File: OsiCbcSolverInterfaceTest.cpp

package info (click to toggle)
coinor-cbc 2.9.9%2Brepack1-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 7,848 kB
  • ctags: 5,787
  • sloc: cpp: 104,337; sh: 8,921; xml: 2,950; makefile: 520; ansic: 491; awk: 197
file content (785 lines) | stat: -rw-r--r-- 40,253 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
// $Id: OsiCbcSolverInterfaceTest.cpp 1854 2013-01-28 00:02:55Z stefan $
// Copyright (C) 2005, International Business Machines
// Corporation and others.  All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).

#include "CoinPragma.hpp"

//#include <cassert>
//#include <cstdlib>
//#include <cstdio>
//#include <iostream>

#include "OsiCbcSolverInterface.hpp"
#include "OsiCuts.hpp"
#include "OsiRowCut.hpp"
#include "OsiColCut.hpp"
#include "OsiUnitTests.hpp"
#include "CoinMessage.hpp"
#include "CoinModel.hpp"

//#############################################################################

namespace {
CoinPackedMatrix &BuildExmip1Mtx ()
/*
  Simple function to build a packed matrix for the exmip1 example used in
  tests. The function exists solely to hide the intermediate variables.
  Probably could be written as an initialised declaration.
  See COIN/Mps/Sample/exmip1.mps for a human-readable presentation.

  Ordered triples seem easiest. They're listed in row-major order.
*/

{ int rowndxs[] = { 0, 0, 0, 0, 0,
		    1, 1,
		    2, 2,
		    3, 3,
		    4, 4, 4 } ;
  int colndxs[] = { 0, 1, 3, 4, 7,
		    1, 2,
		    2, 5,
		    3, 6,
		    0, 4, 7 } ;
  double coeffs[] = { 3.0, 1.0, -2.0, -1.0, -1.0,
		      2.0, 1.1,
		      1.0, 1.0,
		      2.8, -1.2,
		      5.6, 1.0, 1.9 } ;

  static CoinPackedMatrix exmip1mtx =
    CoinPackedMatrix(true,&rowndxs[0],&colndxs[0],&coeffs[0],14) ;

  return (exmip1mtx) ; }
}

//--------------------------------------------------------------------------
// test solution methods.
void OsiCbcSolverInterfaceUnitTest(const std::string & mpsDir, const std::string & netlibDir)
{
  {    
    CoinRelFltEq eq;
    OsiCbcSolverInterface m;
    std::string fn = mpsDir+"exmip1";
    m.readMps(fn.c_str(),"mps");

    {
      OsiCbcSolverInterface im;    
      OSIUNITTEST_ASSERT_ERROR(im.getNumCols() == 0, {}, "cbc", "default constructor");
      OSIUNITTEST_ASSERT_ERROR(im.getModelPtr() != NULL, {}, "cbc", "default constructor");
    }
    
    // Test copy constructor and assignment operator
    {
      OsiCbcSolverInterface lhs;
      {      
        OsiCbcSolverInterface im(m);        
        
        OsiCbcSolverInterface imC1(im);
        OSIUNITTEST_ASSERT_ERROR(imC1.getModelPtr() != im.getModelPtr(), {}, "cbc", "copy constructor");
        OSIUNITTEST_ASSERT_ERROR(imC1.getNumCols()  == im.getNumCols(),  {}, "cbc", "copy constructor");
        OSIUNITTEST_ASSERT_ERROR(imC1.getNumRows()  == im.getNumRows(),  {}, "cbc", "copy constructor");
        
        OsiCbcSolverInterface imC2(im);
        OSIUNITTEST_ASSERT_ERROR(imC2.getModelPtr() != im.getModelPtr(), {}, "cbc", "copy constructor");
        OSIUNITTEST_ASSERT_ERROR(imC2.getNumCols()  == im.getNumCols(),  {}, "cbc", "copy constructor");
        OSIUNITTEST_ASSERT_ERROR(imC2.getNumRows()  == im.getNumRows(),  {}, "cbc", "copy constructor");

        OSIUNITTEST_ASSERT_ERROR(imC1.getModelPtr() != imC2.getModelPtr(), {}, "cbc", "copy constructor");
        
        lhs = imC2;
      }

      // Test that lhs has correct values even though rhs has gone out of scope
      OSIUNITTEST_ASSERT_ERROR(lhs.getModelPtr() != m.getModelPtr(), {}, "cbc", "assignment operator");
      OSIUNITTEST_ASSERT_ERROR(lhs.getNumCols()  == m.getNumCols(),  {}, "cbc", "copy constructor");
      OSIUNITTEST_ASSERT_ERROR(lhs.getNumRows()  == m.getNumRows(),  {}, "cbc", "copy constructor");
    }

    // Test clone
    {
      OsiCbcSolverInterface cbcSi(m);
      OsiSolverInterface * siPtr = &cbcSi;
      OsiSolverInterface * siClone = siPtr->clone();
      OsiCbcSolverInterface * cbcClone = dynamic_cast<OsiCbcSolverInterface*>(siClone);

      OSIUNITTEST_ASSERT_ERROR(cbcClone != NULL, {}, "cbc", "clone");
      OSIUNITTEST_ASSERT_ERROR(cbcClone->getModelPtr() != cbcSi.getModelPtr(), {}, "cbc", "clone");
      OSIUNITTEST_ASSERT_ERROR(cbcClone->getNumRows() == cbcSi.getNumRows(),   {}, "cbc", "clone");
      OSIUNITTEST_ASSERT_ERROR(cbcClone->getNumCols() == m.getNumCols(),       {}, "cbc", "clone");
      
      delete siClone;
    }
  
    // test infinity
    {
      OsiCbcSolverInterface si;
      OSIUNITTEST_ASSERT_ERROR(si.getInfinity() == OsiCbcInfinity, {}, "cbc", "infinity");
    }     
    
    // Test some catches
    if (!OsiCbcHasNDEBUG())
    {
      OsiCbcSolverInterface solver;
      try {
        solver.setObjCoeff(0,0.0);
        OSIUNITTEST_ADD_OUTCOME("cbc", "setObjCoeff on empty model", "should throw exception", OsiUnitTest::TestOutcome::ERROR, false);
      }
      catch (CoinError e) {
        if (OsiUnitTest::verbosity >= 1)
          std::cout<<"Correct throw from setObjCoeff on empty model"<<std::endl;
      }

      std::string fn = mpsDir+"exmip1";
      solver.readMps(fn.c_str(),"mps");
      OSIUNITTEST_CATCH_ERROR(solver.setObjCoeff(0,0.0), {}, "cbc", "setObjCoeff on nonempty model");

      try {
        int index[]={0,20};
        double value[]={0.0,0.0,0.0,0.0};
        solver.setColSetBounds(index,index+2,value);
        OSIUNITTEST_ADD_OUTCOME("cbc", "setColSetBounds on cols not in model", "should throw exception", OsiUnitTest::TestOutcome::ERROR, false);
      }
      catch (CoinError e) {
        if (OsiUnitTest::verbosity >= 1)
          std::cout<<"Correct throw from setObjCoeff on empty model"<<std::endl;
      }
    }
    
    {    
      OsiCbcSolverInterface cbcSi(m);
      int nc = cbcSi.getNumCols();
      int nr = cbcSi.getNumRows();
      const double * cl = cbcSi.getColLower();
      const double * cu = cbcSi.getColUpper();
      const double * rl = cbcSi.getRowLower();
      const double * ru = cbcSi.getRowUpper();
      OSIUNITTEST_ASSERT_ERROR(nc == 8, return, "cbc", "read and copy exmip1");
      OSIUNITTEST_ASSERT_ERROR(nr == 5, return, "cbc", "read and copy exmip1");
      OSIUNITTEST_ASSERT_ERROR(eq(cl[0],2.5), {}, "cbc", "read and copy exmip1");
      OSIUNITTEST_ASSERT_ERROR(eq(cl[1],0.0), {}, "cbc", "read and copy exmip1");
      OSIUNITTEST_ASSERT_ERROR(eq(cu[1],4.1), {}, "cbc", "read and copy exmip1");
      OSIUNITTEST_ASSERT_ERROR(eq(cu[2],1.0), {}, "cbc", "read and copy exmip1");
      OSIUNITTEST_ASSERT_ERROR(eq(rl[0],2.5), {}, "cbc", "read and copy exmip1");
      OSIUNITTEST_ASSERT_ERROR(eq(rl[4],3.0), {}, "cbc", "read and copy exmip1");
      OSIUNITTEST_ASSERT_ERROR(eq(ru[1],2.1), {}, "cbc", "read and copy exmip1");
      OSIUNITTEST_ASSERT_ERROR(eq(ru[4],15.), {}, "cbc", "read and copy exmip1");
      
      const double * cs = cbcSi.getColSolution();
      OSIUNITTEST_ASSERT_ERROR(eq(cs[0],2.5), {}, "cbc", "read and copy exmip1");
      OSIUNITTEST_ASSERT_ERROR(eq(cs[7],0.0), {}, "cbc", "read and copy exmip1");
      
      OSIUNITTEST_ASSERT_ERROR(!eq(cl[3],1.2345), {}, "cbc", "set col lower");
      cbcSi.setColLower( 3, 1.2345 );
      OSIUNITTEST_ASSERT_ERROR( eq(cbcSi.getColLower()[3],1.2345), {}, "cbc", "set col lower");
      
      OSIUNITTEST_ASSERT_ERROR(!eq(cbcSi.getColUpper()[4],10.2345), {}, "cbc", "set col upper");
      cbcSi.setColUpper( 4, 10.2345 );
      OSIUNITTEST_ASSERT_ERROR( eq(cbcSi.getColUpper()[4],10.2345), {}, "cbc", "set col upper");

      // LH: Objective will depend on how underlying solver constructs and maintains initial solution
      double objValue = cbcSi.getObjValue();
      OSIUNITTEST_ASSERT_ERROR(eq(objValue,3.5) || eq(objValue,10.5), {}, "cbc", "getObjValue() before solve");

      OSIUNITTEST_ASSERT_ERROR(eq(cbcSi.getObjCoefficients()[0], 1.0), {}, "cbc", "read and copy exmip1");
      OSIUNITTEST_ASSERT_ERROR(eq(cbcSi.getObjCoefficients()[1], 0.0), {}, "cbc", "read and copy exmip1");
      OSIUNITTEST_ASSERT_ERROR(eq(cbcSi.getObjCoefficients()[2], 0.0), {}, "cbc", "read and copy exmip1");
      OSIUNITTEST_ASSERT_ERROR(eq(cbcSi.getObjCoefficients()[3], 0.0), {}, "cbc", "read and copy exmip1");
      OSIUNITTEST_ASSERT_ERROR(eq(cbcSi.getObjCoefficients()[4], 2.0), {}, "cbc", "read and copy exmip1");
      OSIUNITTEST_ASSERT_ERROR(eq(cbcSi.getObjCoefficients()[5], 0.0), {}, "cbc", "read and copy exmip1");
      OSIUNITTEST_ASSERT_ERROR(eq(cbcSi.getObjCoefficients()[6], 0.0), {}, "cbc", "read and copy exmip1");
      OSIUNITTEST_ASSERT_ERROR(eq(cbcSi.getObjCoefficients()[7],-1.0), {}, "cbc", "read and copy exmip1");
    }
    
    // Test matrixByRow method
    { 
      const OsiCbcSolverInterface si(m);
      const CoinPackedMatrix * smP = si.getMatrixByRow();

      OSIUNITTEST_ASSERT_ERROR(smP->getMajorDim()    ==  5, return, "cbc", "getMatrixByRow: major dim");
      OSIUNITTEST_ASSERT_ERROR(smP->getMinorDim()    ==  8, return, "cbc", "getMatrixByRow: major dim");
      OSIUNITTEST_ASSERT_ERROR(smP->getNumElements() == 14, return, "cbc", "getMatrixByRow: num elements");
      OSIUNITTEST_ASSERT_ERROR(smP->getSizeVectorStarts() == 6, return, "cbc", "getMatrixByRow: num elements");

#ifdef OSICBC_TEST_MTX_STRUCTURE
      CoinRelFltEq eq;
      const double * ev = smP->getElements();
      OSIUNITTEST_ASSERT_ERROR(eq(ev[0],   3.0), {}, "cbc", "getMatrixByRow: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[1],   1.0), {}, "cbc", "getMatrixByRow: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[2],  -2.0), {}, "cbc", "getMatrixByRow: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[3],  -1.0), {}, "cbc", "getMatrixByRow: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[4],  -1.0), {}, "cbc", "getMatrixByRow: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[5],   2.0), {}, "cbc", "getMatrixByRow: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[6],   1.1), {}, "cbc", "getMatrixByRow: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[7],   1.0), {}, "cbc", "getMatrixByRow: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[8],   1.0), {}, "cbc", "getMatrixByRow: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[9],   2.8), {}, "cbc", "getMatrixByRow: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[10], -1.2), {}, "cbc", "getMatrixByRow: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[11],  5.6), {}, "cbc", "getMatrixByRow: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[12],  1.0), {}, "cbc", "getMatrixByRow: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[13],  1.9), {}, "cbc", "getMatrixByRow: elements");
      
      const int * mi = smP->getVectorStarts();
      OSIUNITTEST_ASSERT_ERROR(mi[0] ==  0, {}, "cbc", "getMatrixByRow: vector starts");
      OSIUNITTEST_ASSERT_ERROR(mi[1] ==  5, {}, "cbc", "getMatrixByRow: vector starts");
      OSIUNITTEST_ASSERT_ERROR(mi[2] ==  7, {}, "cbc", "getMatrixByRow: vector starts");
      OSIUNITTEST_ASSERT_ERROR(mi[3] ==  9, {}, "cbc", "getMatrixByRow: vector starts");
      OSIUNITTEST_ASSERT_ERROR(mi[4] == 11, {}, "cbc", "getMatrixByRow: vector starts");
      OSIUNITTEST_ASSERT_ERROR(mi[5] == 14, {}, "cbc", "getMatrixByRow: vector starts");
      
      const int * ei = smP->getIndices();
      OSIUNITTEST_ASSERT_ERROR(ei[ 0] == 0, {}, "cbc", "getMatrixByRow: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[ 1] == 1, {}, "cbc", "getMatrixByRow: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[ 2] == 3, {}, "cbc", "getMatrixByRow: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[ 3] == 4, {}, "cbc", "getMatrixByRow: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[ 4] == 7, {}, "cbc", "getMatrixByRow: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[ 5] == 1, {}, "cbc", "getMatrixByRow: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[ 6] == 2, {}, "cbc", "getMatrixByRow: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[ 7] == 2, {}, "cbc", "getMatrixByRow: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[ 8] == 5, {}, "cbc", "getMatrixByRow: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[ 9] == 3, {}, "cbc", "getMatrixByRow: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[10] == 6, {}, "cbc", "getMatrixByRow: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[11] == 0, {}, "cbc", "getMatrixByRow: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[12] == 4, {}, "cbc", "getMatrixByRow: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[13] == 7, {}, "cbc", "getMatrixByRow: indices");
#else	// OSICBC_TEST_MTX_STRUCTURE

      CoinPackedMatrix exmip1Mtx ;
      exmip1Mtx.reverseOrderedCopyOf(BuildExmip1Mtx()) ;
      OSIUNITTEST_ASSERT_ERROR(exmip1Mtx.isEquivalent(*smP), {}, "cbc", "getMatrixByRow") ;
#endif	// OSICBC_TEST_MTX_STRUCTURE
    }

    // Test adding several cuts, and handling of a coefficient of infinity
    // in the constraint matrix.
    {
      OsiCbcSolverInterface fim;
      std::string fn = mpsDir+"exmip1";
      fim.readMps(fn.c_str(),"mps");
      // exmip1.mps has 2 integer variables with index 2 & 3
      fim.initialSolve();
      OsiRowCut cuts[3];
      
      
      // Generate one ineffective cut plus two trivial cuts
      int c;
      int nc = fim.getNumCols();
      int *inx = new int[nc];
      for (c=0;c<nc;c++) inx[c]=c;
      double *el = new double[nc];
      for (c=0;c<nc;c++) el[c]=1.0e-50+((double)c)*((double)c);
      
      cuts[0].setRow(nc,inx,el);
      cuts[0].setLb(-100.);
      cuts[0].setUb(500.);
      cuts[0].setEffectiveness(22);
      el[4]=0.0; // to get inf later
      
      for (c=2;c<4;c++) {
        el[0]=1.0;
        inx[0]=c;
        cuts[c-1].setRow(1,inx,el);
        cuts[c-1].setLb(1.);
        cuts[c-1].setUb(100.);
        cuts[c-1].setEffectiveness(c);
      }
      fim.writeMps("x1.mps");
      fim.applyRowCuts(3,cuts);
      fim.writeMps("x2.mps");
      // resolve - should get message about zero elements
      fim.resolve();
      fim.writeMps("x3.mps");
      // check integer solution
      const double * cs = fim.getColSolution();
      CoinRelFltEq eq;
      OSIUNITTEST_ASSERT_ERROR(eq(cs[2], 1.0), {}, "cbc", "add cuts");
      OSIUNITTEST_ASSERT_ERROR(eq(cs[3], 1.0), {}, "cbc", "add cuts");
      // check will find invalid matrix
      el[0]=1.0/el[4];
      inx[0]=0;
      cuts[0].setRow(nc,inx,el);
      cuts[0].setLb(-100.);
      cuts[0].setUb(500.);
      cuts[0].setEffectiveness(22);
      fim.applyRowCut(cuts[0]);
      // resolve - should get message about zero elements
      fim.resolve();
      OSIUNITTEST_ASSERT_WARNING(fim.isAbandoned(), {}, "cbc", "add cuts");
      delete[]el;
      delete[]inx;
    }

    // Test matrixByCol method
    {
      const OsiCbcSolverInterface si(m);
      const CoinPackedMatrix * smP = si.getMatrixByCol();

      OSIUNITTEST_ASSERT_ERROR(smP->getMajorDim()    ==  8, return, "cbc", "getMatrixByCol: major dim");
      OSIUNITTEST_ASSERT_ERROR(smP->getMinorDim()    ==  5, return, "cbc", "getMatrixByCol: minor dim");
      OSIUNITTEST_ASSERT_ERROR(smP->getNumElements() == 14, return, "cbc", "getMatrixByCol: number of elements");
      OSIUNITTEST_ASSERT_ERROR(smP->getSizeVectorStarts() == 9, return, "cbc", "getMatrixByCol: vector starts size");

#ifdef OSICBC_TEST_MTX_STRUCTURE
      CoinRelFltEq eq;
      const double * ev = smP->getElements();
      OSIUNITTEST_ASSERT_ERROR(eq(ev[ 0], 3.0), {}, "cbc", "getMatrixByCol: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[ 1], 5.6), {}, "cbc", "getMatrixByCol: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[ 2], 1.0), {}, "cbc", "getMatrixByCol: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[ 3], 2.0), {}, "cbc", "getMatrixByCol: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[ 4], 1.1), {}, "cbc", "getMatrixByCol: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[ 5], 1.0), {}, "cbc", "getMatrixByCol: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[ 6],-2.0), {}, "cbc", "getMatrixByCol: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[ 7], 2.8), {}, "cbc", "getMatrixByCol: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[ 8],-1.0), {}, "cbc", "getMatrixByCol: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[ 9], 1.0), {}, "cbc", "getMatrixByCol: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[10], 1.0), {}, "cbc", "getMatrixByCol: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[11],-1.2), {}, "cbc", "getMatrixByCol: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[12],-1.0), {}, "cbc", "getMatrixByCol: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[13], 1.9), {}, "cbc", "getMatrixByCol: elements");
      
      const CoinBigIndex * mi = smP->getVectorStarts();
      OSIUNITTEST_ASSERT_ERROR(mi[0] ==  0, {}, "cbc", "getMatrixByCol: vector starts");
      OSIUNITTEST_ASSERT_ERROR(mi[1] ==  2, {}, "cbc", "getMatrixByCol: vector starts");
      OSIUNITTEST_ASSERT_ERROR(mi[2] ==  4, {}, "cbc", "getMatrixByCol: vector starts");
      OSIUNITTEST_ASSERT_ERROR(mi[3] ==  6, {}, "cbc", "getMatrixByCol: vector starts");
      OSIUNITTEST_ASSERT_ERROR(mi[4] ==  8, {}, "cbc", "getMatrixByCol: vector starts");
      OSIUNITTEST_ASSERT_ERROR(mi[5] == 10, {}, "cbc", "getMatrixByCol: vector starts");
      OSIUNITTEST_ASSERT_ERROR(mi[6] == 11, {}, "cbc", "getMatrixByCol: vector starts");
      OSIUNITTEST_ASSERT_ERROR(mi[7] == 12, {}, "cbc", "getMatrixByCol: vector starts");
      OSIUNITTEST_ASSERT_ERROR(mi[8] == 14, {}, "cbc", "getMatrixByCol: vector starts");
      
      const int * ei = smP->getIndices();
      OSIUNITTEST_ASSERT_ERROR(ei[ 0] == 0, {}, "cbc", "getMatrixByCol: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[ 1] == 4, {}, "cbc", "getMatrixByCol: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[ 2] == 0, {}, "cbc", "getMatrixByCol: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[ 3] == 1, {}, "cbc", "getMatrixByCol: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[ 4] == 1, {}, "cbc", "getMatrixByCol: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[ 5] == 2, {}, "cbc", "getMatrixByCol: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[ 6] == 0, {}, "cbc", "getMatrixByCol: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[ 7] == 3, {}, "cbc", "getMatrixByCol: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[ 8] == 0, {}, "cbc", "getMatrixByCol: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[ 9] == 4, {}, "cbc", "getMatrixByCol: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[10] == 2, {}, "cbc", "getMatrixByCol: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[11] == 3, {}, "cbc", "getMatrixByCol: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[12] == 0, {}, "cbc", "getMatrixByCol: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[13] == 4, {}, "cbc", "getMatrixByCol: indices");
#else // OSICBC_TEST_MTX_STRUCTURE

      CoinPackedMatrix &exmip1Mtx = BuildExmip1Mtx() ;
      OSIUNITTEST_ASSERT_ERROR(exmip1Mtx.isEquivalent(*smP), {}, "cbc", "getMatrixByCol");
#endif	// OSICBC_TEST_MTX_STRUCTURE     
    }

    //--------------
    // Test rowsense, rhs, rowrange, matrixByRow, solver assignment
    {
      OsiCbcSolverInterface lhs;
      {
        OsiCbcSolverInterface siC1(m);

        const char   * siC1rs  = siC1.getRowSense();
        OSIUNITTEST_ASSERT_ERROR(siC1rs[0] == 'G', {}, "cbc", "row sense");
        OSIUNITTEST_ASSERT_ERROR(siC1rs[1] == 'L', {}, "cbc", "row sense");
        OSIUNITTEST_ASSERT_ERROR(siC1rs[2] == 'E', {}, "cbc", "row sense");
        OSIUNITTEST_ASSERT_ERROR(siC1rs[3] == 'R', {}, "cbc", "row sense");
        OSIUNITTEST_ASSERT_ERROR(siC1rs[4] == 'R', {}, "cbc", "row sense");

        const double * siC1rhs = siC1.getRightHandSide();
        OSIUNITTEST_ASSERT_ERROR(eq(siC1rhs[0],2.5), {}, "cbc", "right hand side");
        OSIUNITTEST_ASSERT_ERROR(eq(siC1rhs[1],2.1), {}, "cbc", "right hand side");
        OSIUNITTEST_ASSERT_ERROR(eq(siC1rhs[2],4.0), {}, "cbc", "right hand side");
        OSIUNITTEST_ASSERT_ERROR(eq(siC1rhs[3],5.0), {}, "cbc", "right hand side");
        OSIUNITTEST_ASSERT_ERROR(eq(siC1rhs[4],15.), {}, "cbc", "right hand side");

        const double * siC1rr  = siC1.getRowRange();
        OSIUNITTEST_ASSERT_ERROR(eq(siC1rr[0],0.0), {}, "cbc", "row range");
        OSIUNITTEST_ASSERT_ERROR(eq(siC1rr[1],0.0), {}, "cbc", "row range");
        OSIUNITTEST_ASSERT_ERROR(eq(siC1rr[2],0.0), {}, "cbc", "row range");
        OSIUNITTEST_ASSERT_ERROR(eq(siC1rr[3],5.0-1.8), {}, "cbc", "row range");
        OSIUNITTEST_ASSERT_ERROR(eq(siC1rr[4],15.0-3.0), {}, "cbc", "row range");
        
        const CoinPackedMatrix * siC1mbr = siC1.getMatrixByRow();
        OSIUNITTEST_ASSERT_ERROR(siC1mbr != NULL, {}, "cbc", "matrix by row");
        OSIUNITTEST_ASSERT_ERROR(siC1mbr->getMajorDim()    ==  5, return, "cbc", "matrix by row: major dim");
        OSIUNITTEST_ASSERT_ERROR(siC1mbr->getMinorDim()    ==  8, return, "cbc", "matrix by row: major dim");
        OSIUNITTEST_ASSERT_ERROR(siC1mbr->getNumElements() == 14, return, "cbc", "matrix by row: num elements");
        OSIUNITTEST_ASSERT_ERROR(siC1mbr->getSizeVectorStarts() == 6, return, "cbc", "matrix by row: num elements");

#ifdef OSICBC_TEST_MTX_STRUCTURE
        const double * ev = siC1mbr->getElements();
        OSIUNITTEST_ASSERT_ERROR(eq(ev[ 0], 3.0), {}, "cbc", "matrix by row: elements");
        OSIUNITTEST_ASSERT_ERROR(eq(ev[ 1], 1.0), {}, "cbc", "matrix by row: elements");
        OSIUNITTEST_ASSERT_ERROR(eq(ev[ 2],-2.0), {}, "cbc", "matrix by row: elements");
        OSIUNITTEST_ASSERT_ERROR(eq(ev[ 3],-1.0), {}, "cbc", "matrix by row: elements");
        OSIUNITTEST_ASSERT_ERROR(eq(ev[ 4],-1.0), {}, "cbc", "matrix by row: elements");
        OSIUNITTEST_ASSERT_ERROR(eq(ev[ 5], 2.0), {}, "cbc", "matrix by row: elements");
        OSIUNITTEST_ASSERT_ERROR(eq(ev[ 6], 1.1), {}, "cbc", "matrix by row: elements");
        OSIUNITTEST_ASSERT_ERROR(eq(ev[ 7], 1.0), {}, "cbc", "matrix by row: elements");
        OSIUNITTEST_ASSERT_ERROR(eq(ev[ 8], 1.0), {}, "cbc", "matrix by row: elements");
        OSIUNITTEST_ASSERT_ERROR(eq(ev[ 9], 2.8), {}, "cbc", "matrix by row: elements");
        OSIUNITTEST_ASSERT_ERROR(eq(ev[10],-1.2), {}, "cbc", "matrix by row: elements");
        OSIUNITTEST_ASSERT_ERROR(eq(ev[11], 5.6), {}, "cbc", "matrix by row: elements");
        OSIUNITTEST_ASSERT_ERROR(eq(ev[12], 1.0), {}, "cbc", "matrix by row: elements");
        OSIUNITTEST_ASSERT_ERROR(eq(ev[13], 1.9), {}, "cbc", "matrix by row: elements");

        const CoinBigIndex * mi = siC1mbr->getVectorStarts();
        OSIUNITTEST_ASSERT_ERROR(mi[0] ==  0, {}, "cbc", "matrix by row: vector starts");
        OSIUNITTEST_ASSERT_ERROR(mi[1] ==  5, {}, "cbc", "matrix by row: vector starts");
        OSIUNITTEST_ASSERT_ERROR(mi[2] ==  7, {}, "cbc", "matrix by row: vector starts");
        OSIUNITTEST_ASSERT_ERROR(mi[3] ==  9, {}, "cbc", "matrix by row: vector starts");
        OSIUNITTEST_ASSERT_ERROR(mi[4] == 11, {}, "cbc", "matrix by row: vector starts");
        OSIUNITTEST_ASSERT_ERROR(mi[5] == 14, {}, "cbc", "matrix by row: vector starts");

        const int * ei = siC1mbr->getIndices();
        OSIUNITTEST_ASSERT_ERROR(ei[ 0] == 0, {}, "cbc", "matrix by row: indices");
        OSIUNITTEST_ASSERT_ERROR(ei[ 1] == 1, {}, "cbc", "matrix by row: indices");
        OSIUNITTEST_ASSERT_ERROR(ei[ 2] == 3, {}, "cbc", "matrix by row: indices");
        OSIUNITTEST_ASSERT_ERROR(ei[ 3] == 4, {}, "cbc", "matrix by row: indices");
        OSIUNITTEST_ASSERT_ERROR(ei[ 4] == 7, {}, "cbc", "matrix by row: indices");
        OSIUNITTEST_ASSERT_ERROR(ei[ 5] == 1, {}, "cbc", "matrix by row: indices");
        OSIUNITTEST_ASSERT_ERROR(ei[ 6] == 2, {}, "cbc", "matrix by row: indices");
        OSIUNITTEST_ASSERT_ERROR(ei[ 7] == 2, {}, "cbc", "matrix by row: indices");
        OSIUNITTEST_ASSERT_ERROR(ei[ 8] == 5, {}, "cbc", "matrix by row: indices");
        OSIUNITTEST_ASSERT_ERROR(ei[ 9] == 3, {}, "cbc", "matrix by row: indices");
        OSIUNITTEST_ASSERT_ERROR(ei[10] == 6, {}, "cbc", "matrix by row: indices");
        OSIUNITTEST_ASSERT_ERROR(ei[11] == 0, {}, "cbc", "matrix by row: indices");
        OSIUNITTEST_ASSERT_ERROR(ei[12] == 4, {}, "cbc", "matrix by row: indices");
        OSIUNITTEST_ASSERT_ERROR(ei[13] == 7, {}, "cbc", "matrix by row: indices");
#else	// OSICBC_TEST_MTX_STRUCTURE

        CoinPackedMatrix exmip1Mtx ;
        exmip1Mtx.reverseOrderedCopyOf(BuildExmip1Mtx()) ;
        OSIUNITTEST_ASSERT_ERROR(exmip1Mtx.isEquivalent(*siC1mbr), {}, "cbc", "matrix by row");
#endif	// OSICBC_TEST_MTX_STRUCTURE

        OSIUNITTEST_ASSERT_WARNING(siC1rs  == siC1.getRowSense(), {}, "cbc", "row sense");
        OSIUNITTEST_ASSERT_WARNING(siC1rhs == siC1.getRightHandSide(), {}, "cbc", "right hand side");
        OSIUNITTEST_ASSERT_WARNING(siC1rr  == siC1.getRowRange(), {}, "cbc", "row range");

        // Change CBC Model by adding free row
        OsiRowCut rc;
        rc.setLb(-COIN_DBL_MAX);
        rc.setUb( COIN_DBL_MAX);
        OsiCuts cuts;
        cuts.insert(rc);
        siC1.applyCuts(cuts);

        siC1rs  = siC1.getRowSense();
        OSIUNITTEST_ASSERT_ERROR(siC1rs[0] == 'G', {}, "cbc", "row sense after adding row");
        OSIUNITTEST_ASSERT_ERROR(siC1rs[1] == 'L', {}, "cbc", "row sense after adding row");
        OSIUNITTEST_ASSERT_ERROR(siC1rs[2] == 'E', {}, "cbc", "row sense after adding row");
        OSIUNITTEST_ASSERT_ERROR(siC1rs[3] == 'R', {}, "cbc", "row sense after adding row");
        OSIUNITTEST_ASSERT_ERROR(siC1rs[4] == 'R', {}, "cbc", "row sense after adding row");
        OSIUNITTEST_ASSERT_ERROR(siC1rs[5] == 'N', {}, "cbc", "row sense after adding row");

        siC1rhs = siC1.getRightHandSide();
        OSIUNITTEST_ASSERT_ERROR(eq(siC1rhs[0],2.5), {}, "cbc", "right hand side after adding row");
        OSIUNITTEST_ASSERT_ERROR(eq(siC1rhs[1],2.1), {}, "cbc", "right hand side after adding row");
        OSIUNITTEST_ASSERT_ERROR(eq(siC1rhs[2],4.0), {}, "cbc", "right hand side after adding row");
        OSIUNITTEST_ASSERT_ERROR(eq(siC1rhs[3],5.0), {}, "cbc", "right hand side after adding row");
        OSIUNITTEST_ASSERT_ERROR(eq(siC1rhs[4],15.), {}, "cbc", "right hand side after adding row");
        OSIUNITTEST_ASSERT_ERROR(eq(siC1rhs[5],0.0), {}, "cbc", "right hand side after adding row");

        siC1rr  = siC1.getRowRange();
        OSIUNITTEST_ASSERT_ERROR(eq(siC1rr[0],0.0), {}, "cbc", "row range after adding row");
        OSIUNITTEST_ASSERT_ERROR(eq(siC1rr[1],0.0), {}, "cbc", "row range after adding row");
        OSIUNITTEST_ASSERT_ERROR(eq(siC1rr[2],0.0), {}, "cbc", "row range after adding row");
        OSIUNITTEST_ASSERT_ERROR(eq(siC1rr[3],5.0-1.8), {}, "cbc", "row range after adding row");
        OSIUNITTEST_ASSERT_ERROR(eq(siC1rr[4],15.0-3.0), {}, "cbc", "row range after adding row");
        OSIUNITTEST_ASSERT_ERROR(eq(siC1rr[5],0.0), {}, "cbc", "row range after adding row");

        lhs = siC1;
      }

      // Test that lhs has correct values even though siC1 has gone out of scope    
      const char * lhsrs  = lhs.getRowSense();
      OSIUNITTEST_ASSERT_ERROR(lhsrs[0] == 'G', {}, "cbc", "row sense after assignment");
      OSIUNITTEST_ASSERT_ERROR(lhsrs[1] == 'L', {}, "cbc", "row sense after assignment");
      OSIUNITTEST_ASSERT_ERROR(lhsrs[2] == 'E', {}, "cbc", "row sense after assignment");
      OSIUNITTEST_ASSERT_ERROR(lhsrs[3] == 'R', {}, "cbc", "row sense after assignment");
      OSIUNITTEST_ASSERT_ERROR(lhsrs[4] == 'R', {}, "cbc", "row sense after assignment");
      OSIUNITTEST_ASSERT_ERROR(lhsrs[5] == 'N', {}, "cbc", "row sense after assignment");
      
      const double * lhsrhs = lhs.getRightHandSide();
      OSIUNITTEST_ASSERT_ERROR(eq(lhsrhs[0],2.5), {}, "cbc", "right hand side after assignment");
      OSIUNITTEST_ASSERT_ERROR(eq(lhsrhs[1],2.1), {}, "cbc", "right hand side after assignment");
      OSIUNITTEST_ASSERT_ERROR(eq(lhsrhs[2],4.0), {}, "cbc", "right hand side after assignment");
      OSIUNITTEST_ASSERT_ERROR(eq(lhsrhs[3],5.0), {}, "cbc", "right hand side after assignment");
      OSIUNITTEST_ASSERT_ERROR(eq(lhsrhs[4],15.), {}, "cbc", "right hand side after assignment");
      OSIUNITTEST_ASSERT_ERROR(eq(lhsrhs[5],0.0), {}, "cbc", "right hand side after assignment");
      
      const double *lhsrr = lhs.getRowRange();
      OSIUNITTEST_ASSERT_ERROR(eq(lhsrr[0],0.0), {}, "cbc", "row range after assignment");
      OSIUNITTEST_ASSERT_ERROR(eq(lhsrr[1],0.0), {}, "cbc", "row range after assignment");
      OSIUNITTEST_ASSERT_ERROR(eq(lhsrr[2],0.0), {}, "cbc", "row range after assignment");
      OSIUNITTEST_ASSERT_ERROR(eq(lhsrr[3],5.0-1.8), {}, "cbc", "row range after assignment");
      OSIUNITTEST_ASSERT_ERROR(eq(lhsrr[4],15.0-3.0), {}, "cbc", "row range after assignment");
      OSIUNITTEST_ASSERT_ERROR(eq(lhsrr[5],0.0), {}, "cbc", "row range after assignment");
      
      const CoinPackedMatrix * lhsmbr = lhs.getMatrixByRow();
      OSIUNITTEST_ASSERT_ERROR(lhsmbr != NULL, {}, "cbc", "matrix by row after assignment");
      OSIUNITTEST_ASSERT_ERROR(lhsmbr->getMajorDim()    ==  6, return, "cbc", "matrix by row after assignment: major dim");
      OSIUNITTEST_ASSERT_ERROR(lhsmbr->getNumElements() == 14, return, "cbc", "matrix by row after assignment: num elements");


#ifdef OSICBC_TEST_MTX_STRUCTURE
      const double * ev = lhsmbr->getElements();
      OSIUNITTEST_ASSERT_ERROR(eq(ev[ 0], 3.0), {}, "cbc", "matrix by row after assignment: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[ 1], 1.0), {}, "cbc", "matrix by row after assignment: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[ 2],-2.0), {}, "cbc", "matrix by row after assignment: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[ 3],-1.0), {}, "cbc", "matrix by row after assignment: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[ 4],-1.0), {}, "cbc", "matrix by row after assignment: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[ 5], 2.0), {}, "cbc", "matrix by row after assignment: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[ 6], 1.1), {}, "cbc", "matrix by row after assignment: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[ 7], 1.0), {}, "cbc", "matrix by row after assignment: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[ 8], 1.0), {}, "cbc", "matrix by row after assignment: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[ 9], 2.8), {}, "cbc", "matrix by row after assignment: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[10],-1.2), {}, "cbc", "matrix by row after assignment: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[11], 5.6), {}, "cbc", "matrix by row after assignment: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[12], 1.0), {}, "cbc", "matrix by row after assignment: elements");
      OSIUNITTEST_ASSERT_ERROR(eq(ev[13], 1.9), {}, "cbc", "matrix by row after assignment: elements");
      
      const CoinBigIndex * mi = lhsmbr->getVectorStarts();
      OSIUNITTEST_ASSERT_ERROR(mi[0] ==  0, {}, "cbc", "matrix by row after assignment: vector starts");
      OSIUNITTEST_ASSERT_ERROR(mi[1] ==  5, {}, "cbc", "matrix by row after assignment: vector starts");
      OSIUNITTEST_ASSERT_ERROR(mi[2] ==  7, {}, "cbc", "matrix by row after assignment: vector starts");
      OSIUNITTEST_ASSERT_ERROR(mi[3] ==  9, {}, "cbc", "matrix by row after assignment: vector starts");
      OSIUNITTEST_ASSERT_ERROR(mi[4] == 11, {}, "cbc", "matrix by row after assignment: vector starts");
      OSIUNITTEST_ASSERT_ERROR(mi[5] == 14, {}, "cbc", "matrix by row after assignment: vector starts");
      
      const int * ei = lhsmbr->getIndices();
      OSIUNITTEST_ASSERT_ERROR(ei[ 0] == 0, {}, "cbc", "matrix by row after assignment: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[ 1] == 1, {}, "cbc", "matrix by row after assignment: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[ 2] == 3, {}, "cbc", "matrix by row after assignment: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[ 3] == 4, {}, "cbc", "matrix by row after assignment: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[ 4] == 7, {}, "cbc", "matrix by row after assignment: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[ 5] == 1, {}, "cbc", "matrix by row after assignment: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[ 6] == 2, {}, "cbc", "matrix by row after assignment: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[ 7] == 2, {}, "cbc", "matrix by row after assignment: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[ 8] == 5, {}, "cbc", "matrix by row after assignment: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[ 9] == 3, {}, "cbc", "matrix by row after assignment: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[10] == 6, {}, "cbc", "matrix by row after assignment: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[11] == 0, {}, "cbc", "matrix by row after assignment: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[12] == 4, {}, "cbc", "matrix by row after assignment: indices");
      OSIUNITTEST_ASSERT_ERROR(ei[13] == 7, {}, "cbc", "matrix by row after assignment: indices");
#else	// OSICBC_TEST_MTX_STRUCTURE

/*
  This admittedly looks bogus, but it's the equivalent operation on the matrix
  for inserting a cut of the form -Inf <= +Inf (i.e., a cut with no
  coefficients).
*/
      CoinPackedMatrix exmip1Mtx ;
      exmip1Mtx.reverseOrderedCopyOf(BuildExmip1Mtx()) ;
      CoinPackedVector freeRow ;
      exmip1Mtx.appendRow(freeRow) ;
      OSIUNITTEST_ASSERT_ERROR(exmip1Mtx.isEquivalent(*lhsmbr), {}, "cbc", "matrix by row after assignment");
#endif	// OSICBC_TEST_MTX_STRUCTURE
    }
  }

  // Test add/delete columns
  {    
    OsiCbcSolverInterface m;
    std::string fn = mpsDir+"p0033";
    m.readMps(fn.c_str(),"mps");
    double inf = m.getInfinity();

    CoinPackedVector c0;
    c0.insert(0, 4);
    c0.insert(1, 1);
    m.addCol(c0, 0, inf, 3);
    m.initialSolve();
    double objValue = m.getObjValue();
    CoinRelFltEq eq(1.0e-2);
    OSIUNITTEST_ASSERT_ERROR(eq(objValue,2520.57), {}, "cbc", "objvalue after adding col");

    // Try deleting first column that's nonbasic at lower bound (0).
    int * d = new int[1];
    CoinWarmStartBasis *cwsb = dynamic_cast<CoinWarmStartBasis *>(m.getWarmStart()) ;
    OSIUNITTEST_ASSERT_ERROR(cwsb != NULL, {}, "cbc", "get warmstart basis");
    CoinWarmStartBasis::Status stati ;
    int iCol ;
    for (iCol = 0 ;  iCol < cwsb->getNumStructural() ; iCol++)
    { stati = cwsb->getStructStatus(iCol) ;
      if (stati == CoinWarmStartBasis::atLowerBound) break ; }
    d[0]=iCol;
    m.deleteCols(1,d);
    delete [] d;
    delete cwsb;
    d=NULL;
    m.resolve();
    objValue = m.getObjValue();
    OSIUNITTEST_ASSERT_ERROR(eq(objValue,2520.57), {}, "clp", "objvalue after deleting first col");

    // Try deleting column we added. If basic, go to initialSolve as deleting
    // basic variable trashes basis required for warm start.
    iCol = m.getNumCols()-1;
    cwsb = dynamic_cast<CoinWarmStartBasis *>(m.getWarmStart()) ;
    stati =  cwsb->getStructStatus(iCol) ;
    delete cwsb;
    m.deleteCols(1,&iCol);
    if (stati == CoinWarmStartBasis::basic)
    { m.initialSolve() ; }
    else
    { m.resolve(); }
    objValue = m.getObjValue();
    OSIUNITTEST_ASSERT_ERROR(eq(objValue,2520.57), {}, "clp", "objvalue after deleting added col");
  }

  // Build a model
  {    
    OsiCbcSolverInterface model;
    std::string fn = mpsDir+"p0033";
    model.readMps(fn.c_str(),"mps");
    // Point to data
    int numberRows = model.getNumRows();
    const double * rowLower = model.getRowLower();
    const double * rowUpper = model.getRowUpper();
    int numberColumns = model.getNumCols();
    const double * columnLower = model.getColLower();
    const double * columnUpper = model.getColUpper();
    const double * columnObjective = model.getObjCoefficients();
    // get row copy
    CoinPackedMatrix rowCopy = *model.getMatrixByRow();
    const int * column = rowCopy.getIndices();
    const int * rowLength = rowCopy.getVectorLengths();
    const CoinBigIndex * rowStart = rowCopy.getVectorStarts();
    const double * element = rowCopy.getElements();
    
    // solve
    model.initialSolve();
    // Now build new model
    CoinModel build;
    // Row bounds
    int iRow;
    for (iRow=0;iRow<numberRows;iRow++) {
      build.setRowBounds(iRow,rowLower[iRow],rowUpper[iRow]);
    }
    // Column bounds and objective
    int iColumn;
    for (iColumn=0;iColumn<numberColumns;iColumn++) {
      build.setColumnLower(iColumn,columnLower[iColumn]);
      build.setColumnUpper(iColumn,columnUpper[iColumn]);
      build.setObjective(iColumn,columnObjective[iColumn]);
    }
    // Adds elements one by one by row (backwards by row)
    for (iRow=numberRows-1;iRow>=0;iRow--) {
      int start = rowStart[iRow];
      for (int j=start;j<start+rowLength[iRow];j++) 
        build(iRow,column[j],element[j]);
    }
    // Now create Model
    OsiCbcSolverInterface model2;
    model2.loadFromCoinModel(build);
    model2.initialSolve();
    // Save - should be continuous
    model2.writeMps("continuous");
    int * whichInteger = new int[numberColumns];
    for (iColumn=0;iColumn<numberColumns;iColumn++) 
      whichInteger[iColumn]=iColumn;
    // mark as integer
    model2.setInteger(whichInteger,numberColumns);
    delete [] whichInteger;
    // save - should be integer
    model2.writeMps("integer");
    
    // Now do with strings attached
    // Save build to show how to go over rows
    CoinModel saveBuild = build;
    build = CoinModel();
    // Column bounds
    for (iColumn=0;iColumn<numberColumns;iColumn++) {
      build.setColumnLower(iColumn,columnLower[iColumn]);
      build.setColumnUpper(iColumn,columnUpper[iColumn]);
    }
    // Objective - half the columns as is and half with multiplier of "1.0+multiplier"
    // Pick up from saveBuild (for no reason at all)
    for (iColumn=0;iColumn<numberColumns;iColumn++) {
      double value = saveBuild.objective(iColumn);
      if (iColumn*2<numberColumns) {
        build.setObjective(iColumn,columnObjective[iColumn]);
      } else {
        // create as string
        char temp[100];
        sprintf(temp,"%g + abs(%g*multiplier)",value,value);
        build.setObjective(iColumn,temp);
      }
    }
    // It then adds rows one by one but for half the rows sets their values
    //      with multiplier of "1.0+1.5*multiplier"
    for (iRow=0;iRow<numberRows;iRow++) {
      if (iRow*2<numberRows) {
        // add row in simple way
        int start = rowStart[iRow];
        build.addRow(rowLength[iRow],column+start,element+start,
                     rowLower[iRow],rowUpper[iRow]);
      } else {
        // As we have to add one by one let's get from saveBuild
        CoinModelLink triple=saveBuild.firstInRow(iRow);
        while (triple.column()>=0) {
          int iColumn = triple.column();
          if (iColumn*2<numberColumns) {
            // just value as normal
            build(iRow,triple.column(),triple.value());
          } else {
            // create as string
            char temp[100];
            sprintf(temp,"%g + (1.5*%g*multiplier)",triple.value(), triple.value());
            build(iRow,iColumn,temp);
          }
          triple=saveBuild.next(triple);
        }
        // but remember to do rhs
        build.setRowLower(iRow,rowLower[iRow]);
        build.setRowUpper(iRow,rowUpper[iRow]);
      }
    }
    // If small switch on error printing
    if (numberColumns<50)
      build.setLogLevel(1);
    // should fail as we never set multiplier
    OSIUNITTEST_ASSERT_ERROR(model2.loadFromCoinModel(build) != 0, {}, "cbc", "build model with missing multipliers");
    build.associateElement("multiplier",0.0);
    OSIUNITTEST_ASSERT_ERROR(model2.loadFromCoinModel(build) == 0, {}, "cbc", "build model");
    model2.initialSolve();
    // It then loops with multiplier going from 0.0 to 2.0 in increments of 0.1
    for (double multiplier=0.0;multiplier<2.0;multiplier+= 0.1) {
      build.associateElement("multiplier",multiplier);
      OSIUNITTEST_ASSERT_ERROR(model2.loadFromCoinModel(build,true) == 0, {}, "cbc", "build model with increasing multiplier");
      model2.resolve();
    }
  }

  // branch and bound
  {    
    OsiCbcSolverInterface m;
    std::string fn = mpsDir+"p0033";
    m.readMps(fn.c_str(),"mps");
    m.initialSolve();
    //m.messageHandler()->setLogLevel(0);
    m.getModelPtr()->messageHandler()->setLogLevel(0);
    m.branchAndBound();
  }

  // branch and bound using CbcModel!!!!!!!
  {    
    OsiCbcSolverInterface mm;
    OsiCbcSolverInterface m(&mm);
    std::string fn = mpsDir+"p0033";
    m.readMps(fn.c_str(),"mps");
    m.initialSolve();
    m.branchAndBound();
  }

  // Do common solverInterface testing 
  {
    OsiCbcSolverInterface m;
    OsiSolverInterfaceCommonUnitTest(&m, mpsDir,netlibDir);
  }
  {
    OsiCbcSolverInterface mm;
    OsiCbcSolverInterface m(&mm);
    OsiSolverInterfaceCommonUnitTest(&m, mpsDir,netlibDir);
  }
}