1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
|
/**************************************************************************/
/* CodonW codon usage analysis package */
/* Copyright (C) 2005 John F. Peden */
/* This program is free software; you can redistribute */
/* it and/or modify it under the terms of the GNU General Public License */
/* as published by the Free Software Foundation; version 2 of the */
/* License, */
/* */
/* This program is distributed in the hope that it will be useful, but */
/* WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
/* GNU General Public License for more details. */
/* You should have received a copy of the GNU General Public License along*/
/* with this program; if not, write to the Free Software Foundation, Inc.,*/
/* 675 Mass Ave, Cambridge, MA 02139, USA. */
/* */
/* */
/* The author can be contacted by email (jfp#hanson-codonw@yahoo.com Anti-*/
/* Spam please change the # in my email to an _) */
/* */
/* For the latest version and information see */
/* http://codonw.sourceforge.net */
/**************************************************************************/
/* */
/* ----------------------- codon_us.C ------------------------ */
/* This file contains most of the codon usage analysis subroutines */
/* except for the COA analysis */
/* Internal subroutines and functions */
/* initilize_point assigns genetic code dependent parameters to structs*/
/* initilize_coa decides which cod/AA to include in a COA by default */
/* codon_usage_tot Counts codon and amino acid usage */
/* ident_codon Converts codon into a numerical value in range 1-64 */
/* codon_usage_out Write out Codon Usage to file */
/* codon_error Called after all codons read, checks data was OK */
/* rscu_usage_out Write out RSCU */
/* raau_usage_out Write out normalised amino acid usage */
/* aa_usage_out Write out amino acid usage */
/* how_synon Calculates how synonymous each codon is */
/* how_synon_aa Calculates how synonymous each AA is */
/* clean_up Re-zeros various internal counters and arrays */
/* base_sil_us_out Write out base composition at silent sites */
/* cai_out Write out CAI usage */
/* cbi_out Write out codon bias index */
/* fop_out Write out Frequency of Optimal codons */
/* enc_out Write out Effective Number of codons */
/* gc_out Writes various analyses of base usage */
/* dot(,X) prints a period every X times it is called */
/* get_aa converts a three base codon into a 1 or 3 letter AA */
/* cutab_out Write a nice tabulation of the RSCU+CU+AA */
/* dinuc_count Count the dinucleotide usage */
/* dinuc_out Write out dinucleotide usage */
/* coa_raw_out Write out raw codon usage for use by COA analysis */
/* sorted_by_axis1 Sorts genes according to their axis one position */
/* gen_cusort_fop COA specific, write out cu of genes by axis1 posit. */
/* highlow Used sorted cu to calculate high_low chi sq. contin */
/* hydro_out Write out Protein hydropathicity */
/* aromo_out Write out Protein aromaticity */
/* */
/* */
/* External subroutines to codon_us.c */
/* my_exit Controls exit from CodonW closes any open files */
/* tidy reads the input data */
/* output called from tidy to decide what to do with the data */
/* toutput handles the reformatting and translation of seqs */
/* output_long if sequence is very long then process what we know */
/* and write sequence to disk in fragments */
/* open_file Open files, checks for existing files */
/* fileclose Closes files and returns a NULL pointer or exits */
/* */
/**************************************************************************/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <math.h>
#include <limits.h>
#include "codonW.h"
/********************* Initilize Pointers**********************************/
/* Various pointers to structures are assigned here dependent on the */
/* genetic code chosen. */
/* paa points to a struct containing Amino Acid names */
/* pap points to amino acid properties */
/* pcai points to Adaptation values used to calc CAI */
/* pfop points to a struct describing optimal codons */
/* pcbi points to the same structure as pfop */
/* pcu points to data which has the translation of codons */
/* ds is a struct describing how synonymous a codon is */
/* da is a struct describing the size of each AA family */
/* pcoa points to a struct that describes columns to be */
/* included/excluded from any COA analysis */
/**************************************************************************/
int initilize_point(char code, char fop_species, char cai_species)
{
paa = &amino_acids;
pap = &amino_prop;
pcai = &cai[cai_species];
pfop = &fop[fop_species];
pcbi = &fop[fop_species];
pcu = &cu[code];
ds = how_synon();
da = how_synon_aa();
pcoa = &coa;
printf ("\n");
if (pm->codonW)
printf ("Genetic code is currently set to %s %s\n\n",pcu->des,pcu->typ);
return 1;
}
/*******************How Synonymous is this codon *************************/
/* This function discovers at run time how synonymous a codon is by check-*/
/* ing all other codons to see if they encode the same AA */
/* This saves a lot of time when new genetic codes are added */
/**************************************************************************/
int *how_synon(void)
{
static int dds[65];
int x,i;
for (x = 0; x < 65; x++)
dds[x] = 0;
for (x = 1; x < 65; x++)
for (i = 1; i < 65; i++)
if (pcu->ca[x] == pcu->ca[i])
dds[x]++;
return dds; /* return a structure */
}
/*******************How Synonymous is this AA *************************/
/* This function discovers at run time how synonymous an amino acid is by */
/* checking all codons to see if they encode this same AA */
/* This saves a lot of time when new genetic codes are added */
/**************************************************************************/
int *how_synon_aa(void)
{
static int dda[22];
int x;
for (x = 0; x < 22; x++)
dda[x] = 0;
for (x = 1; x < 65; x++)
dda[pcu->ca[x]]++;
return dda; /* return a structure */
}
/********************* Initialise COA *********************************/
/* Decides which codons or amino acids are to be included in a COA if only*/
/* the default choice is used. For an amino acid COA, only stops are excl */
/* but for a codon usage COA stop codons and non-synonymous codons are */
/* excluded */
/* pcoa points to a struct that describes columns to be */
/* included/excluded from any COA analysis */
/* structure contains AA and Codon information */
/**************************************************************************/
int initilize_coa(char code)
{
static char initilized;
static char oldcode;
int i;
/* if called a second time return unless the genetic code has changed */
if (initilized && (oldcode == code)) return 1;
for (i = 0; i < 22; i++) /* for each amino acid */
if (i == 11 || i == 0) /* stop codons have the value 11 */
pcoa->amino[i] = FALSE; /* see RECODING file for more details */
else
pcoa->amino[i] = TRUE;
for (i = 0; i < 65; i++) /* for each codon */
if (*(ds + i) == 1 || pcu->ca[i] == 11 || i == 0)
pcoa->codons[i] = FALSE;
else
pcoa->codons[i] = TRUE;
initilized = TRUE; /* we have been called ... */
return 1;
}
/****************** Codon Usage Counting *****************************/
/* Counts the frequency of usage of each codon and amino acid this data */
/* is used throughout CodonW */
/* pcu->ca contains codon to amino acid translations for the current code */
/* and is assigned in initialise point */
/**************************************************************************/
int codon_usage_tot(char *seq, long int how_many)
{
char codon[4];
int icode;
int i;
for (i = 0; i < how_many - 2; i += 3) {
strncpy(codon, (seq + i), 3);
icode = ident_codon(codon);
ncod[icode]++; /*increment the codon count */
naa[pcu->ca[icode]]++; /*increment the AA count */
codon_tot++; /*increment the codon total */
}
if (how_many % 3) { /*if last codon was partial */
icode = 0; /*set icode to zero and */
ncod[0]++; /*increment untranslated */
} /*codons */
return icode; /*return the last codon */
}
/****************** Ident codon *****************************/
/* Converts each codon into a numerical array (codon) and converts this */
/* array into a numerical value in the range 0-64, zero is reserved for */
/* codons that contain at least one unrecognised base */
/* */
/**************************************************************************/
int ident_codon(char *codon)
{
int icode = 0;
int x;
for (x = 0; x < 3; x++) {
switch (codon[x]) {
case 'T':
case 't':
case 'U':
case 'u':
codon[x] = (char) 1;
continue;
case 'C':
case 'c':
codon[x] = (char) 2;
continue;
case 'A':
case 'a':
codon[x] = (char) 3;
continue;
case 'G':
case 'g':
codon[x] = (char) 4;
continue;
case '\0':
return 0;
default:
codon[x] = (char) 0;
break;
}
}
if (codon[0] * codon[1] * codon[2] != 0)
icode = (codon[0] - 1) * 16 + codon[1]
+ (codon[2] - 1) * 4;
else
icode = 0;
return icode;
}
/****************** Codon error *****************************/
/* Does some basic error checking for the input data, it can be called */
/* using different error levels, thus generating different types of */
/* messages. Basically checks for start, stop codons and internal stop */
/* codons. As well as non-translatable and partial codons */
/**************************************************************************/
long int codon_error(int x, int y, char *ttitle, char error_level)
{
long int ns = 0; /* number of stops */
long int loc_cod_tot = 0;
static int error_lines = 0;
int i;
for (i = 1, ns = 0; i < 65; i++) {
loc_cod_tot += ncod[i];
if (pcu->ca[i] == 11)
ns += ncod[i]; /*count stop codons */
}
switch (error_level) {
case 1: /*internal stop codons */
ns = ns - valid_stops;
/* a stop was a valid_stop if it was the last codon of a sequence */
if ( ! valid_start && pm->warn ) {
dot(0,10);
fprintf(pm->my_err, "\nWarning: Sequence %3li \"%-20.20s\" does "
"not begin with a recognised start codon\n"
,num_sequence,ttitle);
error_lines++;
}
if (ns && pm->warn ) {
dot(0,10);
if (pm->totals && pm->warn)
fprintf(pm->my_err,"\nWarning: some sequences had internal stop"
" codons (found %li such codons)\n", ns);
else
fprintf(pm->my_err, "\nWarning: Sequence %3li \"%-20.20s\" has "
"%li internal stop codon(s)\n", num_sequence, ttitle, ns);
num_seq_int_stop++;
error_lines++;
}
break;
case 2:
dot(0,10);
if (ncod[0] == 1 && pcu->ca[x] != 11 && pm->warn){ /* last codon was partial */
fprintf(pm->my_err,
"\nWarning: Sequence %3li \"%-20.20s\" last codon was partial\n"
,num_sequence, ttitle);
error_lines++;
}else {
if (ncod[0] && pm->warn){ /* non translatable codons */
if (pm->totals)
fprintf(pm->my_err,
"\nWarning: some sequences had non translatable"
" codons (found %li such codons)\n", ncod[0]);
else
fprintf(pm->my_err,
"\nWarning: sequence %3li \"%-20.20s\" has %li non translatable"
" codon(s)\n", num_sequence, ttitle, ncod[0]);
error_lines++;
}
if (pcu->ca[x] != 11 && pm->warn ) {
if (!pm->totals){
fprintf(pm->my_err,
"\nWarning: Sequence %3li \"%-20.20s\" is not terminated by"
" a stop codon\n", num_sequence, ttitle);
error_lines++;
}
}
}
break;
case 3:
/* Nc error routines see codon_us */
dot(0,10); /* dot resetting internal counter */
if (x==3) x=4; /* if x=3 there are no 3 or 4 fold AA */
fprintf(pm->my_err,
"\nSequence %li \"%-20.20s\" contains ",num_sequence, ttitle);
(y) ? fprintf(pm->my_err, "only %i ", (int) y) :
fprintf(pm->my_err, "no ");
fprintf(pm->my_err, "amino acids with %i synonymous codons\n", x);
fprintf(pm->my_err, "\t--Nc was not calculated \n");
error_lines+=2;
break;
case 4: /* run silent */
break;
default:
my_exit(99,"Programme error in codon_error\n");
}
if ((((error_lines + 2) * 2) > pm->term_length) && pm->verbose
&& pm->my_err == stderr ) {
error_lines = 0; /* count lines of errors */
dot(0,10);
pause;
}
return loc_cod_tot; /* Number of codons counted */
}
/****************** Codon Usage Out *****************************/
/* Writes codon usage output to file. Note this subroutine is only called */
/* when machine readable output is selected, otherwise cutab_out is used */
/**************************************************************************/
int codon_usage_out(FILE * fblkout, long int *nncod, int last_aa,
int vvalid_stops, char *ttitle)
{
long int ccodon_tot = 0;
int x;
char sp=pm->seperator;
ccodon_tot = codon_error(last_aa, vvalid_stops, "" , (char) 4); /*dummy*/
/*example of output */
/*0,0,0,0,3,2,2,0,0,0,0,0,0,3,0,0, */
/*0,0,0,4,3,4,1,7,0,0,0,0,3,1,3,1,Codons=100 */
/*0,0,0,0,10,6,3,0,0,0,0,0,1,1,12,0,Universal Genetic code */
/*0,0,0,3,7,5,7,9,0,1,1,1,8,4,5,0,MLSPCOPER.PE1 */
for (x = 1; x < 65; x++) {
fprintf(fblkout, "%i%c",nncod[x],sp);
switch (x) {
case 16:
fprintf(fblkout, "\n");
break;
case 32:
fprintf(fblkout, "Codons=%ld\n",ccodon_tot);
break;
case 48:
fprintf(fblkout, "%.30s\n", pcu->des);
break;
case 64:
fprintf(fblkout, "%.20s\n",ttitle);
break;
default:
break;
}
}
return 1;
}
/****************** RSCU Usage out *****************************/
/* Writes Relative synonymous codon usage output to file. Note this subrou*/
/* tine is only called if machine readable output is selected */
/* If human readable format was selected then what the user really wanted */
/* was cutab so this is automatically selected in codons.c */
/* RSCU values are genetic codon dependent */
/**************************************************************************/
int rscu_usage_out(FILE * fblkout, long *nncod, long *nnaa)
{
int x;
char sp=pm->seperator;
/* ds points to an array[64] of synonym values i.e. how synon its AA is */
for (x = 1; x < 65; x++) {
if (nnaa[pcu->ca[x]] != 0)
fprintf(fblkout, "%5.3f%c",
( (float) nncod[x] / (float) nnaa[pcu->ca[x]])
* ((float) *(ds + x)), sp );
else
fprintf(fblkout, "0.000%c",sp);
if (x == 64)
fprintf(fblkout, "%-20.20s", title);
if (!(x % 16))
fprintf(fblkout, "\n");
}
return 1;
}
/****************** RAAU output *****************************/
/* Writes Relative amino acid usage output to file. Amino Acid usage is */
/* normalised for gene length */
/**************************************************************************/
int raau_usage_out(FILE * fblkout, long *nnaa)
{
long int aa_tot = 0;
static char first_line = TRUE;
int i,x;
char sp;
if (pm->seq_format=='M') /* if machine readable */
sp = pm->seperator;
else
sp = '\t';
if (first_line) { /* if true write a header*/
if ( pm->seq_format=='M')
fprintf(fblkout, "%s", "Gene_name");
else
fprintf(fblkout, "%-20.20s", "Gene name");
for (i = 0; i < 22; i++)
if ( pm->seq_format=='M')
fprintf(fblkout, "%c%s", sp,paa->aa3[i]);/* three letter AA names*/
else
fprintf(fblkout, "%c %-6.6s", sp,paa->aa3[i]);
fprintf(fblkout, "\n");
first_line = FALSE;
}
for (i = 1; i < 22; i++)
if (i != 11)
aa_tot += nnaa[i]; /* total No. of AAs */
if ( pm->seq_format=='M')
fprintf(fblkout, "%.30s", title);
else
fprintf(fblkout, "%-20.20s", title); /* don't waste spaces */
for (x = 0; x < 22; x++)
if (x == 11)
fprintf(fblkout, "%c0.0000",sp); /* report 0 for stops */
else if (aa_tot)
if ( pm->seq_format=='M')
fprintf(fblkout, "%c%.4f",sp,
(double) nnaa[x] / (double) aa_tot);
else
fprintf(fblkout, "%c%7.4f",sp,
(double) nnaa[x] / (double) aa_tot);
else /*What no AminoAcids!!!! */
if ( pm->seq_format=='M')
fprintf(fblkout, "%c%c",sp,sp);
else
fprintf(fblkout, "%c ***** ",sp);
fprintf(fblkout, "\n",sp);
return 1;
}
/****************** AA usage output *****************************/
/* Writes amino acid usage output to file. */
/**************************************************************************/
int aa_usage_out(FILE * fblkout, long *nnaa)
{
static char first_line = TRUE;
int i;
char sp=pm->seperator;
if (first_line) {
(pm->seq_format=='M')?
fprintf(fblkout, "%s", "Gene_name"):
fprintf(fblkout, "%-20.20s ", "Gene name");
for (i = 0; i < 22; i++)
(pm->seq_format=='M')?
fprintf(fblkout, "%c%s", sp,paa->aa3[i]): /* 3 letter AA code */
fprintf(fblkout, "%-5.5s", paa->aa3[i]);
fprintf(fblkout, "\n");
first_line = FALSE;
}
(pm->seq_format=='M')?
fprintf(fblkout, "%.20s", title):
fprintf(fblkout, "%-20.20s ", title);
for (i = 0; i < 22; i++){
(pm->seq_format=='M')?
fprintf(fblkout, "%c%li", sp,nnaa[i]):
fprintf(fblkout, "%-5li",nnaa[i]);
}
fprintf(fblkout, "\n");
return 1;
}
/****************** Base Silent output *******************************/
/* Calculates and write the base composition at silent sites */
/* normalised as a function of the possible usage at that silent site with*/
/* changing the amino acid composition of the protein. It is inspired by */
/* GC3s but is much more complicated to calculate as not every AA has the */
/* option to use any base at the third position */
/* All synonymous AA can select between a G or C though */
/**************************************************************************/
void base_sil_us_out(FILE * foutput, long *nncod, long *nnaa)
{
int id,i,x,y,z;
long bases_s[4]; /* synonymous GCAT bases */
long cb[4]; /* codons that could have been GCAT */
int done[4];
char sp= (char) (pm->seq_format=='H')? (char) '\t': (char) pm->seperator;
for (x = 0; x < 4; x++) {
cb[x] = 0;
bases_s[x] = 0;
} /* blank the arrays */
for (x = 1; x < 5; x++)
for (y = 1; y < 5; y++)
for (z = 1; z < 5; z++) { /* look at all 64 codons */
id = (x - 1) * 16 + y + (z - 1) * 4;
if (*(ds + id) == 1 || pcu->ca[id] == 11)
continue; /* if no synon skip to next codon */
bases_s[z - 1] += nncod[id]; /* count No. codon ending in base X */
}
for (i = 1; i < 22; i++) {
for (x = 0; x < 4; x++) /* don't want to count bases in 6 fold */
done[x] = FALSE; /* sites twice do we so we remember */
if (i == 11 || *(da + i) == 1)
continue; /* if stop codon skip, or AA not synony */
for (x = 1; x < 5; x++) /* else add aa to could have ended count */
for (y = 1; y < 5; y++)
for (z = 1; z < 5; z++) {
id = (x - 1) * 16 + y + (z - 1) * 4;
/* assign codon values in range 1-64 */
if (pcu->ca[id] == i && done[z - 1] == FALSE) {
/* encode AA i which we know to be synon so add could_be_x ending*/
/* by the Number of that amino acid */
cb[z - 1] += nnaa[i];
done[z - 1] = TRUE; /* don't look for any more or we might */
/* process leu+arg+ser twice */
}
}
}
/* Now the easy bit ... just output the results to file */
for (i = 0; i < 4; i++) {
if (cb[i] > 0)
fprintf(foutput, "%6.4f%c", (double) bases_s[i]/(double)cb[i], sp);
else
fprintf(foutput, "0.0000%c",sp);
}
return;
}
/****************** Clean up *******************************/
/* Called after each sequence has been completely read from disk */
/* It re-zeros all the main counters, but is not called when concatenating*/
/* sequences together */
/**************************************************************************/
int clean_up(long int *nncod, long int *nnaa)
{
int x;
int i;
for (x = 0; x < 65; x++)
nncod[x] = 0;
for (x = 0; x < 23; x++)
nnaa[x] = 0;
/* dinucleotide count remembers the */
dinuc_count(" ", 1); /* last_base from the last fragment */
/* this causes the last base to be "" */
for (x = 0; x < 3; x++)
for (i = 0; i < 16; i++)
din[x][i] = 0;
dinuc_count(" ", 1);
master_ic = tot =
non_std_char = AT_TOT = GC_TOT = AA_TOT = GAP_TOT = IUBC_TOT = 0;
long_seq = FALSE;
valid_stops = valid_start = codon_tot = tot = fram = 0;
return 1;
}
/*****************Codon Adaptation Index output *************************/
/* Codon Adaptation Index (CAI) (Sharp and Li 1987). CAI is a measurement */
/* of the relative adaptiveness of the codon usage of a gene towards the */
/* codon usage of highly expressed genes. The relative adaptiveness (w) of*/
/* each codon is the ratio of the usage of each codon, to that of the most*/
/* abundant codon for the same amino acid. The relative adaptiveness of */
/* codons for albeit a limited choice of species, can be selected from the*/
/* Menu. The user can also input a personal choice of values. The CAI */
/* index is defined as the geometric mean of these relative adaptiveness */
/* values. Non-synonymous codons and termination codons (genetic code */
/* dependent) are excluded. To aid computation, the CAI is calculated as */
/* using a natural log summation, To prevent a codon having a relative */
/* adaptiveness value of zero, which could result in a CAI of zero; */
/* these codons have fitness of zero (<.0001) are adjusted to 0.01 */
/**************************************************************************/
int cai_out(FILE * foutput, long int *nncod)
{
long int totaa = 0;
double sigma;
float ftemp;
int x;
char sp= (char) (pm->seq_format=='H')?
(char) '\t':
(char) pm->seperator;
static char cai_ttt = FALSE;
static char description[61];
static char reference[61];
static CAI_STRUCT user_cai;
if (!cai_ttt ) { /* have we been called already */
user_cai.des = description; /* assign an array to a pointer */
user_cai.ref = reference; /* as above */
if ( pm->caifile==NULL && pm->verbose==TRUE
&& pm->menu==TRUE && (pcai == cai )){
/* this is false */
/* if personal caifile is on commandline or */
/* in non-interactive mode or -silent option */
/* or cai values are not the default values */
printf("\nDo you wish to input a personal choice of CAI"
" values (y/n) [n] ");
fgets(pm->junk, BUFSIZ, stdin);
/* This allows a user defined choice of CAI values to be selected */
if ('Y' == (char) toupper( (int) pm->junk[0])) {
/* tell the user a little about what we are looking for */
printf("\nInput file must contain 64 CAI values\n"
"ranging from 0.00 to 1.00\n"
"values must be separated by spaces\n");
/* open the CAI adaptiveness values file */
if (!(pm->caifile = open_file("file with CAI values"
,"cai.coa", "r", 0))) my_exit(6,"cai_out");
}
} /* matched if pm->caifile=*/
if (pm->caifile){
rewind (pm->caifile); /* unlikely unless fopfile = caifile */
x = 0;
strcpy(user_cai.des,"User supplied CAI adaptation values ");
strcpy(user_cai.ref,"No reference");
user_cai.cai_val[x++] = (float) 0.0;
while ((fscanf(pm->caifile, "%f ", &ftemp)) != EOF) {
/* if any bad CAI values are read EXIT*/
if (ftemp < 0 || ftemp > 1.0) {
printf("\nError CAI %f value out of range\nEXITING",ftemp);
my_exit(99,"cai_out");
}
user_cai.cai_val[x++] = ftemp; /* assign value */
} /* end of while */
if (x != 65) { /* wrong number of codons */
fprintf(pm->my_err, "\nError in CAI file, found %i values"
" expected 64 values EXITING\n", x - 1);
my_exit(99,"cai_out");
}
pcai = &user_cai; /* assigns pointer to user CAI values */
} /* matches if( pm->caifile... */
printf ("Using %s (%s) w values to calculate "
"CAI \n",pcai->des,pcai->ref);
cai_ttt = TRUE; /*stops this "if" from being entered */
} /* matches if (!cai_ttt ) */
for (x = 1, sigma = 0; x < 65; x++) {
if (pcu->ca[x] == 11 || *(ds + x) == 1) continue;
if (pcai->cai_val[x] < 0.0001)/* if value is effectively zero */
pcai->cai_val[x] = (float) 0.01; /* make it .01 */
sigma += (double) *(nncod + x) * log((double) pcai->cai_val[x]);
totaa += *(nncod + x);
}
if (totaa) { /* catch floating point overflow error*/
sigma = sigma / (double) totaa;
sigma = exp(sigma);
} else
sigma = 0;
fprintf(foutput, "%5.3f%c", sigma,sp);
return 1;
}
/*****************Codon Bias Index output **************************/
/* Codon bias index is a measure of directional codon bias, it measures */
/* the extent to which a gene uses a subset of optimal codons. */
/* CBI = ( Nopt-Nran)/(Nopt-Nran) Where Nopt = number of optimal codons; */
/* Ntot = number of synonymous codons; Nran = expected number of optimal */
/* codons if codons were assigned randomly. CBI is similar to Fop as used */
/* by Ikemura, with Nran used as a scaling factor. In a gene with extreme */
/* codon bias, CBI will equal 1.0, in a gene with random codon usage CBI */
/* will equal 0.0. Note that it is possible for Nopt to be less than Nran.*/
/* This results in a negative value for CBI. */
/* ( Bennetzen and Hall 1982 ) */
/**************************************************************************/
int cbi_out(FILE * foutput, long int *nncod, long int *nnaa )
{
long int tot_cod = 0;
long int opt = 0;
float exp_cod = (float) 0.0;
float fcbi;
int c,x;
char str[2];
char sp= (pm->seq_format=='H')?
(char) '\t':
(char) pm->seperator;
static char description[61];
static char reference[61];
static char first_call_cbi = TRUE;
static char has_opt_info[22];
static FOP_STRUCT user_cbi;
if (first_call_cbi) { /* have we been called already */
user_cbi.des = description; /* assign a pointer to array */
user_cbi.ref = reference;
if ( pm->cbifile == NULL && pm->verbose==TRUE
&& pm->menu==TRUE && ( pcbi == fop )){
/* this is false */
/* if personal fopfile is on commandline or */
/* in non-interactive mode or -silent option */
/* or fop values are not the default values */
printf("\nDo you wish to input a personal choice of CBI"
" values (y/n) [n] ");
fgets(pm->junk, BUFSIZ, stdin);
if ('Y' == (char) toupper( (int) pm->junk[0])) {
printf("\nInput file must contain 64 CBI values\n"
" 1= rare codon\n 2= common codon\n 3= optimal codon\n");
if (!(pm->cbifile = open_file("file with CBI values"
,"cbi.coa", "r", 0)))
my_exit(6,"cai_out");
} /* matches if Y== */
} /* matches if pm->cbifile==NULL */
if ( pm->cbifile ){
rewind (pm->cbifile); /* fopfile can be the same as cbifile */
strcpy(user_cbi.des,"User supplied choice");
strcpy(user_cbi.ref,"No reference");
x = 0;
user_cbi.fop_cod[x++] = 0;
while ((c = fgetc(pm->cbifile)) != EOF && x <=66) {
sprintf (str,"%c",c);
if (isdigit(c) && atoi(str) >= 0
&& atoi(str) <= 3) {
user_cbi.fop_cod[x++] = (char) atoi(str);
} /* isdigit */
} /* end of while */
if (x != 65) { /* wrong number of codons */
sprintf(pm->messages, "\nError in CBI file %i digits found, "
"expected 64 EXITING\n", x - 1);
my_exit(99,pm->messages);
}
pcbi = (&user_cbi);
} /* matches if(pm->cbifile) */
printf ("Using %s (%s) \noptimal codons to calculate "
"CBI\n",pcbi->des,pcbi->ref);
/* initilise has_opt_info */
for (x = 1; x < 22; x++) has_opt_info[x]=0;
for (x = 1; x < 65; x++) {
if (pcu->ca[x] == 11 || *(ds + x) == 1)
continue;
if (pcbi->fop_cod[x] == 3 )
has_opt_info[pcu->ca[x]]++;
}
first_call_cbi = FALSE; /* this won't be called again */
} /* matches if (first_call_cbi) */
for (x = 1; x < 65; x++) {
if (! has_opt_info[pcu->ca[x]]) continue;
switch ((int) pcbi->fop_cod[x]) {
case 3:
opt += nncod[x];
tot_cod += nncod[x];
exp_cod += (float) nnaa[pcu->ca[x]]/ (float) da[pcu->ca[x]];
break;
case 2:
case 1:
tot_cod += *(nncod + x);
break;
default:
sprintf(pm->messages, " Serious error in CBI information found"
" an illegal CBI value of %f for codon %i"
" permissible values are \n 1 for non-optimal"
" codons\n 2 for common codons\n"
" 3 for optimal codons\n" " EXITING ",
pcbi->fop_cod[x], x);
my_exit(99,pm->messages);
break;
} /* end of switch */
} /* for ( ) */
if( tot_cod - exp_cod)
fcbi= (opt - exp_cod) / (tot_cod - exp_cod);
else
fcbi= (float) 0.0;
fprintf(foutput, "%5.3f%c", fcbi,sp); /* CBI QED */
return 1;
}
/****************** Frequency of OPtimal codons output ********************/
/* Frequency of Optimal codons (Fop) (Ikemura 1981). This index, is ratio */
/* of optimal codons to synonymous codons (genetic code dependent). Optimal*/
/* codons for several species are in-built and can be selected using Menu 3*/
/* By default, the optimal codons of E. coli are assumed. The user may also*/
/* enter a personal choice of optimal codons. If rare synonymous codons */
/* have been identified, there is a choice of calculating the original Fop */
/* index or a modified index. Fop values for the original index are always */
/* between 0 (where no optimal codons are used) and 1 (where only optimal */
/* codons are used). When calculating the modified Fop index, any negative */
/* values are adjusted to zero. */
/***************************************************************************/
int fop_out(FILE * foutput, long int *nncod)
{
long int nonopt = 0;
long int std = 0;
long int opt = 0;
float ffop;
int c,x;
char nonopt_codons = FALSE;
char str[2];
char sp= (pm->seq_format=='H')? (char) '\t': (char) pm->seperator;
static char first_call = TRUE;
static char description[61];
static char reference[61];
static char asked_about_fop = FALSE;
static char factor_in_rare = FALSE;
static char has_opt_info[22];
static FOP_STRUCT user_fop;
if (first_call) { /* have I been called previously */
user_fop.des = description;
user_fop.ref = reference;
if ( pm->fopfile == NULL && pm->verbose==TRUE
&& pm->menu == TRUE && (pfop == fop )) {
/* this is false */
/* if personal fopfile is on commandline or */
/* in non-interactive mode or -silent option */
/* or fop values are not the default values */
printf("\nDo you wish to input a personal choice of Fop"
" values (y/n) [n] ");
fgets(pm->junk, BUFSIZ, stdin);
if ('Y' == (char) toupper( (int) pm->junk[0])) {
printf("\nInput file must contain 64 Fop values\n"
" 1= rare codon\n 2= common codon\n 3= optimal codon\n");
if (!(pm->fopfile = open_file("file with Fop values"
,"fop.coa", "r", 0))) my_exit(6,"fop_out");
} /* if 'Y' == */
} /* if (pm->fopfile == NULL........ ) */
if ( pm->fopfile ) {
rewind (pm->fopfile); /* possible for fopfile = cbifile */
strcpy(user_fop.des,"User supplied choice");
strcpy(user_fop.ref,"No reference");
x = 0;
user_fop.fop_cod[x++] = 0;
while ((c = fgetc(pm->fopfile)) != EOF && x <=66) {
sprintf (str,"%c",c);
if (isdigit(c) && atoi(str) >= 0
&& atoi(str) <= 3) {
user_fop.fop_cod[x++] = (char) atoi(str);
} /* test isdigit */
} /* end of while */
if (x != 65) { /* wrong number of codons */
sprintf(pm->messages, "\nError in Fop file %i values found, "
"expected 64 EXITING\n", x - 1);
my_exit(99,pm->messages);
}
pfop = &user_fop; /* assigns pointer to user fop values*/
}
printf ("Using %s (%s)\noptimal codons to calculate "
"Fop\n",pfop->des,pfop->ref);
/* initilise has_opt_info */
for (x = 1; x < 22; x++) has_opt_info[x]=0;
for (x = 1; x < 65; x++) {
if (pcu->ca[x] == 11 || *(ds + x) == 1)
continue;
if (pfop->fop_cod[x] == 3 )
has_opt_info[pcu->ca[x]]++;
if (pfop->fop_cod[x] == 1 ){
if (!asked_about_fop && pm->verbose) {
printf("\nIn the set of optimal codons you have selected,\n"
"non-optimal codons have been identified\nThey can be "
"used in the calculation of a modified Fop, "
"(Fop=(opt-rare)/total)\n else the original formulae "
"will be used (Fop=opt/total)\n\n\t\tDo you wish "
"calculate a modified fop (y/n) [n] ");
fgets(pm->junk, BUFSIZ, stdin);
if ( 'Y' == (char) toupper( (int)pm->junk[0]))
factor_in_rare = TRUE;
asked_about_fop = TRUE;
}
if ( factor_in_rare == TRUE )
has_opt_info[pcu->ca[x]]++;
}
} /* matches for (x=1 */
first_call = FALSE;
} /* matches if ( !first_call ) */
for (x = 1; x < 65; x++) {
if (!has_opt_info[pcu->ca[x]] )
continue;
switch ((int) pfop->fop_cod[x]) {
case 3:
opt += *(nncod + x);
break;
case 2:
std += *(nncod + x);
break;
case 1:
nonopt_codons = TRUE;
nonopt += *(nncod + x);
break;
default:
sprintf(pm->messages, " Serious error in fop information found"
" an illegal fop value of %f for codon %l"
" permissible values are \n 1 for non-optimal"
" codons\n 2 for common codons\n"
" 3 for optimal codons\n" " EXITING ",
pfop->fop_cod[x], x);
printf ("opt %l, std %l, nonopt %l\n",opt,std,nonopt);
my_exit(99,pm->messages);
break;
}
}
/* only ask this once ... */
if (factor_in_rare && (opt + nonopt + std) )
ffop = (float) (opt - nonopt) / (float) (opt + nonopt + std);
else if ((opt + nonopt + std))
ffop = (float) opt / (float) (opt + nonopt + std);
else
ffop=0.0;
fprintf(foutput, "%5.3f%c", ffop,sp);
return 1;
}
/*************** Effective Number of Codons output *********************/
/* The effective number of codons (NC) (Wright 1990). This index is a */
/* simple measure of overall codon bias and is analogous to the effective */
/* number of alleles measure used in population genetics. Knowledge of the*/
/* optimal codons or a reference set of highly expressed genes is not */
/* needed when calculating this index. Initially the homozygosity for each*/
/* amino acid is estimated from the squared codon frequencies. */
/**************************************************************************/
float enc_out(FILE * foutput, long int *nncod, long int *nnaa) {
int numaa[9];
int fold[9];
int error_t = FALSE;
int i,z,x;
double totb[9];
double averb = 0, bb = 0, k2 = 0, s2 = 0;
float enc_tot = 0.0F;
char sp= (pm->seq_format=='H')? (char) '\t': (char) pm->seperator;
/* don't assume that 6 is the largest possible amino acid family assume 9*/
for (i = 0; i < 9; i++) {
fold[i] = 0; /* initialise arrays to zero */
totb[i] = 0.0;
numaa[i] = 0;
}
for (i = 1; i < 22; i++) { /* for each amino acid */
if (i == 11)
continue; /* but not for stop codons */
if (*(nnaa + i) <= 1) /* if this aa occurs once then skip */
bb = 0;
else {
for (x = 1, s2 = 0; x < 65; x++) {
/* Try all codons but we are only looking for those that encode*/
/* amino amid i, saves having to hard wire in any assumptions */
if (pcu->ca[x] != i) continue; /* skip is not i */
if (*(nncod + x) == 0) /* if codons not used then */
k2 = 0.0; /* k2 = 0 */
else
k2 = pow(((double) *(nncod + x) / (double) *(nnaa + i)),
(double) 2);
s2 += k2; /* sum of all k2's for aa i */
}
bb = (((double) *(nnaa + i) * s2) - 1.0) / /* homozygosity */
(double) (*(nnaa + i) - 1.0);
}
if (bb > 0.0000001) {
totb[*(da + i)] += bb; /* sum of all bb's for amino acids */
/* which have z alternative codons */
numaa[*(da + i)]++; /* where z = *(da+i) */
}
/* numaa is no of aa that were z */
fold[*(da + i)]++; /* fold z=4 can have 9 in univ code */
} /* but some aa may be absent from */
/* gene therefore numaa[z] may be 0 */
enc_tot = (float) fold[1];
for (z = 2, averb = 0, error_t = FALSE; z <= 8; z++) {
/* look at all values of z if there */
if (fold[z]) { /* are amino acids that are z fold */
if (numaa[z] && totb[z] > 0)
averb = totb[z] / numaa[z];
else if (z==3 && numaa[2] && numaa[4] && fold[z]==1 )
/* special case */
averb = (totb[2] / numaa[2] + totb[4] / numaa[4]) * 0.5;
else { /* write error to stderr */
codon_error( z, numaa[z], title, 3 );
error_t = TRUE; /* error catch for strange genes */
break;
}
enc_tot += (float) fold[z] / (float) averb;
/* the calculation */
}
}
if (error_t)
fprintf(foutput, "*****%c",sp);
else if (enc_tot <= 61)
fprintf(foutput, "%5.2f%c", enc_tot,sp);
else
fprintf(foutput, "61.00%c",sp);
return enc_tot;
}
/******************* G+C output *******************************/
/* This function is a real work horse, initially it counts base composit */
/* ion in all frames, length of gene, num synonymous codons, number of */
/* non synonymous codons. Then dependent on the value for which used in */
/* switch statement. We return various analyses of this data */
/* if which ==1 then the output is very detailed, base by base etc. */
/* if which ==2 then the output is for GC content only */
/* if which ==3 then the output is for GC3s (GC at synonymous 3rd posit) */
/* if which ==4 then the output is for L_sym */
/* if which ==5 then the output is for L_aa */
/* The output from this subroutine is in a tabular format if human read- */
/* able output is selected, and in columns if machine readable. Also the */
/* number of values reported changes as it is assumed the user has access*/
/* to a spreadsheet type programme if they are requesting tabular output */
/*************************************************************************/
void gc_out(FILE * foutput, FILE * fblkout, int which){
long int id;
long int bases[5]; /* base that are synonymous GCAT */
long int base_tot[5];
long int base_1[5];
long int base_2[5];
long int base_3[5];
long int tot_s = 0;
long int totalaa = 0;
static char header = FALSE;
int x,y,z;
char sp= (pm->seq_format=='H')?
(char) '\t':
(char) pm->seperator;
typedef double lf;
for (x = 0; x < 5; x++) {
bases[x] = 0; /* initialise array values to zero */
base_tot[x] = 0;
base_1[x] = 0;
base_2[x] = 0;
base_3[x] = 0;
}
for (x = 1; x < 5; x++)
for (y = 1; y < 5; y++)
for (z = 1; z < 5; z++) { /* look at all 64 codons */
id = (x - 1) * 16 + y + (z - 1) * 4;
if (pcu->ca[id] == 11)
continue; /* skip if a stop codon */
base_tot[x] += ncod[id]; /* we have a codon xyz therefore the */
base_1[x] += ncod[id]; /* frequency of each position for base*/
base_tot[y] += ncod[id]; /* x,y,z are equal to the number of */
base_2[y] += ncod[id]; /* xyz codons .... easy */
base_tot[z] += ncod[id]; /* will be fooled a little if there */
base_3[z] += ncod[id]; /* non translatable codons, but these */
/* are ignored when the avg is calc */
totalaa += ncod[id];
if (*(ds + id) == 1)
continue; /* if not synon skip codon */
bases[z] += ncod[id]; /* count no of codons ending in Z */
tot_s += ncod[id]; /* count tot no of silent codons */
}
if (!tot_s || !totalaa) {
fprintf(pm->my_err, "Warning %.20s appear to be too short\n", title);
fprintf(pm->my_err, "No output was written to file \n");
return;
}
switch ((int) which) {
case 1: /* exhaustive output for analysis */
if (pm->seq_format == 'M') { /* machine readable format */
if (!header) { /* print a first line */
fprintf(fblkout,
"Gene_description%cLen_aa%cLen_sym%cGC%cGC3s%cGCn3s%cGC1%cGC2"
"%cGC3%cT1%cT2%cT3%cC1%cC2%cC3%cA1%cA2%cA3%cG1%cG2%cG3\n"
,sp,sp,sp,sp,sp,sp,sp,sp,sp,sp,sp,sp,sp,sp,sp,sp,sp,sp,sp,sp,sp);
header = TRUE;
}
/* now print the information */
fprintf(fblkout, "%-.20s%c", title,sp);
fprintf(fblkout,
"%ld%c%ld%c%5.3f%c%5.3f%c%5.3f%c%5.3f%c%5.3f%c%5.3f%c"
"%5.3f%c%5.3f%c%5.3f%c%5.3f%c%5.3f%c%5.3f%c%5.3f%c"
"%5.3f%c%5.3f%c%5.3f%c%5.3f%c%5.3f\n",
totalaa,sp,
tot_s,sp,
(lf) (base_tot[2] + base_tot[4]) / (lf) (totalaa * 3),sp,
(lf) (bases[2] + bases[4]) / (lf) tot_s,sp,
(lf) (base_tot[2] + base_tot[4] - bases[2] - bases[4])
/ (lf) (totalaa * 3 - tot_s),sp,
(lf) (base_1[2] + base_1[4]) / (lf) (totalaa),sp,
(lf) (base_2[2] + base_2[4]) / (lf) (totalaa),sp,
(lf) (base_3[2] + base_3[4]) / (lf) (totalaa),sp,
(lf) base_1[1] / (lf) totalaa,sp,
(lf) base_2[1] / (lf) totalaa,sp,
(lf) base_3[1] / (lf) totalaa,sp,
(lf) base_1[2] / (lf) totalaa,sp,
(lf) base_2[2] / (lf) totalaa,sp,
(lf) base_3[2] / (lf) totalaa,sp,
(lf) base_1[3] / (lf) totalaa,sp,
(lf) base_2[3] / (lf) totalaa,sp,
(lf) base_3[3] / (lf) totalaa,sp,
(lf) base_1[4] / (lf) totalaa,sp,
(lf) base_2[4] / (lf) totalaa,sp,
(lf) base_3[4] / (lf) totalaa);
} else { /* must be human formatted output then*/
fprintf(fblkout, /* tabulated output */
"Gene Name: %-69.69s\nLength : %-ld aa"
" \tNon_synonymous/synonymous codons (%3ld/%5ld)\n"
" GC=%5.3f\tGC3s=%5.3f\tGC_not_GC3s=%5.3f\n"
"base\t1\t2\t3\ttotal\t\t1\t2\t3 \ttotal\n"
" T\t%5.3f\t%5.3f\t%5.3f\t%5.3f\t"
"W\t%5.3f\t%5.3f\t%5.3f\t%5.3f\n"
" C\t%5.3f\t%5.3f\t%5.3f\t%5.3f\t"
"S\t%5.3f\t%5.3f\t%5.3f\t%5.3f\n"
" A\t%5.3f\t%5.3f\t%5.3f\t%5.3f\t"
"R\t%5.3f\t%5.3f\t%5.3f\t%5.3f\n"
" G\t%5.3f\t%5.3f\t%5.3f\t%5.3f\t"
"Y\t%5.3f\t%5.3f\t%5.3f\t%5.3f\n\n",
title,
totalaa,
totalaa - tot_s,
tot_s,
(lf) (base_tot[2] + base_tot[4]) / (lf) (totalaa * 3),
(lf) (bases[2] + bases[4]) / (lf) tot_s,
(lf) (base_tot[2] + base_tot[4] - bases[2] - bases[4])
/ (lf) (totalaa * 3 - tot_s),
(lf) base_1[1] / (lf) totalaa, (lf) base_2[1] / (lf) totalaa,
(lf) base_3[1] / (lf) totalaa,
(lf) base_tot[1] / (lf) (totalaa * 3),
(lf) (base_1[1] + base_1[3]) / (lf) totalaa,
(lf) (base_2[1] + base_2[3]) / (lf) totalaa,
(lf) (base_3[1] + base_3[3]) / (lf) totalaa,
(lf) (base_tot[1] + base_tot[3]) / (lf) (totalaa * 3),
(lf) base_1[2] / (lf) totalaa, (lf) base_2[2] / (lf) totalaa,
(lf) base_3[2] / (lf) totalaa,
(lf) base_tot[2] / (lf) (totalaa * 3),
(lf) (base_1[2] + base_1[4]) / (lf) totalaa,
(lf) (base_2[2] + base_2[4]) / (lf) totalaa,
(lf) (base_3[2] + base_3[4]) / (lf) totalaa,
(lf) (base_tot[2] + base_tot[4]) / (lf) (totalaa * 3),
(lf) base_1[3] / (lf) totalaa, (lf) base_2[3] / (lf) totalaa,
(lf) base_3[3] / (lf) totalaa,
(lf) base_tot[3] / (lf) (totalaa * 3),
(lf) (base_1[3] + base_1[4]) / (lf) totalaa,
(lf) (base_2[3] + base_2[4]) / (lf) totalaa,
(lf) (base_3[3] + base_3[4]) / (lf) totalaa,
(lf) (base_tot[3] + base_tot[4]) / (lf) (totalaa * 3),
(lf) base_1[4] / (lf) totalaa, (lf) base_2[4] / (lf) totalaa,
(lf) base_3[4] / (lf) totalaa,
(lf) base_tot[4] / (lf) (totalaa * 3),
(lf) (base_1[1] + base_1[2]) / (lf) totalaa,
(lf) (base_2[1] + base_2[2]) / (lf) totalaa,
(lf) (base_3[1] + base_3[2]) / (lf) totalaa,
(lf) (base_tot[1] + base_tot[2]) / (lf) (totalaa * 3));
/* What hit me, did anyone see a bus */
}
break;
case 2: /* a bit more simple ... GC content */
fprintf(foutput, "%5.3f%c", (lf) ((base_tot[2] + base_tot[4]) / (lf)
(totalaa * 3)),sp);
break;
case 3: /* GC3s */
fprintf(foutput, "%5.3f%c", (lf) (bases[2] + bases[4]) /
(lf) tot_s,sp);
break;
case 4: /* Number of synonymous codons */
fprintf(foutput, "%3li%c", tot_s,sp);
break;
case 5: /* Total length in translatable AA */
fprintf(foutput, "%3li%c", totalaa,sp);
break;
#ifdef DEBUG
default:
fprintf(stderr, " Programming error in GC_out which (%i) is out of "
"valid range\n"
,(int) which);
my_exit(99, "gc out");
break;
#endif
}
return;
}
/******************** DOT ******************************************/
/* Indicates the progress of a search */
/**************************************************************************/
void dot(int y, long int period)
{
static long int xx;
static char dott=0;
if (!y) dott = 0; /* re-zero the width counter */
if (++xx % period == 0){ /* every period calls print a . */
fprintf(stderr,".");
dott++;
}
if ( dott == 50) { /* every 50 dots wrap the line */
fprintf(stderr,"\n");
dott=0;
}
return;
}
/********************** get_aa *****************************************/
/* get_aa converts a numeric codon value (range 0-64 ) into a amino acid */
/* and returns that amino acid number */
/* pcu->ca converts the codon number into amino acid number */
/* paa->aa1 converts amino acid code into letters */
/***************************************************************************/
char *get_aa(int which, char *codon)
{
char *amino=NULL;
if (strlen(codon) == 3) {
if (which == 1)
amino = paa->aa1[pcu->ca[ident_codon(codon)]];
else
amino = paa->aa3[pcu->ca[ident_codon(codon)]];
} else {
amino = amino;
amino = paa->aa1[0];
}
return amino;
}
/********************** cutab_out ***********************************/
/* Generates a formatted table of codon, RSCU and amino acid usage */
/* ds points to an array[64] of synonymous values */
/* it reveals how many synonyms there are for each aa */
/**************************************************************************/
int cutab_out(FILE * fblkout, long *nncod, long *nnaa)
{
int last_row[4];
int x;
char sp;
if (pm->seq_format=='M')
sp = pm->seperator;
else
sp = '\t';
for (x = 0; x < 4; x++)
last_row[x] = 0;
codon_tot = codon_error(1, 1, "", (char) 4); /* dummy*/
for (x = 1; x < 65; x++) {
if (last_row[x % 4] != pcu->ca[x]){
(pm->seq_format=='M')?
fprintf(fblkout, "%s%c%s%c", paa->aa3[pcu->ca[x]], sp, paa->cod[x], sp):
fprintf(fblkout, "%s %s" , paa->aa3[pcu->ca[x]], paa->cod[x]);
}
else{
(pm->seq_format=='M')?
fprintf(fblkout, "%c%s%c", sp, paa->cod[x], sp):
fprintf(fblkout, " %s", paa->cod[x]);
}
/* Sample of output *******************************************************/
/*Phe UUU 0 0.00 Ser UCU 1 0.24 Tyr UAU 1 0.11 Cys UGU 1 0.67 */
/* UUC 22 2.00 UCC 10 2.40 UAC 17 1.89 UGC 2 1.33 */
/*Leu UUA 0 0.00 UCA 1 0.24 TER UAA 0 0.00 TER UGA 1 3.00 */
/* UUG 1 0.12 UCG 6 1.44 UAG 0 0.00 Trp UGG 4 1.00 */
/**************************************************************************/
(pm->seq_format=='M')?
fprintf(fblkout, "%i%c%.2f%c",
(int) nncod[x],
sp, (nncod[x]) ?
((float) nncod[x] / (float) nnaa[pcu->ca[x]])
* (float) (*(ds + x)):0,sp): /* end of fprintf */
fprintf(fblkout, "%5i%5.2f ",
(int) nncod[x],
(nncod[x]) ?
((float) nncod[x] / (float) nnaa[pcu->ca[x]])
* (float) (*(ds + x)):0); /* end of fprintf */
last_row[x % 4] = pcu->ca[x];
if (!(x % 4))
fprintf(fblkout, "\n");
if (!(x % 16))
fprintf(fblkout, "\n");
}
fprintf(fblkout, "%li codons in %16.16s (used %22.22s)\n\n",
(long int) codon_tot, title, pcu->des);
return 1;
}
/******************** Dinuc_count *************************************/
/* Count the frequency of all 16 dinucleotides in all three possible */
/* reading frames. This one of the few functions that does not use the */
/* codon and amino acid usage arrays ncod and naa to measure the parameter*/
/* rather they use the raw sequence data */
/**************************************************************************/
int dinuc_count(char *seq, long int ttot)
{
static char a = 0;
int i;
for (i = 0; i < ttot; i++) {
last_base = a;
switch (seq[i]) {
case 't':
case 'T':
case 'u':
case 'U':
a = 1;
break;
case 'c':
case 'C':
a = 2;
break;
case 'a':
case 'A':
a = 3;
break;
case 'g':
case 'G':
a = 4;
break;
default:
a = 0;
break;
}
if (!a || !last_base)
continue; /* true if either of the base is not */
/* a standard UTCG, or the current bas*/
/* is the start of the sequence */
din[fram][((last_base - 1) * 4 + a) - 1]++;
if (++fram == 3) fram = 0; /* resets the frame to zero */
}
return 1;
}
/***************** Dinuc_out ************************************/
/* Outputs the frequency of dinucleotides, either in fout rows per seq */
/* if the output is meant to be in a human readable form, each row repre- */
/* senting a reading frame. The fourth row is the total of the all the */
/* reading frames. Machine readable format writes all the data into a */
/* single row */
/**************************************************************************/
int dinuc_out(FILE * fblkout, char *ttitle)
{
static char called = FALSE;
char bases[5] = {'T', 'C', 'A', 'G'};
char sp = pm->seperator;
long dinuc_tot[4];
int i,x,y;
for ( x=0 ; x<4 ; x ++) dinuc_tot[x]=0;
for ( x=0 ; x<3 ; x++ )
for ( i=0 ; i<16 ; i++ ){
dinuc_tot[x]+=din[x][i]; /* count dinuc usage in each frame */
dinuc_tot[3]+=din[x][i]; /* and total dinuc usage, */
}
if (pm->seq_format=='H' ) sp = ' ';
if (!called) { /* write out the first row as a header*/
called = TRUE;
if (pm->seq_format=='H' ) {
fprintf(fblkout,"%-13.13s%cframe%c","title", sp,sp);
for (x = 0; x < 4; x++)
for (i = 0; i < 4; i++)
fprintf(fblkout,"%c%c%4.4c",bases[x],bases[i],sp);
}else{
fprintf(fblkout, "%s","title");
for (y = 0; y < 4; y ++){
fprintf(fblkout, "%c%s",sp,"frame");
for (x = 0; x < 4; x++)
for (i = 0; i < 4; i++)
fprintf(fblkout,"%c%c%c",sp, bases[x],bases[i]);
}
}
fprintf(fblkout, "\n");
} /* matches if (!called) */
/*Sample output truncated **********************************************/
/*title frame TT TC TA TG CT CC CA CG AT */
/*MLSPCOPER.PE1__ 1:2 0.024 0.041 0.016 0.008 0.049 0.041 0.033 0.098 ... */
/*MLSPCOPER.PE1__ 2:3 0.000 0.195 0.000 0.098 0.000 0.138 0.008 0.073 ... */
/*MLSPCOPER.PE1__ 3:1 0.008 0.016 0.000 0.033 0.033 0.107 0.172 0.262 ... */
/*MLSPCOPER.PE1__ all 0.011 0.084 0.005 0.046 0.027 0.095 0.071 0.144 ... */
/*MLSPCOPER.PE2__ 1:2 0.026 0.026 0.009 0.009 0.053 0.035 0.053 0.061 ... */
/**************************************************************************/
for (x = 0; x < 4; x++) {
if ( pm->seq_format == 'H' || x == 0 )
fprintf(fblkout, (pm->seq_format=='H') ?
"%-15.15s%c":"%-.15s%c", ttitle, sp);
switch (x) {
case 0:
fprintf(fblkout, "1:2%c", sp);
break;
case 1:
fprintf(fblkout, "2:3%c", sp);
break;
case 2:
fprintf(fblkout, "3:1%c", sp);
break;
case 3:
fprintf(fblkout, "all%c", sp);
break;
}
if ( x == 3 ){
for (i = 0; i < 16; i++)
if ( dinuc_tot[x] )
fprintf(fblkout,"%5.3f%c",
(float)(din[0][i]+din[1][i]+din[2][i])/
(float)dinuc_tot[x], sp);
else
fprintf(fblkout,"%5.3f%c",0.00, sp);
}
else{
for (i = 0; i < 16; i++)
if ( dinuc_tot[x] )
fprintf(fblkout, "%5.3f%c",
(float) din[x][i]/(float)dinuc_tot[x], sp);
else
fprintf(fblkout,"%5.3f%c", 0.00, sp);
}
if ( pm->seq_format == 'H' || x == 3)
fprintf(fblkout, "\n");
}
return 1;
}
/************* Coa_raw_out *************************************/
/* Write out codon usage in a format compatible with the format required */
/* by text2bin, i.e. part of the COA analysis suite of subroutines */
/* rather than storing this data in memory, we first write raw codon usage*/
/* to disk, and then read it in as necessary, the file handle for this */
/* data is passed via the fcoaout pointer. By default it writes to the */
/* files coa_raw and coa1_raw */
/**************************************************************************/
char coa_raw_out(FILE * fcoaout, long *nncod, long *nnaa, char *ttitle)
{
static int count = 0;
int i;
for (i = 0; i < (int) strlen(ttitle); i++) /* don't take any chances */
if (isspace( (int) *(ttitle + i))) *(ttitle + i) = '_';
strncpy(pm->junk, ttitle, 20); /* sequence name */
fprintf(fcoaout, "%i_%s ", ++count, pm->junk);
switch (pm->coa) {
case 'c':
case 'r': /* if rscu or codon usage */
for (i = 1; i < 65; i++)
fprintf(fcoaout, "%i\t", (int) nncod[i]);
fprintf(fcoaout, "\n");
break;
case 'a': /* if amino acid usage */
for (i = 1; i < 22; i++)
fprintf(fcoaout, "%i\t", (int) nnaa[i]);
fprintf(fcoaout, "\n");
break;
#ifdef DEBUG /* Debugging code */
default:
fprintf(pm->my_err, " Error in coa_out_raw\n");
#endif
}
return 1;
}
/********** sorted_by_axis1 *******************************************/
/* COA specific routine, after the position of the genes on the first axis*/
/* has been computed the genes are sorted according to there ordination */
/* this allows us to identify gene positioned at either end of the first */
/* trend. Then the codon usage of these genes is used to determine the CU */
/* of these two groups. This information is used to identify optimal codon*/
/* calculated putative CAI adaptive values and for the Chi squared con- */
/* tingency test, used to identify the optimal and non-optimal codons */
/* The position of each gene on axis 1 is passed via the ax1 pointer */
/* The integer rank of each sequence is stored in sortax1 */
/* The number of genes is passed by the integer value lig */
/**************************************************************************/
void sorted_by_axis1(double *ax1, int *sortax1, int lig)
{
double min;
int nmin, *tagged;
int i,j;
/* allocated an array such that we can record which genes have been */
/* processed already, and are in sortax1 */
if ((tagged = (int *) calloc(lig + 1, sizeof(int))) == NULL)
my_exit(3, "sorted by axis 1");
/* blank the array, shouldn't have to do this for ANSI C compilers */
for (i = 1; i <= lig; i++)
tagged[i] = FALSE;
/* for each gene */
for (j = 1; j <= lig; j++) {
i = 0;
while (tagged[++i]); /* find the first gene not in sortax1 */
min = ax1[i]; /* assign it value to min */
nmin = i; /* assign it ordination to nmin */
for (i = 1; i <= lig; i++) { /* for each gene */
if (tagged[i]) continue; /* gene is already in sortax1 .. next */
if (ax1[i] < min) { /* find the min value among the rest */
min = ax1[i]; /* assign it value to min */
nmin = i; /* assign it ordination to nmin */
}
}
sortax1[j] = nmin; /* gene with lowest ax1 position is */
tagged[nmin] = TRUE; /* assigned to sorax1 and tagged */
}
free(tagged);
}
/*********** gen_cusort_fop ******************************/
/* COA specific routine, takes the sorted array of axis 1 positions from */
/* sort_by_axis1 and passed via the sortax1 pointer. The array contains */
/* the genes in order of occurrence in the original input file, but the */
/* ranked order of each gene is recorded as the array value */
/* This allows us to identify genes position at either end of the main */
/* trend. Then the codon usage of these genes is used to write out a file */
/* with the genes in a axis1 position order */
/* the codon usage of the two groups at either end of the principle axis */
/* are also counted. This information is then passed to highlow() */
/* The position of each gene on axis 1 is passed via the ax1 pointer */
/* The integer rank of each sequence is stored in sortax1 */
/* The number of genes is passed by the interger value lig */
/**************************************************************************/
void gen_cusort_fop(int *sortax1, int lig, FILE * fnam, FILE *ssummary)
{
int stops;
long int *low, *high;
int min, max, i ;
float v2;
FILE *fcusort = NULL;
int j;
/* first open the original raw codon usage file */
if ((fcusort = open_file("", "cusort.coa", "w", FALSE)) == NULL)
my_exit(1, "gen_cusort_fop");
/* calloc enough memory for the codon usage of the low group of genes */
if ((low = (long int *) calloc(65, sizeof(long int))) == NULL)
my_exit(3, "low gen_cusort_fop");
/* calloc enought memory for the codon usage of the high group of genes*/
if ((high = (long int *) calloc(65, sizeof(long int))) == NULL)
my_exit(3, "high gen_cusort_fop");
/*pcoa->fop_gene is set in the advanced correspondence menu and is used*/
/*to set the No of genes at either end of the principle axis that are */
/*to be used to create the low and high codon bias subsets of genes */
if (pcoa->fop_gene < 0) { /* the number represent a percentage */
min = (int) ((float) lig * ((float) pcoa->fop_gene * -0.01));
max = lig - (int) ((float) lig * ((float) pcoa->fop_gene * -0.01));
} else { /* the value is an absolute number */
min = pcoa->fop_gene;
max = lig - pcoa->fop_gene;
}
if (min <= 0) { /* error catch in case % is too low */
min = 1; /* or fop_gene is set too high */
fprintf(pm->my_err, "Problems with the number genes used for"
" fop adjusting to 1 gene\n");
}
if (max <= 0) { /* ditto */
max = 1;
fprintf(pm->my_err, "Problems with the number genes used for"
" fop adjusting to one gene\n");
}
for (j = 1; j < 65; j++) { /* initialise the blank array */
low[j] = 0;
high[j] = 0;
}
/* write explanation about what we are doing to summary.coa */
fprintf(ssummary, "\ncusort.coa (not shown here) contains CU of "
"genes sorted by their\n"
"ordination on the principle axis or factor\n"
"Genes used to calculate fop were 1 to %i and %i to %i\n"
"these gene numbers REFER ONLY to the file cusort.coa\n"
,min, max + 1, pcoa->rows);
for (i = 1; i <= lig; i++) { /* foreach gene */
rewind(fnam); /* go to start of codon_raw */
clean_up(ncod, naa); /* blank the codon usage array */
j = 1;
while (j++ != sortax1[i]) /* find the rank of gene i */
fgets(pm->junk, BUFSIZ,fnam);/* by scanning for lines of CU in */
fscanf(fnam, "%s", pm->junk); /* now we know the name of seq i */
for (j = 1; j < 64; j++) { /* now read in the cu of each codon */
fscanf(fnam, "%f", &v2); /* assign it initially to v2 */
ncod[j] = (long int) v2; /* then place this value in ncod */
if (min >= i) /* remember the codon usage of the */
low[j] += (long int) v2; /* two groups of genes at either end */
if (max < i) /* of the axis, containing min and */
high[j] += (long int) v2; /* max genes */
}
fscanf(fnam, "%f\n", &v2); /* now read the last codon in */
ncod[64] = (long int) v2;
if (min >= i)
low[64] += (long int) v2;
if (max < i)
high[64] += (long int) v2; /* as above */
/* we want to use codon_us_out to write out the sorted list of CU */
/* to cusort.coa. But if we have any internal stops etc, it will */
/* generate error messages, but we have already seen this messages */
/* on the first pass, so we fool it by saying all the stops are */
/* valid stops and not to complain again */
for (j = 1, stops = 0; j < 65; j++)
if (pcu->ca[j] == 11)
stops += (int) ncod[j];
dot( 1 , 10 );
codon_usage_out(fcusort, ncod, 11, stops, pm->junk);
}
fileclose(&fcusort);
highlow(low, high, ssummary); /* now we call highlow */
/* to use the sorted cu output */
free(low); /* release the memory to the OS */
free(high);
}
/************ highlow ********************************************/
/* The codon usage of the two groups on either end of the axis is assigned*/
/* to low and high ... perhaps these would be better called left and right*/
/* as when they are passed to this function it is not know which group is */
/* lowly or highly biased. This is decided within highlow, by calculating */
/* the enc (a measure of bias) for each group and assigning the group with*/
/* the lowest enc as the higher biased genes. This works if the trend */
/* represented by axis1 is truly selection for optimal translation */
/* IT'S THE USERS RESPONSIBILITY TO ASSERTAIN IF THIS IS VALID */
/* This information is used to identify optimal codons, as well as */
/* calculate putative CAI adaptive values and for the Chi squared con- */
/* tingency test, used to identify the optimal and non-optimal codons */
/**************************************************************************/
void highlow(long int *low, long int *high, FILE * ssummary)
{
int *last_row, icode, outer,i,j,x ;
long int *aa_low, *aa_high, *left, *right, *left_aa, *right_aa;
long int *highest_x;
long int right_tot = 0, left_tot = 0;
float enc_low, enc_high;
float a, b, c, d, e, f, g, h, total, hr, br, *x2;
float w;
char *flag, sp;
FILE *fcai=NULL,*fhilo = NULL, *ffop = NULL;
FILE *fcbi=NULL;
/*calloc to the pointers the required storage */
if ((fhilo = open_file("", "hilo.coa", "w", FALSE)) == NULL)
my_exit(1, "hilo.coa");
if ((ffop = open_file("", "fop.coa", "w", FALSE)) == NULL)
my_exit(1, "fop.coa");
if ((aa_low = (long int *) calloc(22, sizeof(long int))) == NULL)
my_exit(3, "aa_low");
if ((aa_high = (long int *) calloc(22, sizeof(long int))) == NULL)
my_exit(3, "aa_high");
if ((highest_x = (long int *) calloc(22, sizeof(long int))) == NULL)
my_exit(3, "last_row");
if ((x2 = (float *) calloc(65, sizeof(float))) == NULL)
my_exit(3, "x2");
if ((flag = (char *) calloc(65, sizeof(char))) == NULL)
my_exit(3, "flag");
if ((last_row = (int *) calloc(65, sizeof(int))) == NULL)
my_exit(3, "last_row");
if (pm->seq_format=='M')
sp = pm->seperator;
else
sp = '\t';
/* initialize the various arrays */
for (x = 0; x < 4; x++) last_row[x] = 0;
for (x = 0; x < 22; x++){
highest_x[x]=0;
aa_low [x]=0;
aa_high [x]=0;
}
for (x = 0; x <65 ; x++) {
x2 [x]= (float) 0.0;
flag [x]=0;
last_row[x]=0;
}
/*count the amino acid usage for the two datasets, initially we only */
/*have the codon usage of the two groups */
for (i = 1; i < 65; i++) {
aa_low[pcu->ca[i]] += low[i];
aa_high[pcu->ca[i]] += high[i];
flag[i] = ' '; /*flag is used to identify opt codons */
}
enc_low = enc_out(fhilo, low, aa_low); /*calc enc for each of */
enc_high = enc_out(fhilo, high, aa_high); /*datasets */
fprintf(fhilo, "\n");
fprintf(ssummary, "\nenc_left %f enc_right %f\n", enc_low, enc_high);
for (i = 1; i < 65; i++) {
if (*(ds + i) == 1 || pcu->ca[i] == 11) /*skip stop and nonsynon*/
continue;
if (enc_low < enc_high) { /*decide which is more */
left = low; /*biased */
right = high; /*left and right refer */
left_aa = aa_low; /*the columns of outputed*/
right_aa = aa_high; /*hilow table */
a = (float) low[i];
b = (float) high[i];
g = (float) aa_low[pcu->ca[i]];
h = (float) aa_high[pcu->ca[i]];
} else {
left = high;
right = low;
left_aa = aa_high;
right_aa = aa_low;
a = (float) high[i];
b = (float) low[i];
g = (float) aa_high[pcu->ca[i]];
h = (float) aa_low[pcu->ca[i]];
}
/* calculate the chi squared contingency value */
c = g - a;
d = h - b;
e = a + b;
f = c + d;
total = a + b + c + d;
if (e * f * h * g)
x2[i] = ((a * d - c * b) * (a * d - c * b)) * total / (e * f * g * h);
else
x2[i] = (float) -99.0; /*if 0 assign nonsense value*/
if (g * h) {
hr = a / g;
br = b / h;
if (hr > br && x2[i] > 6.635) /* if significant at p<.99 */
flag[i] = '*';
else if (hr > br && x2[i] > 3.841) /* if significant at p<0.05 */
flag[i] = '@';
}
}
fprintf(ssummary, "Chi squared contingency test of genes from both\n"
"extremes of axis 1\n");
/* this created the hi-low codon usage table */
/* Sample output truncated (***********************************************/
/*Asp GAU 0.10 ( 10) 1.68 ( 53) Gly GGU 0.21 ( 12) 0.85 ( 11) */
/* GAC* 1.90 (184) 0.32 ( 10) GGC* 3.13 (176) 2.00 ( 26) */
/*Glu GAA 0.00 ( 0) 1.34 ( 55) GGA 0.05 ( 3) 0.69 ( 9) */
/* GAG* 2.00 (255) 0.66 ( 27) GGG 0.60 ( 34) 0.46 ( 6) */
/* */
/* */
/* Number of codons in high bias dataset 2825 */
/* Number of codons in low bias dataset 1194 */
/*Note: high bias was assigned to the dataset with the lower average Nc */
/*NO Chi could be calculated for UGU */
/*Codon UUC (Phe) chi value was 70.175 */
/*Codon UCC (Ser) chi value was 48.030 */
/*Codon UAC (Tyr) chi value was 86.069 */
/**************************************************************************/
for (outer = 1; outer <= 3; outer += 2) {
for (x = 1; x < 5; x++) {
for (j = 1; j < 5; j++) {
icode = ((x - 1) * 16) + ((j - 1) * 4) + outer;
for (i = icode; i <= icode + 1; i++) { /*loop twice */
/* if the previous entry in this column codes for the same AA */
if (last_row[i % 2] != pcu->ca[i]) {
fprintf(fhilo, "%s%c%s%c%c", paa->aa3[pcu->ca[i]],
sp, paa->cod[i], flag[i], sp);
fprintf(ssummary, "%s%c%s%c%c", paa->aa3[pcu->ca[i]],
sp, paa->cod[i], flag[i], sp);
} else {
fprintf(fhilo, "%c%s%c%c", sp, paa->cod[i], flag[i], sp);
fprintf(ssummary, " %c%s%c%c",sp,paa->cod[i],flag[i],sp);
}
/* write out Codon usage, RSCU and significance for both data */
fprintf(fhilo, "%4.2f (%3i) %4.2f (%3i)%c",
(left[i]) ?
((float) left[i] / (float) left_aa[pcu->ca[i]])
* (float) (*(ds + i))
: 0.0,
(int) left[i],
(right[i]) ?
((float) right[i] / (float) right_aa[pcu->ca[i]])
* (float) (*(ds + i))
: 0.0,
(int) right[i],sp); /* end of fprintf */
fprintf(ssummary, "%4.2f (%3i) %4.2f (%3i)%c",
(left[i]) ?
((float) left[i] / (float) left_aa[pcu->ca[i]])
* (float) (*(ds + i))
: 0.0,
(int) left[i],
(right[i]) ?
((float) right[i] / (float) right_aa[pcu->ca[i]])
* (float) (*(ds + i))
: 0.0,
(int) right[i],sp); /* end of fprintf */
last_row[i % 2] = pcu->ca[i]; /* remember the last row */
}
fprintf(fhilo, "\n");
fprintf(ssummary, "\n");
}
fprintf(ssummary, "\n");
fprintf(fhilo, "\n");
}
fprintf(ssummary, "\n");
fprintf(fhilo, "\n");
}
for (i = 1; i < 65; i++) { /* count both datasets */
right_tot += right[i];
left_tot += left[i];
}
fprintf(fhilo,
"\tNumber of codons in high bias dataset %li\n", left_tot);
fprintf(fhilo,
"\tNumber of codons in low bias dataset %li\n", right_tot);
fprintf(fhilo,
"Note: high bias was assigned to the dataset with the lower"
" average Nc\n");
fprintf(ssummary,
"\tNumber of codons in high bias dataset %li\n", left_tot);
fprintf(ssummary,
"\tNumber of codons in low bias dataset %li\n", right_tot);
fprintf(ssummary,
"Note high bias was assigned to the genes with the lower"
" overall Nc\n");
/* now printout the Chi Squared values for each significant comparison */
for (i = 1; i < 65; i++) {
if (flag[i] == '*' || flag[i] == '@') {
fprintf(fhilo, "Codon %s (%s) chi value was %.3f\n", paa->cod[i],
paa->aa3[pcu->ca[i]], x2[i]);
fprintf(ssummary, "Codon %s (%s) chi value was %.3f\n", paa->cod[i],
paa->aa3[pcu->ca[i]], x2[i]);
}
if (x2[i] == -99) /* there were no codons in one of the groups*/
fprintf(fhilo, "NO Chi could be calculated for %s\n", paa->cod[i]);
}
fprintf(fhilo, "\n");
fprintf(ssummary, "\n");
/* now write out the optimal codons as PUTATIVELY identified by codonW */
fprintf(ssummary, "These are the PUTATIVE optimal codons\n"
"This is the format required for Menu 4 option 2 (Fop) "
"and option 3 (CBI)\n"
"This data is also duplicated in the files \"fop.coa\" "
"and \"cbi.coa\"\n"
"The format of these files is that required for input "
"as a personal choice\n"
"of optimal codons for these indexes\n");
for (i = 1; i < 65; i++) {
if( left[i] > highest_x[pcu->ca[i]]) /* used for calculating CAI */
highest_x[pcu->ca[i]]=left[i];
if (*(ds + i) == 1 || pcu->ca[i] == 11) {
fprintf(ffop, "2");
fprintf(ssummary, "2");
} else if (flag[i] == '*') {
fprintf(ffop, "3");
fprintf(ssummary, "3");
} else if (((left[i]) ?
((float) left[i] / (float) left_aa[pcu->ca[i]])
* (float) (*(ds + i))
: 0.0) < 0.1) { /* if RSCU <0.1 its rare */
fprintf(ffop, "1");
fprintf(ssummary, "1");
} else {
fprintf(ffop, "2");
fprintf(ssummary, "2");
}
if (!(i % 16)) { /* handle line wrapping */
fprintf(ffop, "\n");
fprintf(ssummary, "\n");
} else {
fprintf(ffop, ",");
fprintf(ssummary, ",");
}
}
fileclose(&ffop); /* close the Fop file */
if ((fcbi = open_file("", "cbi.coa", "w", FALSE)) == NULL)
my_exit(1, "cbi.coa"); /* open cbi.coa */
for (i = 1; i < 65; i++) { /* write values 2 cbi.coa*/
if (flag[i] == '*') /* Only report optimal codons */
fprintf(fcbi, "3");
else
fprintf(fcbi, "2"); /* ignore non optimal codons */
if (!(i % 16))
fprintf(fcbi, "\n");
else
fprintf(fcbi, ",");
}
fileclose(&fcbi);
fprintf(ssummary, "\n\n");
/* now calculate and write out CAI adaptiveness values */
fprintf(ssummary, "These are PUTATIVE CAI adaptiveness values "
"identified by this programme\n"
"This data is also duplicated in the file \"cai.coa\"\n"
"The format of this file is compatible with the format\n"
"of the file used to input a personal selection of CAI values\n"
"That is, the format required for Menu 4 option 1\n"
"cai.coa\tinput file to be used for CAI calculations\n"
"\n\nCod AA Xi\tWi\t\tCod AA Xi\tWi\n");
if ((fcai = open_file("", "cai.coa", "w", FALSE)) == NULL)
my_exit(1, "cai.coa");
for (i = 1, x = TRUE ; i < 65 && x ; i++) {
/* if a stop or a non-synonymous codon w = 1 */
if (*(ds + i) == 1 || pcu->ca[i] == 11) {
fprintf(fcai, "1.0000000 \n");
fprintf(ssummary,"%s %s %6.1f %9.7f\t",
paa->cod[i],
paa->aa3[pcu->ca[i]],
(float) left[i], 1.0000000);
} else if ( highest_x[pcu->ca[i]] ) {
/* if a codon is absent then adjust its frequecy to 0.5 */
if ( left[i] )
w= (float) left[i]/ (float) highest_x[pcu->ca[i]];
else
w= (float) 0.5 / (float) highest_x[pcu->ca[i]];
fprintf(fcai, "%9.7f \n", w); /* output CAI W */
fprintf(ssummary,"%s %s %6.1f %9.7f\t",
paa->cod[i], paa->aa3[pcu->ca[i]],
(left[i]) ? (float) left[i]:0.5 , w);
/* either strange amino acid composition or data sets where too small */
} else {
fprintf(pm->my_err,
"WARNING An attempt to calculate CAI relative "
"adaptivnesss FAILED\n no %s amino acids found"
" in the high bias dataset \n",paa->aa3[pcu->ca[i]]);
fprintf(ssummary,
"\nWARNING An attempt to calculate CAI relative adaptiveness "
"FAILED\n no %s amino acids found in the high bias dataset \n",
paa->aa3[pcu->ca[i]]);
x=FALSE;
}
if( !(i%2)) fprintf (ssummary , "\n");
} /* matches for (i = 1, x = TRUE ; i < 65 && x ; i++) */
fileclose(&fcai); /* close files */
fileclose(&fhilo);
free(aa_low); /* free memory */
free(aa_high);
free(highest_x);
free(x2);
free(flag);
free(last_row);
return;
}
/********************* hydro_out **********************************/
/* The general average hydropathicity or (GRAVY) score, for the hypothet- */
/* ical translated gene product. It is calculated as the arithmetic mean */
/* of the sum of the hydropathic indices of each amino acid. This index */
/* was used to quantify the major COA trends in the amino acid usage of */
/* E. coli genes (Lobry, 1994). */
/* Calculates and outputs total protein hydropathicity based on the Kyte */
/* and Dolittle Index of hydropathicity (1982) */
/* nnaa Array with frequency of amino acids */
/* paa points to a struct containing Amino Acid values */
/* pap->hydro Pointer to hydropathicity values for each AA */
/**************************************************************************/
int hydro_out(FILE * foutput, long int *nnaa)
{
long int a2_tot = 0;
float hydro = (float) 0.0;
int i;
char sp= (pm->seq_format=='H')? (char) '\t': (char) pm->seperator;
for (i = 1; i < 22; i++)
if (i != 11) a2_tot += nnaa[i];
if (!a2_tot) { /* whow .. no amino acids what happened */
fprintf(pm->my_err, "Warning %.20s appear to be too short\n", title);
fprintf(pm->my_err, "No output was written to file \n", title);
return 1;
}
for (i = 1; i < 22; i++)
if (i != 11)
hydro += ((float) nnaa[i] / (float) a2_tot) * (float) pap->hydro[i];
fprintf(foutput, "%8.6f%c", hydro,sp );
return 1;
}
/**************** Aromo_out ***********************************************/
/* Aromaticity score of protein. This is the frequency of aromatic amino */
/* acids (Phe, Tyr, Trp) in the hypothetical translated gene product */
/* nnaa Array with frequency of amino acids */
/* paa points to a struct containing Amino Acid values */
/* pap->aromo Pointer to aromaticity values for each AA */
/**************************************************************************/
int aromo_out(FILE * foutput, long int *nnaa)
{
long int a1_tot = 0;
float aromo = (float) 0.0;
int i;
char sp= (pm->seq_format=='H')? (char) '\t': (char) pm->seperator;
for (i = 1; i < 22; i++)
if (i != 11)
a1_tot += nnaa[i];
if (!a1_tot) {
fprintf(pm->my_err, "Warning %.20s appear to be too short\n", title);
fprintf(pm->my_err, "No output was written to file \n", title);
return 1;
}
for (i = 1; i < 22; i++)
if (i != 11)
aromo += ((float) nnaa[i] / (float) a1_tot) * (float) pap->aromo[i];
fprintf(foutput, "%8.6f%c", aromo,sp);
return 1;
}
|