File: SbDPLine.cpp

package info (click to toggle)
coin3 3.1.3-1
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 48,344 kB
  • ctags: 70,042
  • sloc: cpp: 314,328; ansic: 15,927; sh: 13,635; makefile: 8,780; perl: 2,149; lex: 1,302; lisp: 1,247; yacc: 184; xml: 175; sed: 68
file content (346 lines) | stat: -rw-r--r-- 11,203 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
/**************************************************************************\
 *
 *  This file is part of the Coin 3D visualization library.
 *  Copyright (C) by Kongsberg Oil & Gas Technologies.
 *
 *  This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  ("GPL") version 2 as published by the Free Software Foundation.
 *  See the file LICENSE.GPL at the root directory of this source
 *  distribution for additional information about the GNU GPL.
 *
 *  For using Coin with software that can not be combined with the GNU
 *  GPL, and for taking advantage of the additional benefits of our
 *  support services, please contact Kongsberg Oil & Gas Technologies
 *  about acquiring a Coin Professional Edition License.
 *
 *  See http://www.coin3d.org/ for more information.
 *
 *  Kongsberg Oil & Gas Technologies, Bygdoy Alle 5, 0257 Oslo, NORWAY.
 *  http://www.sim.no/  sales@sim.no  coin-support@coin3d.org
 *
\**************************************************************************/

/*!
  \class SbDPLine SbDPLinear.h Inventor/SbDPLinear.h
  \brief The SbDPLine class represents a line in 3D space.
  \ingroup base

  SbDPLine is used by many other classes in Coin.  It provides a way of
  specifying a directed line (also known as a ray) through a specified
  point (origin) and a direction in 3D space. Note that the line is
  infinite in both directions from its definition point.

  \COIN_CLASS_EXTENSION

  \sa SbVec3d
  \since Coin 2.0
*/

// FIXME: we should _really_ have double-precision classes compatible
// with those in TGS' API, for several good reasons. So either rename
// this, make a typedef (if that is sufficient), or write a "wrapper
// class" around this with inline functions, using with TGS' name for
// it. 20020225 mortene.

#include <cassert>
#include <Inventor/SbDPLine.h>
#if COIN_DEBUG
#include <Inventor/errors/SoDebugError.h>
#endif // COIN_DEBUG

/*!
  The empty constructor does nothing. The line will be uninitialized until
  the first assignment or setValue() call.
*/
SbDPLine::SbDPLine(void)
{
}

/*!
  Constructor with \a p0 specifying the line start point and \a p1 the line
  end point. \a p0 should not be the same as \a p1, as this will lead to
  having a null vector as the direction vector, which would cause division
  by zero problems in some of the other methods on this class.
*/
SbDPLine::SbDPLine(const SbVec3d& p0, const SbVec3d& p1)
{
  this->setValue(p0, p1);
}

/*!
  Set new position and direction of the line by specifying line start
  point and end point. \a p0 should not be the same as \a p1, as this
  will lead to having a null vector as the direction vector, which
  would cause division by zero problems in some of the other methods
  on this class.
*/
void
SbDPLine::setValue(const SbVec3d& p0, const SbVec3d& p1)
{
  this->pos = p0;
  this->dir = p1 - p0;

#if COIN_DEBUG
  if(!(p0 != p1)) {
    SoDebugError::postWarning("SbDPLine::setValue",
                              "The two points defining the line is "
                              "equal => line is invalid.");
    return;
  }
#endif // COIN_DEBUG

  // we test for a null vector above, just normalize
  (void) this->dir.normalize();
}

/*!
  Returns the two closest points on the lines. If the lines are
  parallel, all points are equally close and we return \c FALSE. If
  the lines are not parallel, the point positions will be stored in \a
  ptOnThis and \a ptOnLine2, and we'll return \c TRUE.

  \sa getClosestPoint().
*/
SbBool
SbDPLine::getClosestPoints(const SbDPLine& line2,
                         SbVec3d& ptOnThis, SbVec3d& ptOnLine2) const
{
#if 1
  // new optimized version based on formulas from from Boyko Bantchev

  // p1 = point on line 1
  // p2 = point on line 2
  // d1 = line 1 direction
  // d2 = line 2 direction
  // q1 = closest point on line 1
  // q2 = closest point on line 2

  // The solution (q1 and q2) must be on their respective 
  // lines:
  //
  // q1 = p1 + t1 * d1                               (0)
  // q2 = p2 + t2 * d2
  //
  // we set u = p2 - p1, and get:
  //
  // q2 - q1 = u + t2*d2 - t1*d1                     (1)
  //
  // the solution line q2 - q1 is orthogonal to d1 and d2 
  // (or a null vector if the lines intersect), which yields:
  //
  // (u + t2*d2 - t1*d1)  d1 = 0                    (2)
  // (u + t2*d2 - t1*d1)  d2 = 0
  //
  // we know |d1| and |d2| == 1, and set d1  d2 = t
  //
  // t1 - t*t2 = u  d1
  // t*t1 - t2 = u  d2
  //
  // Solve for t1, and find q1 using (0):
  //
  // t1 = (ud1 - t * (ud2))/ (1 - t^2)
  //
  // just find q2 by using line2.getClosestPoint(q1)

  SbVec3d p1 = this->pos;
  SbVec3d p2 = line2.pos;
  
  SbVec3d d1 = this->dir;
  SbVec3d d2 = line2.dir;

  SbVec3d u = p2-p1;
  double t = d1.dot(d2);

  const double eps = 1.0e-08;
  if (t < -1.0f + eps || t > 1.0f-eps) {
    // lines are parallel
    return FALSE;
  }
  t = (u.dot(d1) - t * u.dot(d2)) / (1-t*t);
  ptOnThis = p1 + t * d1;
  ptOnLine2 = line2.getClosestPoint(ptOnThis);
  return TRUE;

#else // end of new, optimized version

#if COIN_DEBUG
  if(!(this->getDirection().length() != 0.0))
    SoDebugError::postWarning("SbDPLine::getClosestPoints",
                              "This line has no direction (zero vector).");
  if(!(line2.getDirection().length() != 0.0))
    SoDebugError::postWarning("SbDPLine::getClosestPoints",
                              "argument line has no direction (zero vector).");
#endif // COIN_DEBUG

  // Check if the lines are parallel.
  // FIXME: should probably use equals() here.
  if(line2.dir == this->dir) return FALSE;
  else if(line2.dir == -this->dir) return FALSE;


  // From the discussion on getClosestPoint(), we know that the point
  // we wish to find on a line can be expressed as:
  //
  //                  (Q1-P0)D0
  //   Q0 = P0 + D0 * ----------
  //                     |D0|
  //
  // ...where P0 is a point on the first line, D0 is the direction
  // vector and Q1 is the "closest point" on the other line. From this
  // we get two equations with two unknowns. By substituting for
  // Q1 we get a new equation with a single unknown, Q0:
  //
  //                   (         (Q0 - P1)D1    )
  //                   (P1 + D1 * ------------ - P0)  D0
  //                   (             |D1|        )
  //   Q0 = P0 + D0 * ------------------------------------
  //                                |D0|
  //
  // Which obviously is bloody hard (perhaps impossible?) to solve
  // analytically. Damn. Back to the pen and pencil stuff.
  //
  // Ok, new try. Since we're looking for the minimum distance between the
  // two lines, we should be able to solve it by expressing the distance
  // between the points we want to find as a parametrized function and
  // take the derivative:
  //
  //   f(t0, t1) = |Q1 - Q0| = |P1+D1*t1 - (P0+D0*t0)|
  //
  //                         (t1*D1 - P0)D0
  // t0 can be expressed as  ---------------  which gives us
  //                               |D0|
  //
  //   f(t) = |P1 + D1*t - P0 - D0N * ((t*D1 - P0)D0)|, t = t1
  //                                                     D0N = D0 normalized
  //                               _____________
  // ..which is eual to   f(t) = \/޲ + ߲ +   , where , , and 
  // is the full expression above with the x, y, and z components
  // of the vectors.
  //
  // Since we're looking for the minimum value of the function, we can just
  // ignore the square root. We'll do the next parts of the math on a
  // general components case, since it's the same for the x, y and z parts.
  //
  // Expanding any of the , , or  expressions, we get this:
  //   (P1[i] - D1[i]*t - P0[i] - D0N[i]*D0[x]*D1[x]*t + D0N[i]*D0[x]*P0[x]
  //      - D0N[i]*D0[y]*D1[y]*t + D0N[i]*D0[y]*P0[y] - D0N[i]*D0[z]*D1[z]*t
  //      + D0N[i]*D0[z]*P0[z]) ,
  // where i=[x|y|z].
  //
  // Deriving this by using the chain rule (i.e. g(t) = 2*g(t)*g'(t)), we'll
  // get this equation for finding the t yielding the minimum distance
  // between two points Q0 and Q1 on the lines:
  //
  //      -(cx*dx+cy*dy+cz*dz)
  //  t = --------------------
  //        dx + dy + dz
  //
  //  di = D1[i] - D0N[i] * (D0[x]*D1[x] + D0[y]*D1[y] + D0[z]*D1[z])
  // and
  //  ci = P1[i] - P0[i] + D0N[i] * (D0[x]*P0[x] + D0[y]*P0[y] + D0[z]*P0[z])
  // where i=[x|y|z].
  //
  // Now we'll substitute t back in for t1 in   Q1 = P1 + D1*t1, which'll
  // also let us find Q0 by an invocation of getClosestPoint().
  //
  // That's it. I can't believe this took me 4 hours to complete. Code worked
  // on the first run, though. :-)
  //                                                           19980815 mortene.

  SbVec3d P0 = this->pos;
  SbVec3d P1 = line2.pos;
  SbVec3d D0 = this->dir;
  SbVec3d D1 = line2.dir;
  SbVec3d D0N = D0;
  
  // we warn about lines with no direction above, just normalize
  (void) D0N.normalize();

  double c[3], d[3];

  for (int i=0; i < 3; i++) {
    d[i] = (D1[i] - D0N[i]*(D0[0]*D1[0] + D0[1]*D1[1] + D0[2]*D1[2]));
    c[i] = (P1[i] - P0[i] + D0N[i]*(D0[0]*P0[0] + D0[1]*P0[1] + D0[2]*P0[2]));
  }

  double t = -(c[0]*d[0]+c[1]*d[1]+c[2]*d[2]) / (d[0]*d[0]+d[1]*d[1]+d[2]*d[2]);

  ptOnLine2 = line2.pos + line2.dir * t;
  ptOnThis = this->getClosestPoint(ptOnLine2);

  return TRUE;
#endif // old version
}

/*!
  Returns the point on the line which is closest to \a point.

  \sa getClosestPoints().
*/
SbVec3d
SbDPLine::getClosestPoint(const SbVec3d& point) const
{
  //
  //             Q      D
  //    SP x-----x------->
  //        \    |
  //         \   |
  //          \  |
  //           \ |
  //            \|
  //             x P
  //
  // P = argument point, SP = line starting point, D = line direction,
  // Q = point to find.
  //
  // Solved by:
  //                         ab
  //             comp_b(a) = ---   , a = P-SP, b = D, comp_b(a) = |Q-SP|
  //                         |b|
  //
  //  ==>   Q = SP + comp_b(a)*D
  //                                        19980815 mortene.

  // No use warning about a zero length line here. The user will get a
  // warning when the line is constructed. Also, we don't need to
  // account for the length of the direction vector, since this->dir
  // is always normalized (or a null-vector). The result will actually
  // be correct when the line has zero length, since the line starting
  // point will then be the closest point. pederb, 2005-02-24
  return this->pos + this->dir * (point - this->pos).dot(this->dir);
}

/*!
  Return a vector representing a point on the line.
 */
const SbVec3d&
SbDPLine::getPosition(void) const
{
  return this->pos;
}

/*!
  Return a vector representing the direction of the line. The direction
  vector will always be normalized.
 */
const SbVec3d&
SbDPLine::getDirection(void) const
{
  return this->dir;
}

/*!
  Dump the state of this object to the \a file stream. Only works in
  debug version of library, method does nothing in an optimized compile.
 */
void
SbDPLine::print(FILE * fp) const
{
#if COIN_DEBUG
  fprintf( fp, "p: " );
  this->getPosition().print(fp);
  fprintf( fp, "d: " );
  this->getDirection().print(fp);
#endif // COIN_DEBUG
}