File: rationals.cpp

package info (click to toggle)
cohomcalg 0.32%2Bds-6
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 2,008 kB
  • sloc: cpp: 3,291; makefile: 46; ansic: 17
file content (1070 lines) | stat: -rw-r--r-- 41,335 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
////////////////////////////////////////////////////////////////////////////////////////////////////
//                                                                                                //
//  rationals.cpp                                                                                 //
//  =============                                                                                 //
//                                                                                                //
//  Code: Benjamin Jurke, http://benjaminjurke.net                                                //
//                                                                                                //
////////////////////////////////////////////////////////////////////////////////////////////////////
//                                                                                                //
//  File history:                                                                                 //
//        - 08.04.2010  File created as rationals.cpp                                             //
//                      Handles the counting of the rational functionsmology which ultimately     //
//                      yields a list of the relevant denominator monomials and their respective  //
//                      multiplicities.                                                           //
//        - 23.02.2010  Added multi-threading support for the computation of secondary sequences. //
//                                                                                                //
////////////////////////////////////////////////////////////////////////////////////////////////////


#include <iostream>
#include <sstream>
#include <cstring>
#include <fstream>
#include <string>
#include <stdlib.h>
#include "rationals.h"
#include "main.h"
#include "platform.h"


extern "C" {
#include "polylib/polylib64.h"
}


using namespace std;


////////////////////////////////////////////////////////////////////////////////////////////////////


string CCohomology::GetCohomologyGroupString(const vector<int32_t> &BundleGLSMcharges)
{
    /* This static output function produces the string "H^i(A; O(2,3,2,4))" with the 
       line bundle's divisor charges. */

    char buf[32];
    string strLine = "H^i(A; O(";
    for (size_t j=0; j<BundleGLSMcharges.size(); j++)
    {
        if (j > 0)
            safe_sprintf(buf, sizeof(buf), ",%4d", (int) BundleGLSMcharges[j]);
        else
            safe_sprintf(buf, sizeof(buf), "%4d", (int) BundleGLSMcharges[0]);
        strLine += buf;
    }
    strLine += " ))";
    return strLine;
}

string CCohomology::GetGroupDimensionsString(const std::vector<uint32_t> &CohomologyDimensions)
{
    /* This static output function produces the string "( 3, 2, 4, 5, 2)" of the cohomology 
       group dimensions. */

    char buf[32];
    string strLine = "(";
    for (size_t i=0; i<CohomologyDimensions.size(); i++)
    {
        if (i > 0)
            safe_sprintf(buf, sizeof(buf), ",%4d", (int) CohomologyDimensions[i]);
        else
            safe_sprintf(buf, sizeof(buf), "%4d", (int) CohomologyDimensions[i]);
        strLine += buf;
    }
    strLine += " )";
    return strLine;
}

string CCohomology::GetGroupDimensionsStringNoPadding(const std::vector<uint32_t> &CohomologyDimensions)
{
    /* This static output function produces the string "3,2,4,5,2" of the cohomology 
       group dimensions without any padding as a comma-seperated list. */

    char buf[32];
    string strLine = "";
    for (size_t i=0; i<CohomologyDimensions.size(); i++)
    {
        if (i > 0)
            safe_sprintf(buf, sizeof(buf), ",%d", (int) CohomologyDimensions[i]);
        else
            safe_sprintf(buf, sizeof(buf), "%d", (int) CohomologyDimensions[i]);
        strLine += buf;
    }
    return strLine;
}

string CCohomology::GetCohomologyString(const vector<int32_t> &BundleGLSMcharges, const vector<uint32_t> &CohomologyDimensions)
{
    /* This static output function naively connects the cohomology group string the 
       cohomology group dimension string, yielding "H^i(A; O(2,3,2,4)) = (3,2,4,5,2)" */

    return GetCohomologyGroupString(BundleGLSMcharges) + " = " + GetGroupDimensionsString(CohomologyDimensions);
}

string CCohomology::GetCohomologyString() const
{
    /* This member function checks if the number of possible cohomology group dimensions is
       ambiguous or could not be determined at all and yields the appropiate output. */

    if (IsAmbiguous())
    {
        if (IsNotDetermined())
            return CCohomology::GetCohomologyGroupString(BundleGLSMch) + " could not be determined";
        else
        {
            char buf[64];
            safe_sprintf(buf, sizeof(buf), " has %d ambiguous solutions", (int) CohomologyDims.size());
            return CCohomology::GetCohomologyGroupString(BundleGLSMch) + buf;
        }
    }
    else
        return CCohomology::GetCohomologyString(BundleGLSMch, CohomologyDims[0]);
}


void CCohomology::PrintFullCohomologyMonomialMap(const CInternalData &id, bool ShortList) const
{
    /* This wrapper function outputs the full list of contributing monomials, including the
       secondary/remnant cohomology factors and computed numbers rational functions. Basically,
       it completely shows the individual contributions to the cohomology group dimensions. */

    MSG_OUT("Monomials, cohomology factors and rational functions of " << GetCohomologyString());
    monoms.PrintMonomialList(id, true, true, ShortList);
}


void CCohomology::PrintCohomologies(const vector<CCohomology> &cohomologies)
{
    /* This function outputs a list of all cohomology group dimensions supplied by the
       argument vector. In case of ambiguous results, each possibility is listed. */

    MSG_OUT("Cohomology dimensions:");
    MSG_OUT("======================");

    // Run through the entire argument vector
    size_t nCohoms = cohomologies.size();
    for (size_t k=0; k<nCohoms; k++)
    {
        MSG_OUT("    dim " << cohomologies[k].GetCohomologyString());
        
        // In case of ambiguous results, show all the possible candidate cohomology group dimensions
        if (cohomologies[k].IsAmbiguous())
        {
            const string offset = "        candidate results are:   ";
            string line;
            for (size_t i=0; i<cohomologies[k].CohomologyDims.size(); i++)
            {
                if (i > 0)
                    line = string(offset.length(), ' ');
                else
                    line.assign(offset);
                MSG_OUT(line << " = " << GetGroupDimensionsString(cohomologies[k].CohomologyDims[i]));
            }
        }
        MSG_OUT("");
    }
}


void CCohomology::SummarizeCohomologies(const vector<CCohomology> &cohomologies)
{
	/* This function outputs a list of lists of all cohomology group dimensions supplied by the
	   argument vector. In case of ambiguous results an error message is places, i.e. it only treats
	   non-ambiguous cohomology groups as "valid" output. */
    
	// Run through the entire argument vector
    size_t nCohoms = cohomologies.size();
	bool bAllRight = true;
	string out = "";
    for (size_t k=0; k<nCohoms; k++)
	{
		// Check if this cohomology is ambiguous
        if (cohomologies[k].IsAmbiguous())
        {
			bAllRight = false;
			break;
		}

		// Write a comma-seperated list of the dimensions
		if (k>0)
			out.append(",");
		out.append("{{");
		out.append(GetGroupDimensionsStringNoPadding(cohomologies[k].CohomologyDims[0]));
		out.append("},{");
		size_t nContribDemons = cohomologies[k].ContributingDenoms.size();
		for (size_t r=0; r<nContribDemons; r++)
		{
			if (r > 0)
				out.append(",");
			out.append(cohomologies[k].ContributingDenoms[r]);
		}
		out.append("}}");
	}

	// Produce output
	if (bAllRight)
		MSG_OUT_NOENDL("{True," << out << "}");
	else
		MSG_OUT_NOENDL("{False,\"Ambiguous cohomologies\"");
}


void CCohomology::GetMathematicaCohomologiesList(const vector<CCohomology> &cohomologies, string &out)
{
    /* This function translates the results of the computations, i.e. the dimensions of the
       line bundle sheaf cohomology groups into a form easily comparable to the condensed output
       of the legacy Mathematica 7 script. */

    // First put out the 'LinebundleCohomologyOf' commands, which basically correspond to our
    // 'ambientcohom' commands and specify the line bundle divisor's charges.
    out = "    (*Requested cohomology commands:*)\n";
    char buf[64];
    size_t nCohoms = cohomologies.size();
    for (size_t k=0; k<nCohoms; k++)
    {
        out += "    LinebundleCohomologyOf[{";
        size_t num_glsm = cohomologies[k].BundleGLSMch.size();
        for (size_t i=0; i<num_glsm; i++)
        {
            if (i>0)
                out += ",";
            safe_sprintf(buf, sizeof(buf), "%d", (int) cohomologies[k].BundleGLSMch[i]);
            out += buf;
        }
        out += "}];\n";
    }

    // Next a list of lists containing the computed cohomology dimensions 
    out += "    ResultingCohomologies = {";

    for (size_t k=0; k<nCohoms; k++)
    {
        if (k>0)
            out += ",";
        out += "{";

        if (cohomologies[k].IsAmbiguous())
        {
            if (cohomologies[k].IsNotDetermined())
                out += "-1 (*not determined*)";
            else
                out += "-1 (*ambiguous*)";
        }
        else
        {
            for (size_t i=0; i<cohomologies[k].CohomologyDims[0].size(); i++)
            {
                if (i>0)
                    out += ",";
                safe_sprintf(buf, sizeof(buf), "%d", (int) cohomologies[k].CohomologyDims[0][i]);
                out += buf;
            }
        }

        out += "}";
    }
    out += "}";
}


////////////////////////////////////////////////////////////////////////////////////////////////////


void StringRemoveSpaces(string &stringIn)
{
	size_t pos = 0;
	bool spacesLeft = true;

	while (spacesLeft)
	{
		pos = stringIn.find(" ");
		if(pos != string::npos)
			stringIn.erase(pos, 1);
		else
			spacesLeft = false;
	}
}

void CRationals::PrintPolyLibConstraintMatrix(const CInternalData &id, void *m)
{
    /* This function prints the equalities and inequalities encoded in a PolyLib matrix structure, 
       which is used in the debug output at the highest verbose level. */

    Matrix *Mat = (Matrix *) m;

    char buf[128];
    string tmp, cureqn, mathematica;
    MSG_OUT("    Condition matrix has " << Mat->NbRows << " rows x " << Mat->NbColumns << " columns");
    if ((Mat->NbRows > 0) && (Mat->NbColumns > 0))
    {
        // Run through all rows of the matrix
        for (unsigned int i=0; i<Mat->NbRows; i++)
        {
            safe_sprintf(buf, sizeof(buf), "        line %2d:   ", (int) i+1);
            tmp = buf;

			// Clear the current equation buffer
			cureqn.clear();
			if (i>0)
				mathematica += ",";

			// Check if we have an equality or inequality
			if (Mat->p[i][0] == 0)
            {
                // equality
                tmp += "eq:    ";
                for (unsigned int j=1; j<Mat->NbColumns-1; j++)
                {
                    if (Mat->p[i][j] == 0)
                        safe_sprintf(buf, sizeof(buf), "          ");
                    else
                    {
                        if (Mat->p[i][j] == 1)
                            safe_sprintf(buf, sizeof(buf), "+ %-7s ", id.GetInternalCoordData()[j-1].strName.c_str());
                        else if (Mat->p[i][j] == -1)
                            safe_sprintf(buf, sizeof(buf), "- %-7s ", id.GetInternalCoordData()[j-1].strName.c_str());
                        else if (Mat->p[i][j] < 0)
                            safe_sprintf(buf, sizeof(buf), "- %3ld*%-3s ", (long int) -Mat->p[i][j], id.GetInternalCoordData()[j-1].strName.c_str());
                        else
                            safe_sprintf(buf, sizeof(buf), "+ %3ld*%-3s ", (long int) Mat->p[i][j], id.GetInternalCoordData()[j-1].strName.c_str());
                    }
                    cureqn += buf;
                }

                safe_sprintf(buf, sizeof(buf), " == %3ld", -(long int) Mat->p[i][Mat->NbColumns-1]);
                cureqn += buf;
            }
            else
            {
                // inquality
                tmp += "ineq:  ";
                for (unsigned int j=1; j<Mat->NbColumns-1; j++)
                {
                    if (Mat->p[i][j] == 0)
                        safe_sprintf(buf, sizeof(buf), "          ");
                    else
                    {
                        if (Mat->p[i][j] == 1)
                            safe_sprintf(buf, sizeof(buf), "+ %-7s ", id.GetInternalCoordData()[j-1].strName.c_str());
                        else if (Mat->p[i][j] == -1)
                            safe_sprintf(buf, sizeof(buf), "- %-7s ", id.GetInternalCoordData()[j-1].strName.c_str());
                        else if (Mat->p[i][j] < 0)
                            safe_sprintf(buf, sizeof(buf), "- %3ld*%-3s ", (long int) -Mat->p[i][j], id.GetInternalCoordData()[j-1].strName.c_str());
                        else
                            safe_sprintf(buf, sizeof(buf), "+ %3ld*%-3s ", (long int) Mat->p[i][j], id.GetInternalCoordData()[j-1].strName.c_str());
                    }
                    cureqn += buf;
                }

                safe_sprintf(buf, sizeof(buf), " >= %3ld", -(long int) Mat->p[i][Mat->NbColumns-1]);
                cureqn += buf;
            }
			
			tmp += cureqn;

			StringRemoveSpaces(cureqn);
			mathematica += cureqn;

            MSG_OUT(tmp);
        }

		tmp = "Reduce[{";
		tmp += mathematica;
		tmp += "},Integers]";
		MSG_OUT("    Mathematica cmd:  " << tmp << "");
    }
}


struct CountRationalsData {
	const CInternalData &id;
	//const vector<InternalCoordData> &coords;
	const i32vec64 &TargetDivisor;
	uint32_t &out;
	uint64_t monomial;
	//size_t numCoords;
	//size_t numGLSMch;
	bool bReturn;
	size_t worker_id;

	CountRationalsData(const CInternalData &init_InternalData,
		uint64_t init_monomial,
		const i32vec64 &init_TargetDivisor,
		uint32_t &init_out,
		size_t init_numCoords,
		size_t init_numGLSMch,
		size_t init_worker_id) :
			id(init_InternalData),
			TargetDivisor(init_TargetDivisor),
			out(init_out)
	{
		monomial = init_monomial;
		//numCoords = init_numCoords;
		//numGLSMch = init_numGLSMch;
		worker_id = init_worker_id;
		bReturn = false; 
	}
};


void CountRationalFunctionsWorker(void *p_dat)
{
    /* This is the main function for the counting of rational functions. If practically serves
       as the wrapper from our data format to the matrix input format required by the PolyLib. */

	CountRationalsData *crd = (CountRationalsData *) p_dat;
	if (!crd) { ERR_OUT("Internet pointer error in monomial counting worker."); return; }

	const vector<InternalCoordData> &coords = crd->id.GetInternalCoordData();
	size_t numCoords = crd->id.GetNumCoordinates();
	size_t numGLSMch = crd->id.GetNumGLSMch();

    // First we need to create a matrix in the PolyLib format
    Matrix *P = Matrix_Alloc((unsigned int) (numCoords + numGLSMch), (unsigned int) (numCoords + 2));
	if (!P) { crd->bReturn = false; ERR_OUT("Internal allocation error in monomial counting worker."); return; }
    const size_t lastcol = numCoords + 2 - 1;

    i32vec64 constraint_vals;
    constraint_vals.Clear();
    for (size_t j=0; j<numGLSMch; j++)
        constraint_vals.x[j] = crd->TargetDivisor.x[j];

    // Now insert the appropiate values and signs into the matrix elements
    for (size_t i=0; i<numCoords; i++)
    {
        if (crd->monomial & coords[i].liVar)
        {
            // Coordinate is in denominator
            for (size_t j=0; j<numGLSMch; j++)
            {
                value_set_si(P->p[j][i+1], - coords[i].GLSMch.x[j]);
                constraint_vals.x[j] += coords[i].GLSMch.x[j];
            }
        }
        else
        {
            // Coordinate is in nominator
            for (size_t j=0; j<numGLSMch; j++)
                value_set_si(P->p[j][i+1], coords[i].GLSMch.x[j]);
        }
    }

    // The first column of the matrix selects the type of the condition
    for (size_t j=0; j<numGLSMch; j++)
    {
        // Coordinates are equalities, so zero the first column
        value_set_si(P->p[j][0], 0);
        // Put the final target charges in last column
        value_set_si(P->p[j][lastcol], -constraint_vals.x[j]);
    }

    // And finally we require the positivity condition on all variables
    for (size_t i=0; i<numCoords; i++)
    {
        value_set_si(P->p[numGLSMch+i][0], 1);
        value_set_si(P->p[numGLSMch+i][i+1], 1);
    }

    // The "universe matrix" is required by PolyLib (no idea what for....)
    Matrix *C = Matrix_Alloc(1, 2);
    value_set_si(C->p[0][0],1); value_set_si(C->p[0][1],1);

	/*  THIS VERBOSE OUTPUT WAS SHIFTED BEHIND THE COMPUTATION
    if (ccmdlinearguments::getverboselevel() >= 5)
    {
        string tmp = "verbose level 6: rationals counting condition matrix for " + id.int64tomonomial(monomial) + ":";
        msg_out(tmp);

        string tmp2(tmp.length(), '-');
        msg_out(tmp2);

        printpolylibconstraintmatrix(id, p);
    }  
	*/

    // Compute a polynomial approximation of the Ehrhart polynomial and evaluate
    Matrix *Validity_Lattice = 0;
    Enumeration *e = Ehrhart_Quick_Apx(P, C, &Validity_Lattice, 0);

    // Now we need to retrieve the actually interesting data, which is at the moment completely
    // idiotically 'solved'. Why is there no function to simply extract the constant part of an e_value?
    // Furtunately, this does not present a bottleneck to the computational speed, but it's ugly like hell...
	long long int val = 0;
	if (e)
	{
		// Brrr.... temporary files for data retrieval... Oh - and we can't use tmpfile() because
		// Microsoft in their infinite wisdom "broke" the command in Windows Vista / 7, as the default
		// destination is only accessible in Administrator-mode...
		char tmpfilename[64];
		safe_sprintf(tmpfilename, sizeof(tmpfilename), "__x_TMP_polylib_file_%dy.tmp", (int) crd->worker_id);
		//const char *tmpfilename = "__x_TMP_polylib_file_y.tmp";
		FILE *points_val = fopen(tmpfilename, "w+");
		if (!points_val)
		{
			ERR_OUT("Could not open temporary file for computation.");
			crd->bReturn = false; return;
		}

		for (Enumeration *en=e; en; en = en->next)
			print_evalue(points_val, &en->EP, NULL);
		rewind(points_val);

		char buf[16];
		int readres = fscanf(points_val, "%c %lld", buf, &val);
		fclose(points_val);
		remove(tmpfilename);
		if (readres < 2)
		{
			ERR_OUT("INTERNAL: Failed to scan the PolyLib result.");
			crd->bReturn = false; return;
		}
	}
	else
	{
		WARN_OUT("Counting of the rationals erroneous - is your input geometry valid?");

		// During a normal program run, we have the warning output, but in integration mode we treat this as a serious error
		if (CCmdLineArguments::GetVerboseLevel() < -5)
			crd->bReturn = false; return;
	}

    // The variable 'val' now holds our precious number of rational functions
    // A result -1 indicates some serious error in the constraints and therefore in
    // the counting of the rational functions / points in the corresponding polyhedron
    if (val < 0)
    {
        ERR_OUT("INTERNAL: Invalid number of rational functions computed.");
        crd->bReturn = false; return;
    }

    // Debug Output
/*    if (CCmdLineArguments::GetVerboseLevel() >= 5)
    {
		string tmp;
		bool bPrint = true;

		if (val != 0)
			tmp = "verbose level 5: rationals counting condition matrix for " + crd->id.Int64ToMonomial(monomial) + ":";
		else if (CCmdLineArguments::GetVerboseLevel() >= 6)
			tmp = "verbose level 6: rationals counting condition matrix for " + id.Int64ToMonomial(monomial) + ":";
		else
			bPrint = false;

		if (bPrint)
		{
			MSG_OUT(tmp);

			string tmp2(tmp.length(), '-');
			MSG_OUT(tmp2);

			PrintPolyLibConstraintMatrix(id, P);

			MSG_OUT("    Yields value: " << val);
			MSG_OUT("");
		}
    }*/

    // Clean up stuff
    Matrix_Free(C);
    Matrix_Free(P);
    while (e)
    {
        free_evalue_refs(&(e->EP));
        Polyhedron_Free(e->ValidityDomain);
        Enumeration *en = e->next;
        free(e);
        e = en;
    }

    // Store the computed value
	crd->out = (uint32_t) val;

	crd->bReturn = true;
}

std::vector< std::pair<thread *, void *> > CRationals::WorkersList;

//#define USE_MULTITHREADED_MONOMIAL_COUNTING
// It appears that the PolyLib is NOT thread-safe (causing a weird kind of heap corruption), therefore for the moment we are stuck with a single-threaded evaluation of the rational counting... :-(

#ifdef USE_MULTITHREADED_MONOMIAL_COUNTING

bool CRationals::CountRationalFctns(const CInternalData &id, uint64_t monomial, const i32vec64 &TargetDivisor, uint32_t &out)
{
	CountRationalsData *crd = new CountRationalsData(id, monomial, TargetDivisor, out, id.GetInternalCoordData().size(), id.GetNumGLSMch(), WorkersList.size());
	if (!crd)
		return false; 

	tthread::thread *t = new tthread::thread(CountRationalFunctionsWorker, (void*) crd);
	WorkersList.push_back(make_pair(t, crd));

	return true;
}

bool CRationals::WaitForAllWorkersFinish()
{
	while (WorkersList.size() > 0)
	{
		WorkersList[0].first->join();
		if (!(((CountRationalsData *) WorkersList[0].second)->bReturn))
			return false;
		
		delete WorkersList[0].second;  // free the thread data memory
		delete WorkersList[0].first;   // delete the thread
		WorkersList.erase(WorkersList.begin());
	}
	return true;
}

#else

bool CRationals::CountRationalFctns(const CInternalData &id, uint64_t monomial, const i32vec64 &TargetDivisor, uint32_t &out)
{
	CountRationalsData crd = CountRationalsData(id, monomial, TargetDivisor, out, id.GetInternalCoordData().size(), id.GetNumGLSMch(), 0);

	CountRationalFunctionsWorker(&crd);

	return crd.bReturn;
}

bool CRationals::WaitForAllWorkersFinish()
{
	return true;
}

#endif

void SplitAddToCohomVector(vector<ui32vec64> &inout, const vector<CohomContrib> &split, uint32_t rational, size_t dim)
{
    /* This internal helper functions carries out the branching required for the ultimate attempt to
       resolve the ambiguous contribution. It takes a vector of possible cohomology group dimensions and
       a vector of fixes for a particular contribution. Then all those different candidates are applied to
       all possibilities, which lets the list of all possibilities grow pretty fast. Currently, this is a
       somewhat of a big problem, as it represents the only real "memory hole" in the entire program. */

    size_t inoutlen = inout.size();
    size_t splitlen = split.size();

    ui32vec64 newcohom;
    newcohom.Clear();

    for (size_t i=0; i<inoutlen; i++)
    {
        // Apply the 0th split afterwards to the original elements in inout,
        for (size_t j=1; j<splitlen; j++)
        {
            for (size_t k=0; k<=dim; k++)
                newcohom.x[k] = inout[i].x[k];

            newcohom.x[split[j].nGroup] += split[j].nFactor * rational;

            inout.push_back(newcohom);
        }

        // Finally modify the original in vector
        inout[i].x[split[0].nGroup] += split[0].nFactor * rational;
    }
}

bool CRationals::ComputeCohomology(const CInternalData &id, CMonomialsList &ml, const i32vec64 &TargetDivisor, vector<uint32_t> &out_cohomology, vector<string> &out_contribcohoms)
{
    /* Now, this is the big fat mama of all functions. It takes the monomial list and the line bundle's divisor
       charges as input and computes the corresponding dimensions of the cohomology. Now, we have to keep in mind
       that there still may be ambiguous contributions left over. First we simple count the number of rational
       functions for all those ambiguous cases. If all goes well, none of these troublesome monomials actually
       contributes for real - we can then compute the uniquely determined contributions and are all done. This is
       the nice case. The second attempt is to compute the ambiguous contributions for the Serre-dual divisor and
       hope that all of these are actually zero - then we can simply take the dimensions from the Serre-dual and
       are done. In the worst case, neither the "normal" nor "Serre-dual" ambiguities vanish all at the same time.
       Then we have to take the ugly branch approach, where we compute the set of ALL possible cohomology group
       configurations both for the "normal" and Serre-dual case and check if there are compatible pairs. This may
       ultimately lead to the ambiguous or undeterminant cases. Luckily, this does not happen very often.... */

    size_t dim = id.GetDimension();

    out_cohomology.clear();
    out_cohomology.resize(dim+1);
	out_contribcohoms.clear();

    // Now compute the ambiguous contributions - if any is non-zero we have to take more involved steps
    bool bIsUnique = true;
    for (map<uint64_t, AmbiguousContribData>::iterator it = ml.ambiguous_monoms.begin(); it != ml.ambiguous_monoms.end(); it++)
        if (!CountRationalFctns(id, it->first, TargetDivisor, it->second.nRationals)) return false;
	if (!WaitForAllWorkersFinish())	return false;

    for (map<uint64_t, AmbiguousContribData>::iterator it = ml.ambiguous_monoms.begin(); it != ml.ambiguous_monoms.end(); it++)
    {
        if (it->second.nRationals != 0)
            bIsUnique = false;
    }

    if (bIsUnique)
    {
        // So, there a no contributing non-ambiguous factors - Whohoo!
        // Then compute the unique ones and output
        for (map<uint64_t, UniqueContribData>::iterator it = ml.unique_monoms.begin(); it != ml.unique_monoms.end(); it++)
            if (!CountRationalFctns(id, it->first, TargetDivisor, it->second.nRationals)) return false;
		if (!WaitForAllWorkersFinish()) return false;

        for (map<uint64_t, UniqueContribData>::iterator it = ml.unique_monoms.begin(); it != ml.unique_monoms.end(); it++)
		{
            out_cohomology[it->second.Cohom.nGroup] += it->second.Cohom.nFactor * it->second.nRationals;
			if (it->second.nRationals != 0)
			{
				char buf[32];
				string tmp = "{";
				safe_sprintf(buf, sizeof(buf), "%d,", it->second.Cohom.nGroup);
				tmp += buf;
				safe_sprintf(buf, sizeof(buf), "%d*", it->second.Cohom.nFactor);
				tmp += buf;
				tmp += id.Int64ToCoordProduct(it->first);
				tmp += "}";
				out_contribcohoms.push_back(tmp);
			}
		}

        return true;
    }

    /////////////////////////////////////////////////////////

    // If we have a non-unique situation, compute the rationals for the Serre dual target divisor
    i32vec64 vDualCharges;
    id.GetCanonicalDivisor(vDualCharges);
    size_t numGLSMch = id.GetNumGLSMch();
    for (size_t i=0; i<numGLSMch; i++)
        vDualCharges.x[i] -= TargetDivisor.x[i];

    for (map<uint64_t, UniqueContribData>::iterator it = ml.unique_monoms.begin(); it != ml.unique_monoms.end(); it++)
		if (!CountRationalFctns(id, it->first, vDualCharges, it->second.nRationalsDual)) return false;
	if (!WaitForAllWorkersFinish()) return false;

    bool bDualIsUnique = true;
    for (map<uint64_t, AmbiguousContribData>::iterator it = ml.ambiguous_monoms.begin(); it != ml.ambiguous_monoms.end(); it++)
		if (!CountRationalFctns(id, it->first, vDualCharges, it->second.nRationalsDual)) return false;
	if (!WaitForAllWorkersFinish())	return false;

    for (map<uint64_t, AmbiguousContribData>::iterator it = ml.ambiguous_monoms.begin(); it != ml.ambiguous_monoms.end(); it++)
    {
        if (it->second.nRationalsDual != 0)
            bDualIsUnique = false;
    }

    if (bDualIsUnique)
    {
        // So, there a no contributing non-ambiguous factors in the Serre dual - (little Whohoo!)
        // Compute the unique cases of the Serre-dual, and translate to the "normal" case for output
        for (map<uint64_t, UniqueContribData>::iterator it = ml.unique_monoms.begin(); it != ml.unique_monoms.end(); it++)
		{
            out_cohomology[dim-it->second.Cohom.nGroup] += it->second.Cohom.nFactor * it->second.nRationalsDual;
			if (it->second.nRationalsDual != 0)
			{
				char buf[32];
				safe_sprintf(buf, sizeof(buf), "%d*", it->second.Cohom.nFactor);
				string tmp = buf;
				tmp += id.Int64ToCoordProduct(it->first);
				out_contribcohoms.push_back(tmp);
			}
		}

        return true;
    }

    /////////////////////////////////////////////////////////

    // At this point, it'll get complicated - BOTH the "normal" and "dual" cases are NOT unique...
    // First compute the needed unique normal rationals (those are still left open, when we reach here)
    for (map<uint64_t, UniqueContribData>::iterator it = ml.unique_monoms.begin(); it != ml.unique_monoms.end(); it++)
		if (!CountRationalFctns(id, it->first, TargetDivisor, it->second.nRationals)) return false;
	if (!WaitForAllWorkersFinish()) return false;

    // Now everything is computed (unique/ambiguous contribution for the "normal" and Serre-dual), so we have to
    // figure out how it all fits together.
    // The basic idea is to compute ALL potential output cohomologies, which arise from the ambiguos contributions
    // both on the "normal" and "dual" side and then consider the "intersection" of those cohomologies. Yes, this is
    // very ugly, but at the moment, it seems to be the best we can do...

    // Compute the unique part of all cohomologies, this is basically the starting point for our "ambiguity branching".
    // For speedup, we now use fixed width array of integers... it's somewhat memory wasteful, but considerably faster
    ui32vec64 cohom_dummy, dualcohom_dummy;
    cohom_dummy.Clear();
    dualcohom_dummy.Clear();
    for (map<uint64_t, UniqueContribData>::iterator it = ml.unique_monoms.begin(); it != ml.unique_monoms.end(); it++)
    {
        cohom_dummy.x[it->second.Cohom.nGroup] += it->second.Cohom.nFactor * it->second.nRationals;
        dualcohom_dummy.x[it->second.Cohom.nGroup] += it->second.Cohom.nFactor * it->second.nRationalsDual;
    }
    vector<ui32vec64> cohoms(1, cohom_dummy);
    vector<ui32vec64> dualcohoms(1, dualcohom_dummy);

    // Now loop through the ambiguous part and branch to all possibilities
    // ##############################################
    // ### THIS IS EXTREMELY MEMORY EXPENSIVE!!!! ###  ...and a potential memory hole! IMPROVE!
    // ##############################################
    for (map<uint64_t, AmbiguousContribData>::iterator it = ml.ambiguous_monoms.begin(); it != ml.ambiguous_monoms.end(); it++)
    {
        size_t curCohomsSize = cohoms.size();
        size_t curDualCohomsSize = dualcohoms.size();
        
        // We put the actual branching and check for the looming std::bad_alloc exception, which comes up when we run
        // out of memory. Least we can do in this case is to provide some output of how far we got, but unfortunately,
        // this ends our business...
        try
        {
            if (it->second.nRationals != 0)
			{
                SplitAddToCohomVector(cohoms, it->second.vCohoms, it->second.nRationals, dim);

				// Is this safe? ######################
				//char buf[32];
				//safe_sprintf(buf, "%ud*", it->second.Cohom.nFactor);
				string tmp = "(*Ambiguous*)";
				tmp += id.Int64ToCoordProduct(it->first);
				out_contribcohoms.push_back(tmp);
			}

            curCohomsSize = cohoms.size();

            if (it->second.nRationalsDual != 0)
                SplitAddToCohomVector(dualcohoms, it->second.vCohoms, it->second.nRationalsDual, dim);
        }
        catch(std::bad_alloc &er)
        {
            ERR_OUT("RUNTIME: " << er.what());
            ERR_OUT_PLAIN("Due to the ambiguity branching there are at least " << curCohomsSize << " \"normal\" cohomologies");
            ERR_OUT_PLAIN("and " << curDualCohomsSize << " Serre-dual cohomologies, consuming " << BytesToReadableSize((curCohomsSize + curDualCohomsSize) * sizeof(ui32vec64)) << " memory.");
            ERR_OUT_PLAIN("");
            if (sizeof(void *) < 8)
            {
                ERR_OUT_PLAIN("You could try the same computation again using the 64-bit version of the program.");
                ERR_OUT_PLAIN("");
            }
            return false;
        }
    }

    // OK, the hard part is now done, apparently, we did not run out of memory...
    size_t numcohoms = cohoms.size();
    size_t numdualcohoms = dualcohoms.size();

    if (CCmdLineArguments::GetVerboseLevel() >= 2)
    {
        MSG_OUT("Verbose level 2: Serre dualization information:");
        MSG_OUT("-----------------------------------------------");
        MSG_OUT("    Due to the ambiguous contributions to the requested cohomologies the following branching occurred:");
        MSG_OUT("    - \"normal\" configurations:   " << numcohoms << " (" << BytesToReadableSize(numcohoms * sizeof(ui32vec64)) << " memory)");
        MSG_OUT("    - Serre-dual configurations: " << numdualcohoms << " (" << BytesToReadableSize(numdualcohoms * sizeof(ui32vec64)) << " memory)");
        MSG_OUT("");
    }

    // Now find the "Serre-dual intersection" of the computed branching sets
    vector<ui32vec64> stablecohoms;
    for (size_t i=0; i<numcohoms; i++)
    {
        for (size_t j=0; j<numdualcohoms; j++)
        {
            bool bEqual = true;
            for (size_t k=0; k<=dim; k++)
            {
                if (cohoms[i].x[k] != dualcohoms[j].x[dim-k])
                {
                    bEqual = false;
                    break;
                }
            }
            if (bEqual)
                stablecohoms.push_back(cohoms[i]);
        }
    }

    // Clear up the memory of the big branching sets
    cohoms.clear();
    dualcohoms.clear();

    // Now the big decisive moment... could we resolve the ambiguities?
    size_t numstablecohoms = stablecohoms.size();
    if (numstablecohoms != 1)
    {
        // Oh oh.... we were unable to completely resolve the cohomology via Serre
        if (numstablecohoms < 1)
        {
            // No intersection at all? This is certainly bad... and has so far happened not once in testing!
            MSG_OUT("No viable candidate cohomology could be identified via Serre duality.");
            for (size_t i=0; i<=dim; i++)
                out_cohomology[i] = 0;
            // We add a 0 to indicate the number om ambiguous cohomologies
            out_cohomology.push_back((uint32_t) 0);

            return true;
        }
        else
        {
            // Ok, we are not unique, but at least we found some results...
            // Copy the first stable cohomology configuration to the output cohomology vector
            for (size_t i=0; i<=dim; i++)
                out_cohomology[i] = stablecohoms[0].x[i];
            
            // We add a the number of abiguous cohomologies (so n-1 come behind this number)
            out_cohomology.push_back((uint32_t) numstablecohoms);

            // Then we append the other stable cohomologies
            for (size_t k=1; k<numstablecohoms; k++)
            {
                for (size_t i=0; i<=dim; i++)
                    out_cohomology.push_back(stablecohoms[k].x[i]);
            }

            return true;
        }
    }

    // When we reach here, apparently we were able to uniquely resolve the issue
    for (size_t i=0; i<=dim; i++)
        out_cohomology[i] = stablecohoms[0].x[i];

    return true;
}


bool CRationals::ComputeCohomologyAndSerreDual(const CInternalData &id, CMonomialsList &ml, const i32vec64 &TargetDivisor, vector<uint32_t> &out_cohomology, vector<string> &out_contribcohoms)
{
    /* This funcion takes care of the optional Serre-duality check, which is however only carried
       out in case that the results from the "normal" cohomology are unique. Otherwise the Serre-duality
       is already used in the determination of the result cohomologies. */

    if (!ComputeCohomology(id, ml, TargetDivisor, out_cohomology, out_contribcohoms))
        return false;

    // Check if the Serre-duality check is activated...
    if (CCmdLineArguments::GetCheckSerre())
    {
        size_t dim = id.GetDimension();
        if (out_cohomology.size() == dim+1)
        {
            // A unique cohomology was identified, so consider the Serre-dual divisor

            i32vec64 SerreDualDivisor;
            id.GetCanonicalDivisor(SerreDualDivisor);
            size_t numGLSMch = id.GetNumGLSMch();
            for (size_t i=0; i<numGLSMch; i++)
                SerreDualDivisor.x[i] -= TargetDivisor.x[i];

            vector<uint32_t> dual_cohom;
			vector<string> dual_contribcohoms;

            if (!ComputeCohomology(id, ml, SerreDualDivisor, dual_cohom, dual_contribcohoms))
                return false;

            if (dual_cohom.size() == dim+1)
            {
                // If the Serre-dual cohomology could also be determined uniquely, compare
                for (size_t i=0; i<=dim; i++)
                {
                    if (out_cohomology[i] != dual_cohom[dim-i])
                    {
                        // Print a message, if the cohomology does not correspond properly..
                        vector<int32_t> div;
                        div.assign(TargetDivisor.x, TargetDivisor.x + numGLSMch);
                        MSG_OUT("WARNING: The req. cohomology " << CCohomology::GetCohomologyString(div, out_cohomology) << " does not correspond");
                        div.assign(SerreDualDivisor.x, SerreDualDivisor.x + numGLSMch);
                        MSG_OUT("to the Serre dual cohomology " << CCohomology::GetCohomologyString(div, dual_cohom) << ".");
                        return false;
                    }
                }
            }
            else
            {
                vector<int32_t> div;
                div.assign(SerreDualDivisor.x, SerreDualDivisor.x + numGLSMch);
                MSG_OUT("WARNING: The Serre dual cohomology " << CCohomology::GetCohomologyGroupString(div) << " could not");
                MSG_OUT("uniquely be determined. Please check this case manually.");
                return false;
            }
        }
        else
        {
            vector<int32_t> div;
            div.assign(TargetDivisor.x, TargetDivisor.x + id.GetNumGLSMch());
            MSG_OUT("WARNING: The cohomology " << CCohomology::GetCohomologyGroupString(div) << " could not");
            MSG_OUT("uniquely be determined. Please check this case manually.");
            return false;
        }
    }

    return true;
}


bool CRationals::ComputeCohomologies(const CInternalData &id, const CMonomialsList &ml, vector<CCohomology> &out_cohomologies)
{
    /* This function makes a batch run through all the requested line bundle divisors specified
       by the input data. The computed data is then stored in an output vector of CCohomology classes. */

    // Clear the output vector
    out_cohomologies.clear();

    size_t numGLSMch = id.GetNumGLSMch();
    size_t numCohoms = id.GetNumTargetDivisors();

    // Run through all the requested line bundle divisors
    for (size_t i=0; i<numCohoms; i++)
    {
        // Show some progress status output
        char buf[128];
        safe_sprintf(buf, sizeof(buf), "Computing target cohomology %d of %d (%.1f%% done)...", (int) (i+1), (int) numCohoms, (double) i*100 / numCohoms);
        CONSOLE_OUT(buf << "       \r");

        // Prepare the input data and compute the cohomology
        const i32vec64 &curtargetdiv = id.GetTargetDivisors()[i];
        
        CCohomology curcohom;
        curcohom.CohomologyDims.clear();
        curcohom.BundleGLSMch.assign(curtargetdiv.x, curtargetdiv.x + numGLSMch);
        curcohom.monoms = ml;
        vector<uint32_t> cohomdims;
		if (!ComputeCohomologyAndSerreDual(id, curcohom.monoms, curtargetdiv, cohomdims, curcohom.ContributingDenoms))
            return false;

        // Sort the data properly into the CCohomology structure
        size_t numentries = cohomdims.size();
        size_t dim = id.GetDimension();
        if (numentries == dim+1)
        {
            // This indicates a non-ambiguous result
            curcohom.CohomologyDims.push_back(cohomdims);
        }
        else if (numentries >= dim+2)
        {
            if (numentries == (cohomdims[dim+1] * (dim+1) + 1))
            {
                // So we have cohomdims[dim+1] results
                vector<uint32_t> tmp(cohomdims.begin(), cohomdims.begin() + dim + 1);
                curcohom.CohomologyDims.push_back(tmp);

                for (size_t j=1; j<cohomdims[dim+1]; j++)
                {
                    tmp.assign(cohomdims.begin() + j*(dim + 1) + 1, cohomdims.begin() + (j+1)*(dim + 1) + 1);
                    curcohom.CohomologyDims.push_back(tmp);
                }
            }
            else if (cohomdims[dim+1] != 0)
            {
                ERR_OUT("Internal error, wrong number of cohomology results.");
                return false;
            }
        }
        else
        {
            ERR_OUT("Internal error, wrong number of cohomology results.");
            return false;
        }

        out_cohomologies.push_back(curcohom);
    }

    CONSOLE_MSG_OUT("Computation of the target cohomology group dimensions complete.");

    return true;
}