaration
        ;

statement_list_opt:
        /* nothing */
        | statement_list_opt statement
        ;

expression_statement:
        comma_expression_opt ';'
        ;

selection_statement:
          LE_IF '(' comma_expression ')' statement
        | LE_IF '(' comma_expression ')' statement LE_ELSE statement
        | LE_SWITCH '(' comma_expression ')' statement
        ;

iteration_statement:
        LE_WHILE '(' comma_expression_opt ')' statement
        | LE_DO statement LE_WHILE '(' comma_expression ')' ';'

        | LE_FOR '(' comma_expression_opt ';' comma_expression_opt ';'
                comma_expression_opt ')' statement

        | LE_FOR '(' declaration        comma_expression_opt ';'
                comma_expression_opt ')' statement  /* C++, not ANSI C */
        ;

jump_statement:
        LE_GOTO label                     ';'
        | LE_CONTINUE                     ';'
        | LE_BREAK                        ';'
        | LE_RETURN comma_expression_opt  ';'
        ;


    /*  The  following  actions should update the symbol table in the 
    "label" name space */

label:
        LE_IDENTIFIER
        | LE_TYPEDEFname
        ;


/***************************** EXTERNAL DEFINITIONS *****************************/

translation_unit:
        /* nothing */
        | translation_unit external_definition
        ;

external_definition:
        function_declaration                       {printf("Found function (decl)\n");}
        | function_definition								{printf("Found function (impl)\n");}
        | declaration										{printf("Found declaration %s\n", yytext);}
        | linkage_specifier function_declaration     /* C++, not ANSI C*/
        | linkage_specifier function_definition      /* C++, not ANSI C*/
        | linkage_specifier declaration              /* C++, not ANSI C*/
        | linkage_specifier '{' translation_unit '}' /* C++, not ANSI C*/
        ;

linkage_specifier:
        LE_EXTERN LE_STRINGliteral
        ;


    /* Note that declaration_specifiers are left out of the following 
    function declarations.  Such omission is illegal in ANSI C. It is 
    sometimes necessary in C++, in instances  where  no  return  type 
    should be specified (e_g., a conversion operator).*/

function_declaration:
        identifier_declarator ';'   /*  semantically  verify  it is a 
                                    function, and (if ANSI says  it's 
                                    the  law for C++ also...) that it 
                                    is something that  can't  have  a 
                                    return  type  (like  a conversion 
                                    function, or a destructor */

        | constructor_function_declaration ';'
        ;

function_definition:
        new_function_definition
        | old_function_definition
        | constructor_function_definition
        ;


    /* Note that in ANSI C, function definitions *ONLY* are presented 
    at file scope.  Hence, if there is a typedefname  active,  it  is 
    illegal  to  redeclare  it  (there  is no enclosing scope at file 
    scope).

    In  contrast,  C++  allows   function   definitions   at   struct 
    elaboration scope, and allows tags that are defined at file scope 
    (and  hence  look like typedefnames) to be redeclared to function 
    calls.  Hence several of the rules are "partially C++  only".   I 
    could  actually  build separate rules for typedef_declarators and 
    identifier_declarators, and mention that  the  typedef_declarator 
    rules represent the C++ only features.

    In  some  sense,  this  is  haggling, as I could/should have left 
    these as constraints in the ANSI C grammar, rather than as syntax 
    requirements.  */

new_function_definition:
                                       identifier_declarator compound_statement
        | declaration_specifier                   declarator compound_statement /* partially C++ only */
        | type_specifier                          declarator compound_statement /* partially C++ only */
        | basic_type_name                         declarator compound_statement /* partially C++ only */
        | LE_TYPEDEFname                             declarator compound_statement /* partially C++ only */
        | global_or_scoped_typedefname            declarator compound_statement /* partially C++ only */
        | declaration_qualifier_list   identifier_declarator compound_statement
        | type_qualifier_list          identifier_declarator compound_statement
        ;


    /* Note that I do not support redeclaration of TYPEDEFnames  into 
    function  names  as I did in new_function_definitions (see note). 
    Perhaps I should do it, but for now, ignore the issue. Note  that 
    this  is  a  non-problem  with  ANSI  C,  as  tag  names  are not 
    considered TYPEDEFnames. */

old_function_definition:
                                       old_function_declarator {} old_function_body
        | declaration_specifier        old_function_declarator {} old_function_body
        | type_specifier               old_function_declarator {} old_function_body
        | basic_type_name              old_function_declarator {} old_function_body
        | LE_TYPEDEFname                  old_function_declarator {} old_function_body
        | global_or_scoped_typedefname old_function_declarator {} old_function_body
        | declaration_qualifier_list   old_function_declarator {} old_function_body
        | type_qualifier_list          old_function_declarator {} old_function_body
        ;

old_function_body:
        declaration_list compound_statement
        | compound_statement
        ;


    /*    Verify    via    constraints     that     the     following 
        declaration_specifier           is          really          a 
        typedef_declaration_specifier, consisting of:

        ... LE_TYPEDEFname :: LE_TYPEDEFname

    optionally *preceded* by a "inline" keyword.   Use  care  not  to 
    support "inline" as a postfix!

    Similarly, the global_or_scoped_typedefname must be:

        ... LE_TYPEDEFname :: LE_TYPEDEFname

    with matching names at the end of the list.

    We  use the more general form to prevent a syntax conflict with a 
    typical    function    definition    (which    won't    have    a 
    constructor_init_list) */

constructor_function_definition:
        global_or_scoped_typedefname parameter_type_list
                     constructor_init_list_opt compound_statement

        | declaration_specifier      parameter_type_list
                     constructor_init_list_opt compound_statement
        ;


    /*  Same  comments  as  seen  for constructor_function_definition 
    apply here */

constructor_function_declaration:
        global_or_scoped_typedefname parameter_type_list  /* wasteful redeclaration; used for friend decls.  */

        | declaration_specifier      parameter_type_list  /* request to inline, no definition */
        ;


    /* The following use of declaration_specifiers are made to  allow 
    for  a LE_TYPEDEFname preceded by an LE_INLINE modifier. This fact must 
    be verified semantically.  It should also be  verified  that  the 
    LE_TYPEDEFname  is  ACTUALLY  the  class name being elaborated. Note 
    that we could break out typedef_declaration_specifier from within 
    declaration_specifier, and we  might  narrow  down  the  conflict 
    region a bit. A second alternative (to what is done) for cleaning 
    up  this  stuff  is  to  let the tokenizer specially identify the 
    current class being elaborated as a special token, and not just a 
    typedefname. Unfortunately, things would get very  confusing  for 
    the  lexer,  as  we may pop into enclosed tag elaboration scopes; 
    into function definitions; or into both recursively! */

    /* I should make the following  rules  easier  to  annotate  with 
    scope  entry  and exit actions.  Note how hard it is to establish 
    the scope when you don't even know what the decl_spec is!! It can 
    be done with $-1 hacking, but I should not encourage users to  do 
    this directly. */

constructor_function_in_class:
        declaration_specifier   constructor_parameter_list_and_body
        | LE_TYPEDEFname           constructor_parameter_list_and_body
        ;


    /* The following conflicts with member declarations-
    constructor_parameter_list_and_body:
          parameter_type_list ';'
          | parameter_type_list constructor_init_list_opt compound_statement
          ;
    so parameter_type_list was expanded inline to get */

    /* C++, not ANSI C */
constructor_parameter_list_and_body:
          '('                           ')' type_qualifier_list_opt ';'
        | '(' type_name initializer     ')' type_qualifier_list_opt ';' 
        | '(' named_parameter_type_list ')' type_qualifier_list_opt ';'
        | '('                           ')' type_qualifier_list_opt
                constructor_init_list_opt compound_statement
        | '(' type_name initializer     ')' type_qualifier_list_opt
                constructor_init_list_opt compound_statement
        | '(' named_parameter_type_list ')' type_qualifier_list_opt
                constructor_init_list_opt compound_statement

        | constructor_conflicting_parameter_list_and_body
        ;


    /* The following conflicted with member declaration-
    constructor_conflicting_parameter_list_and_body:
        '('   type_name ')'                 type_qualifier_list_opt ';'
        | '(' type_name ')'                 type_qualifier_list_opt
                constructor_init_list_opt compound_statement
        ;
    so type_name was inline expanded to get the following... */


    /*  Note  that by inline expanding type_qualifier_opt in a few of 
    the following rules I can transform 3  RR  conflicts  into  3  SR 
    conflicts.  Since  all the conflicts have a look ahead of ';', it 
    doesn't  really  matter  (also,  there  are  no   bad   LALR-only 
    components in the conflicts) */

constructor_conflicting_parameter_list_and_body:
        '(' type_specifier                 ')' type_qualifier_list_opt
                ';'
        | '(' basic_type_name              ')' type_qualifier_list_opt
                ';'

        | '(' LE_TYPEDEFname                  ')' type_qualifier_list_opt
                ';'

        | '(' global_or_scoped_typedefname ')' type_qualifier_list_opt
                ';'

        | '(' type_qualifier_list          ')' type_qualifier_list_opt
                ';'


        | '(' type_specifier               abstract_declarator ')' type_qualifier_list_opt
                ';'
        | '(' basic_type_name              abstract_declarator ')' type_qualifier_list_opt
                ';'

        /* missing entry posted below */

        | '(' global_or_scoped_typedefname abstract_declarator ')' type_qualifier_list_opt
                ';'
        | '(' type_qualifier_list          abstract_declarator ')' type_qualifier_list_opt
                ';'


        | '(' type_specifier               ')' type_qualifier_list_opt
                constructor_init_list_opt compound_statement

        | '(' basic_type_name              ')' type_qualifier_list_opt
                constructor_init_list_opt compound_statement

        | '(' LE_TYPEDEFname                  ')' type_qualifier_list_opt
                constructor_init_list_opt compound_statement

        | '(' global_or_scoped_typedefname ')' type_qualifier_list_opt
                constructor_init_list_opt compound_statement

        | '(' type_qualifier_list           ')' type_qualifier_list_opt
                constructor_init_list_opt compound_statement


        | '(' type_specifier  abstract_declarator ')' type_qualifier_list_opt
                constructor_init_list_opt compound_statement

        | '(' basic_type_name abstract_declarator ')' type_qualifier_list_opt
                constructor_init_list_opt compound_statement

        /* missing entry posted below */

        | '(' global_or_scoped_typedefname abstract_declarator ')' type_qualifier_list_opt
                constructor_init_list_opt compound_statement

        | '(' type_qualifier_list          abstract_declarator ')' type_qualifier_list_opt
                constructor_init_list_opt compound_statement

        | constructor_conflicting_typedef_declarator
        ;


    /* The following have ambiguities with member declarations-
    constructor_conflicting_typedef_declarator:
      '(' LE_TYPEDEFname abstract_declarator ')' type_qualifier_list_opt
                ';'
      |  '(' LE_TYPEDEFname abstract_declarator ')' type_qualifier_list_opt
                constructor_init_list_opt compound_statement
      ;
    which can be deferred by expanding abstract_declarator, and in two
    cases parameter_qualifier_list, resulting in ...*/

constructor_conflicting_typedef_declarator:
        '(' LE_TYPEDEFname unary_abstract_declarator          ')' type_qualifier_list_opt
                ';'

        | '(' LE_TYPEDEFname unary_abstract_declarator       ')' type_qualifier_list_opt
                constructor_init_list_opt compound_statement

        | '(' LE_TYPEDEFname postfix_abstract_declarator     ')' type_qualifier_list_opt
                ';'

        | '(' LE_TYPEDEFname postfix_abstract_declarator     ')' type_qualifier_list_opt
                constructor_init_list_opt compound_statement


        | '(' LE_TYPEDEFname postfixing_abstract_declarator  ')' type_qualifier_list_opt
                ';'

        | '(' LE_TYPEDEFname postfixing_abstract_declarator  ')' type_qualifier_list_opt
                constructor_init_list_opt compound_statement
        ;


constructor_init_list_opt:
        /* nothing */
        | constructor_init_list
        ;

constructor_init_list:
        ':' constructor_init
        | constructor_init_list ',' constructor_init
        ;

constructor_init:
        LE_IDENTIFIER   '(' argument_expression_list ')'
        | LE_IDENTIFIER '('                          ')'

        | LE_TYPEDEFname '(' argument_expression_list ')'
        | LE_TYPEDEFname '('                          ')'
        | global_or_scoped_typedefname '(' argument_expression_list ')'
        | global_or_scoped_typedefname '('                          ')'

        | '(' argument_expression_list ')' /* Single inheritance ONLY*/
        | '(' ')' /* Is this legal? It might be default! */
        ;

declarator:
        identifier_declarator
        | typedef_declarator
        ;

typedef_declarator:
        paren_typedef_declarator          /* would be ambiguous as parameter*/
        | simple_paren_typedef_declarator /* also ambiguous */
        | parameter_typedef_declarator    /* not ambiguous as parameter*/
        ;

parameter_typedef_declarator:
        LE_TYPEDEFname
        | LE_TYPEDEFname postfixing_abstract_declarator
        | clean_typedef_declarator
        ;


    /*  The  following  have  at  least  one  '*'or '&'.  There is no 
    (redundant) '(' between the '*'/'&'  and  the  LE_TYPEDEFname.  This 
    definition  is  critical  in  that  a redundant paren that it too 
    close to the LE_TYPEDEFname (i.e.,  nothing  between  them  at  all) 
    would  make  the LE_TYPEDEFname into a parameter list, rather than a 
    declarator.*/

clean_typedef_declarator:
        clean_postfix_typedef_declarator
        | asterisk_or_ampersand parameter_typedef_declarator
        | unary_modifier        parameter_typedef_declarator
        ;

clean_postfix_typedef_declarator:
        '('   clean_typedef_declarator ')'
        | '(' clean_typedef_declarator ')' postfixing_abstract_declarator
        ;


    /* The following have a redundant '(' placed immediately  to  the 
    left  of the LE_TYPEDEFname.  This opens up the possibility that the 
    LE_TYPEDEFname is really the start of a parameter list, and *not*  a 
    declarator*/

paren_typedef_declarator:
        postfix_paren_typedef_declarator
        | asterisk_or_ampersand '(' simple_paren_typedef_declarator ')'
        | unary_modifier        '(' simple_paren_typedef_declarator ')'
        | asterisk_or_ampersand '(' LE_TYPEDEFname ')' /* redundant paren */
        | unary_modifier        '(' LE_TYPEDEFname ')' /* redundant paren */
        | asterisk_or_ampersand paren_typedef_declarator
        | unary_modifier        paren_typedef_declarator
        ;

postfix_paren_typedef_declarator:
        '(' paren_typedef_declarator ')'
        | '(' simple_paren_typedef_declarator postfixing_abstract_declarator ')'
        | '(' LE_TYPEDEFname postfixing_abstract_declarator ')'              /* redundant paren */
        | '(' paren_typedef_declarator ')' postfixing_abstract_declarator
        ;


    /*  The following excludes lone LE_TYPEDEFname to help in a conflict 
    resolution.  We have special cased lone  LE_TYPEDEFname  along  side 
    all uses of simple_paren_typedef_declarator */

simple_paren_typedef_declarator:
        '(' LE_TYPEDEFname ')'
        | '(' simple_paren_typedef_declarator ')'
        ;

identifier_declarator:
        unary_identifier_declarator
        | paren_identifier_declarator
        ;


    /*  The  following  allows  "function return array of" as well as 
    "array of function returning".  It COULD be cleaned  up  the  way 
    abstract  declarators  have been.  This change might make it hard 
    to recover from user's syntax errors, whereas now they appear  as 
    simple constraint errors. */

unary_identifier_declarator:
        postfix_identifier_declarator
        | asterisk_or_ampersand identifier_declarator
        | unary_modifier        identifier_declarator
        ;

postfix_identifier_declarator:
        paren_identifier_declarator           postfixing_abstract_declarator
        | '(' unary_identifier_declarator ')'
        | '(' unary_identifier_declarator ')' postfixing_abstract_declarator
        ;

old_function_declarator:
        postfix_old_function_declarator
        | asterisk_or_ampersand old_function_declarator
        | unary_modifier      old_function_declarator
        ;


    /*  ANSI  C  section  3.7.1  states  "An identifier declared as a 
    typedef name shall not be redeclared as a parameter".  Hence  the 
    following is based only on IDENTIFIERs.

    Instead  of identifier_lists, an argument_expression_list is used 
    in  old  style  function   definitions.    The   ambiguity   with 
    constructors   required   the  use  of  argument  lists,  with  a 
    constraint verification of the list (e_g.: check to see that  the 
    "expressions" consisted of lone identifiers).

    An interesting ambiguity appeared:
        const constant=5;
        int foo(constant) ...

    Is  this an old function definition or constructor?  The decision 
    is made later by LE_THIS grammar based on trailing context :-). This 
    ambiguity is probably what caused many parsers to give up on  old 
    style function definitions. */

postfix_old_function_declarator:
        paren_identifier_declarator '(' argument_expression_list ')'
        | '(' old_function_declarator ')'
        | '(' old_function_declarator ')' old_postfixing_abstract_declarator
        ;

old_postfixing_abstract_declarator:
        array_abstract_declarator /* array modifiers */
        | old_parameter_type_list  /* function returning modifiers */
        ;

abstract_declarator:
        unary_abstract_declarator
        | postfix_abstract_declarator
        | postfixing_abstract_declarator
        ;

postfixing_abstract_declarator:
        array_abstract_declarator
        | parameter_type_list
        ;

array_abstract_declarator:
        '[' ']'
        | '[' constant_expression ']'
        | array_abstract_declarator '[' constant_expression ']'
        ;

unary_abstract_declarator:
        asterisk_or_ampersand
        | unary_modifier
        | asterisk_or_ampersand abstract_declarator
        | unary_modifier        abstract_declarator
        ;

postfix_abstract_declarator:
        '(' unary_abstract_declarator ')'
        | '(' postfix_abstract_declarator ')'
        | '(' postfixing_abstract_declarator ')'
        | '(' unary_abstract_declarator ')' postfixing_abstract_declarator
        ;

asterisk_or_ampersand:
        '*'
        | '&'
        ;

unary_modifier:
        scope '*' type_qualifier_list_opt
        | asterisk_or_ampersand type_qualifier_list
        ;



/************************* NESTED SCOPE SUPPORT ******************************/


    /*  The  actions taken in the rules that follow involve notifying 
    the lexer that it should use the scope specified to determine  if 
    the  next  LE_IDENTIFIER  token is really a LE_TYPEDEFname token.  Note 
    that the actions must be taken before the parse has a  chance  to 
    "look-ahead" at the token that follows the "::", and hence should 
    be  done  during  a  reduction to "scoping_name" (which is always 
    followed by LE_CLCL).  Since we are defining an  LR(1)  grammar,  we 
    are  assured  that  an action specified *before* the :: will take 
    place before the :: is shifted, and hence before the  token  that 
    follows the LE_CLCL is scanned/lexed. */

    /*  Note that at the end of each of the following rules we should 
    be sure that the tag name is  in,  or  placed  in  the  indicated 
    scope.   If  no  scope  is  specified, then we must add it to our 
    current scope IFF it cannot  be  found  in  an  external  lexical 
    scope. */

scoping_name:
        tag_name
        | aggregate_key tag_name /* also update symbol table here by notifying it about a (possibly) new tag*/
        ;

scope:
        scoping_name LE_CLCL
        | scope scoping_name  LE_CLCL
        ;


    /*  Don't try to simplify the count of non-terminals by using one 
    of the other definitions of  "LE_IDENTIFIER  or  LE_TYPEDEFname"  (like 
    "label").   If you reuse such a non-terminal, 2 RR conflicts will 
    appear. The conflicts are LALR-only. The underlying cause of  the 
    LALR-only   conflict   is  that  labels,  are  followed  by  ':'.  
    Similarly, structure elaborations which provide a derivation have 
    have ':' just  after  tag_name  This  reuse,  with  common  right 
    context, is too much for an LALR parser. */

tag_name:
        LE_IDENTIFIER
        | LE_TYPEDEFname
        ;

global_scope:
        { /*scan for upcoming name in file scope */ } LE_CLCL
        ;

global_or_scope:
        global_scope
        | scope
        | global_scope scope
        ;


    /*  The  following can be used in an identifier based declarator. 
    (Declarators  that  redefine  an  existing  LE_TYPEDEFname   require 
    special  handling,  and are not included here).  In addition, the 
    following are valid "identifiers" in  an  expression,  whereas  a 
    LE_TYPEDEFname is NOT.*/

scope_opt_identifier:
                LE_IDENTIFIER
        | scope LE_IDENTIFIER  /* C++ not ANSI C */
        ;

scope_opt_complex_name:
                complex_name
        | scope complex_name
        ;

complex_name:
        '~' LE_TYPEDEFname
        | operator_function_name
        ;


    /*  Note that the derivations for global_opt_scope_opt_identifier 
    and global_opt_scope_opt_complex_name must be  placed  after  the 
    derivation:

       paren_identifier_declarator : scope_opt_identifier

    There  are several states with RR conflicts on "(", ")", and "[".  
    In these states we give up and assume a declaration, which  means 
    resolving   in  favor  of  paren_identifier_declarator.  This  is 
    basically the "If it can be  a  declaration  rule...",  with  our 
    finite cut off. */

global_opt_scope_opt_identifier:
        global_scope scope_opt_identifier
        |            scope_opt_identifier
        ;

global_opt_scope_opt_complex_name:
        global_scope scope_opt_complex_name
        |            scope_opt_complex_name
        ;


    /*  Note  that we exclude a lone LE_TYPEDEFname.  When all alone, it 
    gets involved in a lot of ambiguities (re: function like cast  vs 
    declaration),   and  hence  must  be  special  cased  in  several 
    contexts. Note that generally every use of scoped_typedefname  is 
    accompanied by a parallel production using lone LE_TYPEDEFname */

scoped_typedefname:
        scope LE_TYPEDEFname
        ;

global_or_scoped_typedefname:
                       scoped_typedefname
        | global_scope scoped_typedefname
        | global_scope LE_TYPEDEFname
        ;

global_opt_scope_opt_typedefname:
        LE_TYPEDEFname
        | global_or_scoped_typedefname
        ;

%%
void yyerror(char* string)
{
    printf("CodeLite: parser error: %s\n", string);
}


main()
{
	setLexerInput("class A{}; int foo(){ for(i=0; i<100; i++){}; return 3;}");
   yyparse();
}