1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
|
// $Id: OsiCbcSolverInterfaceTest.cpp 1854 2013-01-28 00:02:55Z stefan $
// Copyright (C) 2005, International Business Machines
// Corporation and others. All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).
#include "CoinPragma.hpp"
//#include <cassert>
//#include <cstdlib>
//#include <cstdio>
//#include <iostream>
#include "OsiCbcSolverInterface.hpp"
#include "OsiCuts.hpp"
#include "OsiRowCut.hpp"
#include "OsiColCut.hpp"
#include "OsiUnitTests.hpp"
#include "CoinMessage.hpp"
#include "CoinModel.hpp"
//#############################################################################
namespace {
CoinPackedMatrix &BuildExmip1Mtx ()
/*
Simple function to build a packed matrix for the exmip1 example used in
tests. The function exists solely to hide the intermediate variables.
Probably could be written as an initialised declaration.
See COIN/Mps/Sample/exmip1.mps for a human-readable presentation.
Ordered triples seem easiest. They're listed in row-major order.
*/
{ int rowndxs[] = { 0, 0, 0, 0, 0,
1, 1,
2, 2,
3, 3,
4, 4, 4 } ;
int colndxs[] = { 0, 1, 3, 4, 7,
1, 2,
2, 5,
3, 6,
0, 4, 7 } ;
double coeffs[] = { 3.0, 1.0, -2.0, -1.0, -1.0,
2.0, 1.1,
1.0, 1.0,
2.8, -1.2,
5.6, 1.0, 1.9 } ;
static CoinPackedMatrix exmip1mtx =
CoinPackedMatrix(true,&rowndxs[0],&colndxs[0],&coeffs[0],14) ;
return (exmip1mtx) ; }
}
//--------------------------------------------------------------------------
// test solution methods.
void OsiCbcSolverInterfaceUnitTest(const std::string & mpsDir, const std::string & netlibDir)
{
{
CoinRelFltEq eq;
OsiCbcSolverInterface m;
std::string fn = mpsDir+"exmip1";
m.readMps(fn.c_str(),"mps");
{
OsiCbcSolverInterface im;
OSIUNITTEST_ASSERT_ERROR(im.getNumCols() == 0, {}, "cbc", "default constructor");
OSIUNITTEST_ASSERT_ERROR(im.getModelPtr() != NULL, {}, "cbc", "default constructor");
}
// Test copy constructor and assignment operator
{
OsiCbcSolverInterface lhs;
{
OsiCbcSolverInterface im(m);
OsiCbcSolverInterface imC1(im);
OSIUNITTEST_ASSERT_ERROR(imC1.getModelPtr() != im.getModelPtr(), {}, "cbc", "copy constructor");
OSIUNITTEST_ASSERT_ERROR(imC1.getNumCols() == im.getNumCols(), {}, "cbc", "copy constructor");
OSIUNITTEST_ASSERT_ERROR(imC1.getNumRows() == im.getNumRows(), {}, "cbc", "copy constructor");
OsiCbcSolverInterface imC2(im);
OSIUNITTEST_ASSERT_ERROR(imC2.getModelPtr() != im.getModelPtr(), {}, "cbc", "copy constructor");
OSIUNITTEST_ASSERT_ERROR(imC2.getNumCols() == im.getNumCols(), {}, "cbc", "copy constructor");
OSIUNITTEST_ASSERT_ERROR(imC2.getNumRows() == im.getNumRows(), {}, "cbc", "copy constructor");
OSIUNITTEST_ASSERT_ERROR(imC1.getModelPtr() != imC2.getModelPtr(), {}, "cbc", "copy constructor");
lhs = imC2;
}
// Test that lhs has correct values even though rhs has gone out of scope
OSIUNITTEST_ASSERT_ERROR(lhs.getModelPtr() != m.getModelPtr(), {}, "cbc", "assignment operator");
OSIUNITTEST_ASSERT_ERROR(lhs.getNumCols() == m.getNumCols(), {}, "cbc", "copy constructor");
OSIUNITTEST_ASSERT_ERROR(lhs.getNumRows() == m.getNumRows(), {}, "cbc", "copy constructor");
}
// Test clone
{
OsiCbcSolverInterface cbcSi(m);
OsiSolverInterface * siPtr = &cbcSi;
OsiSolverInterface * siClone = siPtr->clone();
OsiCbcSolverInterface * cbcClone = dynamic_cast<OsiCbcSolverInterface*>(siClone);
OSIUNITTEST_ASSERT_ERROR(cbcClone != NULL, {}, "cbc", "clone");
OSIUNITTEST_ASSERT_ERROR(cbcClone->getModelPtr() != cbcSi.getModelPtr(), {}, "cbc", "clone");
OSIUNITTEST_ASSERT_ERROR(cbcClone->getNumRows() == cbcSi.getNumRows(), {}, "cbc", "clone");
OSIUNITTEST_ASSERT_ERROR(cbcClone->getNumCols() == m.getNumCols(), {}, "cbc", "clone");
delete siClone;
}
// test infinity
{
OsiCbcSolverInterface si;
OSIUNITTEST_ASSERT_ERROR(si.getInfinity() == OsiCbcInfinity, {}, "cbc", "infinity");
}
// Test some catches
if (!OsiCbcHasNDEBUG())
{
OsiCbcSolverInterface solver;
try {
solver.setObjCoeff(0,0.0);
OSIUNITTEST_ADD_OUTCOME("cbc", "setObjCoeff on empty model", "should throw exception", OsiUnitTest::TestOutcome::ERROR, false);
}
catch (CoinError e) {
if (OsiUnitTest::verbosity >= 1)
std::cout<<"Correct throw from setObjCoeff on empty model"<<std::endl;
}
std::string fn = mpsDir+"exmip1";
solver.readMps(fn.c_str(),"mps");
OSIUNITTEST_CATCH_ERROR(solver.setObjCoeff(0,0.0), {}, "cbc", "setObjCoeff on nonempty model");
try {
int index[]={0,20};
double value[]={0.0,0.0,0.0,0.0};
solver.setColSetBounds(index,index+2,value);
OSIUNITTEST_ADD_OUTCOME("cbc", "setColSetBounds on cols not in model", "should throw exception", OsiUnitTest::TestOutcome::ERROR, false);
}
catch (CoinError e) {
if (OsiUnitTest::verbosity >= 1)
std::cout<<"Correct throw from setObjCoeff on empty model"<<std::endl;
}
}
{
OsiCbcSolverInterface cbcSi(m);
int nc = cbcSi.getNumCols();
int nr = cbcSi.getNumRows();
const double * cl = cbcSi.getColLower();
const double * cu = cbcSi.getColUpper();
const double * rl = cbcSi.getRowLower();
const double * ru = cbcSi.getRowUpper();
OSIUNITTEST_ASSERT_ERROR(nc == 8, return, "cbc", "read and copy exmip1");
OSIUNITTEST_ASSERT_ERROR(nr == 5, return, "cbc", "read and copy exmip1");
OSIUNITTEST_ASSERT_ERROR(eq(cl[0],2.5), {}, "cbc", "read and copy exmip1");
OSIUNITTEST_ASSERT_ERROR(eq(cl[1],0.0), {}, "cbc", "read and copy exmip1");
OSIUNITTEST_ASSERT_ERROR(eq(cu[1],4.1), {}, "cbc", "read and copy exmip1");
OSIUNITTEST_ASSERT_ERROR(eq(cu[2],1.0), {}, "cbc", "read and copy exmip1");
OSIUNITTEST_ASSERT_ERROR(eq(rl[0],2.5), {}, "cbc", "read and copy exmip1");
OSIUNITTEST_ASSERT_ERROR(eq(rl[4],3.0), {}, "cbc", "read and copy exmip1");
OSIUNITTEST_ASSERT_ERROR(eq(ru[1],2.1), {}, "cbc", "read and copy exmip1");
OSIUNITTEST_ASSERT_ERROR(eq(ru[4],15.), {}, "cbc", "read and copy exmip1");
const double * cs = cbcSi.getColSolution();
OSIUNITTEST_ASSERT_ERROR(eq(cs[0],2.5), {}, "cbc", "read and copy exmip1");
OSIUNITTEST_ASSERT_ERROR(eq(cs[7],0.0), {}, "cbc", "read and copy exmip1");
OSIUNITTEST_ASSERT_ERROR(!eq(cl[3],1.2345), {}, "cbc", "set col lower");
cbcSi.setColLower( 3, 1.2345 );
OSIUNITTEST_ASSERT_ERROR( eq(cbcSi.getColLower()[3],1.2345), {}, "cbc", "set col lower");
OSIUNITTEST_ASSERT_ERROR(!eq(cbcSi.getColUpper()[4],10.2345), {}, "cbc", "set col upper");
cbcSi.setColUpper( 4, 10.2345 );
OSIUNITTEST_ASSERT_ERROR( eq(cbcSi.getColUpper()[4],10.2345), {}, "cbc", "set col upper");
// LH: Objective will depend on how underlying solver constructs and maintains initial solution
double objValue = cbcSi.getObjValue();
OSIUNITTEST_ASSERT_ERROR(eq(objValue,3.5) || eq(objValue,10.5), {}, "cbc", "getObjValue() before solve");
OSIUNITTEST_ASSERT_ERROR(eq(cbcSi.getObjCoefficients()[0], 1.0), {}, "cbc", "read and copy exmip1");
OSIUNITTEST_ASSERT_ERROR(eq(cbcSi.getObjCoefficients()[1], 0.0), {}, "cbc", "read and copy exmip1");
OSIUNITTEST_ASSERT_ERROR(eq(cbcSi.getObjCoefficients()[2], 0.0), {}, "cbc", "read and copy exmip1");
OSIUNITTEST_ASSERT_ERROR(eq(cbcSi.getObjCoefficients()[3], 0.0), {}, "cbc", "read and copy exmip1");
OSIUNITTEST_ASSERT_ERROR(eq(cbcSi.getObjCoefficients()[4], 2.0), {}, "cbc", "read and copy exmip1");
OSIUNITTEST_ASSERT_ERROR(eq(cbcSi.getObjCoefficients()[5], 0.0), {}, "cbc", "read and copy exmip1");
OSIUNITTEST_ASSERT_ERROR(eq(cbcSi.getObjCoefficients()[6], 0.0), {}, "cbc", "read and copy exmip1");
OSIUNITTEST_ASSERT_ERROR(eq(cbcSi.getObjCoefficients()[7],-1.0), {}, "cbc", "read and copy exmip1");
}
// Test matrixByRow method
{
const OsiCbcSolverInterface si(m);
const CoinPackedMatrix * smP = si.getMatrixByRow();
OSIUNITTEST_ASSERT_ERROR(smP->getMajorDim() == 5, return, "cbc", "getMatrixByRow: major dim");
OSIUNITTEST_ASSERT_ERROR(smP->getMinorDim() == 8, return, "cbc", "getMatrixByRow: major dim");
OSIUNITTEST_ASSERT_ERROR(smP->getNumElements() == 14, return, "cbc", "getMatrixByRow: num elements");
OSIUNITTEST_ASSERT_ERROR(smP->getSizeVectorStarts() == 6, return, "cbc", "getMatrixByRow: num elements");
#ifdef OSICBC_TEST_MTX_STRUCTURE
CoinRelFltEq eq;
const double * ev = smP->getElements();
OSIUNITTEST_ASSERT_ERROR(eq(ev[0], 3.0), {}, "cbc", "getMatrixByRow: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[1], 1.0), {}, "cbc", "getMatrixByRow: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[2], -2.0), {}, "cbc", "getMatrixByRow: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[3], -1.0), {}, "cbc", "getMatrixByRow: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[4], -1.0), {}, "cbc", "getMatrixByRow: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[5], 2.0), {}, "cbc", "getMatrixByRow: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[6], 1.1), {}, "cbc", "getMatrixByRow: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[7], 1.0), {}, "cbc", "getMatrixByRow: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[8], 1.0), {}, "cbc", "getMatrixByRow: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[9], 2.8), {}, "cbc", "getMatrixByRow: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[10], -1.2), {}, "cbc", "getMatrixByRow: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[11], 5.6), {}, "cbc", "getMatrixByRow: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[12], 1.0), {}, "cbc", "getMatrixByRow: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[13], 1.9), {}, "cbc", "getMatrixByRow: elements");
const int * mi = smP->getVectorStarts();
OSIUNITTEST_ASSERT_ERROR(mi[0] == 0, {}, "cbc", "getMatrixByRow: vector starts");
OSIUNITTEST_ASSERT_ERROR(mi[1] == 5, {}, "cbc", "getMatrixByRow: vector starts");
OSIUNITTEST_ASSERT_ERROR(mi[2] == 7, {}, "cbc", "getMatrixByRow: vector starts");
OSIUNITTEST_ASSERT_ERROR(mi[3] == 9, {}, "cbc", "getMatrixByRow: vector starts");
OSIUNITTEST_ASSERT_ERROR(mi[4] == 11, {}, "cbc", "getMatrixByRow: vector starts");
OSIUNITTEST_ASSERT_ERROR(mi[5] == 14, {}, "cbc", "getMatrixByRow: vector starts");
const int * ei = smP->getIndices();
OSIUNITTEST_ASSERT_ERROR(ei[ 0] == 0, {}, "cbc", "getMatrixByRow: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 1] == 1, {}, "cbc", "getMatrixByRow: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 2] == 3, {}, "cbc", "getMatrixByRow: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 3] == 4, {}, "cbc", "getMatrixByRow: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 4] == 7, {}, "cbc", "getMatrixByRow: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 5] == 1, {}, "cbc", "getMatrixByRow: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 6] == 2, {}, "cbc", "getMatrixByRow: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 7] == 2, {}, "cbc", "getMatrixByRow: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 8] == 5, {}, "cbc", "getMatrixByRow: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 9] == 3, {}, "cbc", "getMatrixByRow: indices");
OSIUNITTEST_ASSERT_ERROR(ei[10] == 6, {}, "cbc", "getMatrixByRow: indices");
OSIUNITTEST_ASSERT_ERROR(ei[11] == 0, {}, "cbc", "getMatrixByRow: indices");
OSIUNITTEST_ASSERT_ERROR(ei[12] == 4, {}, "cbc", "getMatrixByRow: indices");
OSIUNITTEST_ASSERT_ERROR(ei[13] == 7, {}, "cbc", "getMatrixByRow: indices");
#else // OSICBC_TEST_MTX_STRUCTURE
CoinPackedMatrix exmip1Mtx ;
exmip1Mtx.reverseOrderedCopyOf(BuildExmip1Mtx()) ;
OSIUNITTEST_ASSERT_ERROR(exmip1Mtx.isEquivalent(*smP), {}, "cbc", "getMatrixByRow") ;
#endif // OSICBC_TEST_MTX_STRUCTURE
}
// Test adding several cuts, and handling of a coefficient of infinity
// in the constraint matrix.
{
OsiCbcSolverInterface fim;
std::string fn = mpsDir+"exmip1";
fim.readMps(fn.c_str(),"mps");
// exmip1.mps has 2 integer variables with index 2 & 3
fim.initialSolve();
OsiRowCut cuts[3];
// Generate one ineffective cut plus two trivial cuts
int c;
int nc = fim.getNumCols();
int *inx = new int[nc];
for (c=0;c<nc;c++) inx[c]=c;
double *el = new double[nc];
for (c=0;c<nc;c++) el[c]=1.0e-50+((double)c)*((double)c);
cuts[0].setRow(nc,inx,el);
cuts[0].setLb(-100.);
cuts[0].setUb(500.);
cuts[0].setEffectiveness(22);
el[4]=0.0; // to get inf later
for (c=2;c<4;c++) {
el[0]=1.0;
inx[0]=c;
cuts[c-1].setRow(1,inx,el);
cuts[c-1].setLb(1.);
cuts[c-1].setUb(100.);
cuts[c-1].setEffectiveness(c);
}
fim.writeMps("x1.mps");
fim.applyRowCuts(3,cuts);
fim.writeMps("x2.mps");
// resolve - should get message about zero elements
fim.resolve();
fim.writeMps("x3.mps");
// check integer solution
const double * cs = fim.getColSolution();
CoinRelFltEq eq;
OSIUNITTEST_ASSERT_ERROR(eq(cs[2], 1.0), {}, "cbc", "add cuts");
OSIUNITTEST_ASSERT_ERROR(eq(cs[3], 1.0), {}, "cbc", "add cuts");
// check will find invalid matrix
el[0]=1.0/el[4];
inx[0]=0;
cuts[0].setRow(nc,inx,el);
cuts[0].setLb(-100.);
cuts[0].setUb(500.);
cuts[0].setEffectiveness(22);
fim.applyRowCut(cuts[0]);
// resolve - should get message about zero elements
fim.resolve();
OSIUNITTEST_ASSERT_WARNING(fim.isAbandoned(), {}, "cbc", "add cuts");
delete[]el;
delete[]inx;
}
// Test matrixByCol method
{
const OsiCbcSolverInterface si(m);
const CoinPackedMatrix * smP = si.getMatrixByCol();
OSIUNITTEST_ASSERT_ERROR(smP->getMajorDim() == 8, return, "cbc", "getMatrixByCol: major dim");
OSIUNITTEST_ASSERT_ERROR(smP->getMinorDim() == 5, return, "cbc", "getMatrixByCol: minor dim");
OSIUNITTEST_ASSERT_ERROR(smP->getNumElements() == 14, return, "cbc", "getMatrixByCol: number of elements");
OSIUNITTEST_ASSERT_ERROR(smP->getSizeVectorStarts() == 9, return, "cbc", "getMatrixByCol: vector starts size");
#ifdef OSICBC_TEST_MTX_STRUCTURE
CoinRelFltEq eq;
const double * ev = smP->getElements();
OSIUNITTEST_ASSERT_ERROR(eq(ev[ 0], 3.0), {}, "cbc", "getMatrixByCol: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[ 1], 5.6), {}, "cbc", "getMatrixByCol: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[ 2], 1.0), {}, "cbc", "getMatrixByCol: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[ 3], 2.0), {}, "cbc", "getMatrixByCol: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[ 4], 1.1), {}, "cbc", "getMatrixByCol: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[ 5], 1.0), {}, "cbc", "getMatrixByCol: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[ 6],-2.0), {}, "cbc", "getMatrixByCol: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[ 7], 2.8), {}, "cbc", "getMatrixByCol: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[ 8],-1.0), {}, "cbc", "getMatrixByCol: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[ 9], 1.0), {}, "cbc", "getMatrixByCol: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[10], 1.0), {}, "cbc", "getMatrixByCol: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[11],-1.2), {}, "cbc", "getMatrixByCol: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[12],-1.0), {}, "cbc", "getMatrixByCol: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[13], 1.9), {}, "cbc", "getMatrixByCol: elements");
const CoinBigIndex * mi = smP->getVectorStarts();
OSIUNITTEST_ASSERT_ERROR(mi[0] == 0, {}, "cbc", "getMatrixByCol: vector starts");
OSIUNITTEST_ASSERT_ERROR(mi[1] == 2, {}, "cbc", "getMatrixByCol: vector starts");
OSIUNITTEST_ASSERT_ERROR(mi[2] == 4, {}, "cbc", "getMatrixByCol: vector starts");
OSIUNITTEST_ASSERT_ERROR(mi[3] == 6, {}, "cbc", "getMatrixByCol: vector starts");
OSIUNITTEST_ASSERT_ERROR(mi[4] == 8, {}, "cbc", "getMatrixByCol: vector starts");
OSIUNITTEST_ASSERT_ERROR(mi[5] == 10, {}, "cbc", "getMatrixByCol: vector starts");
OSIUNITTEST_ASSERT_ERROR(mi[6] == 11, {}, "cbc", "getMatrixByCol: vector starts");
OSIUNITTEST_ASSERT_ERROR(mi[7] == 12, {}, "cbc", "getMatrixByCol: vector starts");
OSIUNITTEST_ASSERT_ERROR(mi[8] == 14, {}, "cbc", "getMatrixByCol: vector starts");
const int * ei = smP->getIndices();
OSIUNITTEST_ASSERT_ERROR(ei[ 0] == 0, {}, "cbc", "getMatrixByCol: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 1] == 4, {}, "cbc", "getMatrixByCol: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 2] == 0, {}, "cbc", "getMatrixByCol: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 3] == 1, {}, "cbc", "getMatrixByCol: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 4] == 1, {}, "cbc", "getMatrixByCol: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 5] == 2, {}, "cbc", "getMatrixByCol: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 6] == 0, {}, "cbc", "getMatrixByCol: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 7] == 3, {}, "cbc", "getMatrixByCol: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 8] == 0, {}, "cbc", "getMatrixByCol: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 9] == 4, {}, "cbc", "getMatrixByCol: indices");
OSIUNITTEST_ASSERT_ERROR(ei[10] == 2, {}, "cbc", "getMatrixByCol: indices");
OSIUNITTEST_ASSERT_ERROR(ei[11] == 3, {}, "cbc", "getMatrixByCol: indices");
OSIUNITTEST_ASSERT_ERROR(ei[12] == 0, {}, "cbc", "getMatrixByCol: indices");
OSIUNITTEST_ASSERT_ERROR(ei[13] == 4, {}, "cbc", "getMatrixByCol: indices");
#else // OSICBC_TEST_MTX_STRUCTURE
CoinPackedMatrix &exmip1Mtx = BuildExmip1Mtx() ;
OSIUNITTEST_ASSERT_ERROR(exmip1Mtx.isEquivalent(*smP), {}, "cbc", "getMatrixByCol");
#endif // OSICBC_TEST_MTX_STRUCTURE
}
//--------------
// Test rowsense, rhs, rowrange, matrixByRow, solver assignment
{
OsiCbcSolverInterface lhs;
{
OsiCbcSolverInterface siC1(m);
const char * siC1rs = siC1.getRowSense();
OSIUNITTEST_ASSERT_ERROR(siC1rs[0] == 'G', {}, "cbc", "row sense");
OSIUNITTEST_ASSERT_ERROR(siC1rs[1] == 'L', {}, "cbc", "row sense");
OSIUNITTEST_ASSERT_ERROR(siC1rs[2] == 'E', {}, "cbc", "row sense");
OSIUNITTEST_ASSERT_ERROR(siC1rs[3] == 'R', {}, "cbc", "row sense");
OSIUNITTEST_ASSERT_ERROR(siC1rs[4] == 'R', {}, "cbc", "row sense");
const double * siC1rhs = siC1.getRightHandSide();
OSIUNITTEST_ASSERT_ERROR(eq(siC1rhs[0],2.5), {}, "cbc", "right hand side");
OSIUNITTEST_ASSERT_ERROR(eq(siC1rhs[1],2.1), {}, "cbc", "right hand side");
OSIUNITTEST_ASSERT_ERROR(eq(siC1rhs[2],4.0), {}, "cbc", "right hand side");
OSIUNITTEST_ASSERT_ERROR(eq(siC1rhs[3],5.0), {}, "cbc", "right hand side");
OSIUNITTEST_ASSERT_ERROR(eq(siC1rhs[4],15.), {}, "cbc", "right hand side");
const double * siC1rr = siC1.getRowRange();
OSIUNITTEST_ASSERT_ERROR(eq(siC1rr[0],0.0), {}, "cbc", "row range");
OSIUNITTEST_ASSERT_ERROR(eq(siC1rr[1],0.0), {}, "cbc", "row range");
OSIUNITTEST_ASSERT_ERROR(eq(siC1rr[2],0.0), {}, "cbc", "row range");
OSIUNITTEST_ASSERT_ERROR(eq(siC1rr[3],5.0-1.8), {}, "cbc", "row range");
OSIUNITTEST_ASSERT_ERROR(eq(siC1rr[4],15.0-3.0), {}, "cbc", "row range");
const CoinPackedMatrix * siC1mbr = siC1.getMatrixByRow();
OSIUNITTEST_ASSERT_ERROR(siC1mbr != NULL, {}, "cbc", "matrix by row");
OSIUNITTEST_ASSERT_ERROR(siC1mbr->getMajorDim() == 5, return, "cbc", "matrix by row: major dim");
OSIUNITTEST_ASSERT_ERROR(siC1mbr->getMinorDim() == 8, return, "cbc", "matrix by row: major dim");
OSIUNITTEST_ASSERT_ERROR(siC1mbr->getNumElements() == 14, return, "cbc", "matrix by row: num elements");
OSIUNITTEST_ASSERT_ERROR(siC1mbr->getSizeVectorStarts() == 6, return, "cbc", "matrix by row: num elements");
#ifdef OSICBC_TEST_MTX_STRUCTURE
const double * ev = siC1mbr->getElements();
OSIUNITTEST_ASSERT_ERROR(eq(ev[ 0], 3.0), {}, "cbc", "matrix by row: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[ 1], 1.0), {}, "cbc", "matrix by row: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[ 2],-2.0), {}, "cbc", "matrix by row: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[ 3],-1.0), {}, "cbc", "matrix by row: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[ 4],-1.0), {}, "cbc", "matrix by row: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[ 5], 2.0), {}, "cbc", "matrix by row: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[ 6], 1.1), {}, "cbc", "matrix by row: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[ 7], 1.0), {}, "cbc", "matrix by row: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[ 8], 1.0), {}, "cbc", "matrix by row: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[ 9], 2.8), {}, "cbc", "matrix by row: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[10],-1.2), {}, "cbc", "matrix by row: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[11], 5.6), {}, "cbc", "matrix by row: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[12], 1.0), {}, "cbc", "matrix by row: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[13], 1.9), {}, "cbc", "matrix by row: elements");
const CoinBigIndex * mi = siC1mbr->getVectorStarts();
OSIUNITTEST_ASSERT_ERROR(mi[0] == 0, {}, "cbc", "matrix by row: vector starts");
OSIUNITTEST_ASSERT_ERROR(mi[1] == 5, {}, "cbc", "matrix by row: vector starts");
OSIUNITTEST_ASSERT_ERROR(mi[2] == 7, {}, "cbc", "matrix by row: vector starts");
OSIUNITTEST_ASSERT_ERROR(mi[3] == 9, {}, "cbc", "matrix by row: vector starts");
OSIUNITTEST_ASSERT_ERROR(mi[4] == 11, {}, "cbc", "matrix by row: vector starts");
OSIUNITTEST_ASSERT_ERROR(mi[5] == 14, {}, "cbc", "matrix by row: vector starts");
const int * ei = siC1mbr->getIndices();
OSIUNITTEST_ASSERT_ERROR(ei[ 0] == 0, {}, "cbc", "matrix by row: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 1] == 1, {}, "cbc", "matrix by row: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 2] == 3, {}, "cbc", "matrix by row: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 3] == 4, {}, "cbc", "matrix by row: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 4] == 7, {}, "cbc", "matrix by row: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 5] == 1, {}, "cbc", "matrix by row: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 6] == 2, {}, "cbc", "matrix by row: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 7] == 2, {}, "cbc", "matrix by row: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 8] == 5, {}, "cbc", "matrix by row: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 9] == 3, {}, "cbc", "matrix by row: indices");
OSIUNITTEST_ASSERT_ERROR(ei[10] == 6, {}, "cbc", "matrix by row: indices");
OSIUNITTEST_ASSERT_ERROR(ei[11] == 0, {}, "cbc", "matrix by row: indices");
OSIUNITTEST_ASSERT_ERROR(ei[12] == 4, {}, "cbc", "matrix by row: indices");
OSIUNITTEST_ASSERT_ERROR(ei[13] == 7, {}, "cbc", "matrix by row: indices");
#else // OSICBC_TEST_MTX_STRUCTURE
CoinPackedMatrix exmip1Mtx ;
exmip1Mtx.reverseOrderedCopyOf(BuildExmip1Mtx()) ;
OSIUNITTEST_ASSERT_ERROR(exmip1Mtx.isEquivalent(*siC1mbr), {}, "cbc", "matrix by row");
#endif // OSICBC_TEST_MTX_STRUCTURE
OSIUNITTEST_ASSERT_WARNING(siC1rs == siC1.getRowSense(), {}, "cbc", "row sense");
OSIUNITTEST_ASSERT_WARNING(siC1rhs == siC1.getRightHandSide(), {}, "cbc", "right hand side");
OSIUNITTEST_ASSERT_WARNING(siC1rr == siC1.getRowRange(), {}, "cbc", "row range");
// Change CBC Model by adding free row
OsiRowCut rc;
rc.setLb(-COIN_DBL_MAX);
rc.setUb( COIN_DBL_MAX);
OsiCuts cuts;
cuts.insert(rc);
siC1.applyCuts(cuts);
siC1rs = siC1.getRowSense();
OSIUNITTEST_ASSERT_ERROR(siC1rs[0] == 'G', {}, "cbc", "row sense after adding row");
OSIUNITTEST_ASSERT_ERROR(siC1rs[1] == 'L', {}, "cbc", "row sense after adding row");
OSIUNITTEST_ASSERT_ERROR(siC1rs[2] == 'E', {}, "cbc", "row sense after adding row");
OSIUNITTEST_ASSERT_ERROR(siC1rs[3] == 'R', {}, "cbc", "row sense after adding row");
OSIUNITTEST_ASSERT_ERROR(siC1rs[4] == 'R', {}, "cbc", "row sense after adding row");
OSIUNITTEST_ASSERT_ERROR(siC1rs[5] == 'N', {}, "cbc", "row sense after adding row");
siC1rhs = siC1.getRightHandSide();
OSIUNITTEST_ASSERT_ERROR(eq(siC1rhs[0],2.5), {}, "cbc", "right hand side after adding row");
OSIUNITTEST_ASSERT_ERROR(eq(siC1rhs[1],2.1), {}, "cbc", "right hand side after adding row");
OSIUNITTEST_ASSERT_ERROR(eq(siC1rhs[2],4.0), {}, "cbc", "right hand side after adding row");
OSIUNITTEST_ASSERT_ERROR(eq(siC1rhs[3],5.0), {}, "cbc", "right hand side after adding row");
OSIUNITTEST_ASSERT_ERROR(eq(siC1rhs[4],15.), {}, "cbc", "right hand side after adding row");
OSIUNITTEST_ASSERT_ERROR(eq(siC1rhs[5],0.0), {}, "cbc", "right hand side after adding row");
siC1rr = siC1.getRowRange();
OSIUNITTEST_ASSERT_ERROR(eq(siC1rr[0],0.0), {}, "cbc", "row range after adding row");
OSIUNITTEST_ASSERT_ERROR(eq(siC1rr[1],0.0), {}, "cbc", "row range after adding row");
OSIUNITTEST_ASSERT_ERROR(eq(siC1rr[2],0.0), {}, "cbc", "row range after adding row");
OSIUNITTEST_ASSERT_ERROR(eq(siC1rr[3],5.0-1.8), {}, "cbc", "row range after adding row");
OSIUNITTEST_ASSERT_ERROR(eq(siC1rr[4],15.0-3.0), {}, "cbc", "row range after adding row");
OSIUNITTEST_ASSERT_ERROR(eq(siC1rr[5],0.0), {}, "cbc", "row range after adding row");
lhs = siC1;
}
// Test that lhs has correct values even though siC1 has gone out of scope
const char * lhsrs = lhs.getRowSense();
OSIUNITTEST_ASSERT_ERROR(lhsrs[0] == 'G', {}, "cbc", "row sense after assignment");
OSIUNITTEST_ASSERT_ERROR(lhsrs[1] == 'L', {}, "cbc", "row sense after assignment");
OSIUNITTEST_ASSERT_ERROR(lhsrs[2] == 'E', {}, "cbc", "row sense after assignment");
OSIUNITTEST_ASSERT_ERROR(lhsrs[3] == 'R', {}, "cbc", "row sense after assignment");
OSIUNITTEST_ASSERT_ERROR(lhsrs[4] == 'R', {}, "cbc", "row sense after assignment");
OSIUNITTEST_ASSERT_ERROR(lhsrs[5] == 'N', {}, "cbc", "row sense after assignment");
const double * lhsrhs = lhs.getRightHandSide();
OSIUNITTEST_ASSERT_ERROR(eq(lhsrhs[0],2.5), {}, "cbc", "right hand side after assignment");
OSIUNITTEST_ASSERT_ERROR(eq(lhsrhs[1],2.1), {}, "cbc", "right hand side after assignment");
OSIUNITTEST_ASSERT_ERROR(eq(lhsrhs[2],4.0), {}, "cbc", "right hand side after assignment");
OSIUNITTEST_ASSERT_ERROR(eq(lhsrhs[3],5.0), {}, "cbc", "right hand side after assignment");
OSIUNITTEST_ASSERT_ERROR(eq(lhsrhs[4],15.), {}, "cbc", "right hand side after assignment");
OSIUNITTEST_ASSERT_ERROR(eq(lhsrhs[5],0.0), {}, "cbc", "right hand side after assignment");
const double *lhsrr = lhs.getRowRange();
OSIUNITTEST_ASSERT_ERROR(eq(lhsrr[0],0.0), {}, "cbc", "row range after assignment");
OSIUNITTEST_ASSERT_ERROR(eq(lhsrr[1],0.0), {}, "cbc", "row range after assignment");
OSIUNITTEST_ASSERT_ERROR(eq(lhsrr[2],0.0), {}, "cbc", "row range after assignment");
OSIUNITTEST_ASSERT_ERROR(eq(lhsrr[3],5.0-1.8), {}, "cbc", "row range after assignment");
OSIUNITTEST_ASSERT_ERROR(eq(lhsrr[4],15.0-3.0), {}, "cbc", "row range after assignment");
OSIUNITTEST_ASSERT_ERROR(eq(lhsrr[5],0.0), {}, "cbc", "row range after assignment");
const CoinPackedMatrix * lhsmbr = lhs.getMatrixByRow();
OSIUNITTEST_ASSERT_ERROR(lhsmbr != NULL, {}, "cbc", "matrix by row after assignment");
OSIUNITTEST_ASSERT_ERROR(lhsmbr->getMajorDim() == 6, return, "cbc", "matrix by row after assignment: major dim");
OSIUNITTEST_ASSERT_ERROR(lhsmbr->getNumElements() == 14, return, "cbc", "matrix by row after assignment: num elements");
#ifdef OSICBC_TEST_MTX_STRUCTURE
const double * ev = lhsmbr->getElements();
OSIUNITTEST_ASSERT_ERROR(eq(ev[ 0], 3.0), {}, "cbc", "matrix by row after assignment: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[ 1], 1.0), {}, "cbc", "matrix by row after assignment: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[ 2],-2.0), {}, "cbc", "matrix by row after assignment: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[ 3],-1.0), {}, "cbc", "matrix by row after assignment: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[ 4],-1.0), {}, "cbc", "matrix by row after assignment: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[ 5], 2.0), {}, "cbc", "matrix by row after assignment: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[ 6], 1.1), {}, "cbc", "matrix by row after assignment: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[ 7], 1.0), {}, "cbc", "matrix by row after assignment: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[ 8], 1.0), {}, "cbc", "matrix by row after assignment: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[ 9], 2.8), {}, "cbc", "matrix by row after assignment: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[10],-1.2), {}, "cbc", "matrix by row after assignment: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[11], 5.6), {}, "cbc", "matrix by row after assignment: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[12], 1.0), {}, "cbc", "matrix by row after assignment: elements");
OSIUNITTEST_ASSERT_ERROR(eq(ev[13], 1.9), {}, "cbc", "matrix by row after assignment: elements");
const CoinBigIndex * mi = lhsmbr->getVectorStarts();
OSIUNITTEST_ASSERT_ERROR(mi[0] == 0, {}, "cbc", "matrix by row after assignment: vector starts");
OSIUNITTEST_ASSERT_ERROR(mi[1] == 5, {}, "cbc", "matrix by row after assignment: vector starts");
OSIUNITTEST_ASSERT_ERROR(mi[2] == 7, {}, "cbc", "matrix by row after assignment: vector starts");
OSIUNITTEST_ASSERT_ERROR(mi[3] == 9, {}, "cbc", "matrix by row after assignment: vector starts");
OSIUNITTEST_ASSERT_ERROR(mi[4] == 11, {}, "cbc", "matrix by row after assignment: vector starts");
OSIUNITTEST_ASSERT_ERROR(mi[5] == 14, {}, "cbc", "matrix by row after assignment: vector starts");
const int * ei = lhsmbr->getIndices();
OSIUNITTEST_ASSERT_ERROR(ei[ 0] == 0, {}, "cbc", "matrix by row after assignment: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 1] == 1, {}, "cbc", "matrix by row after assignment: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 2] == 3, {}, "cbc", "matrix by row after assignment: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 3] == 4, {}, "cbc", "matrix by row after assignment: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 4] == 7, {}, "cbc", "matrix by row after assignment: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 5] == 1, {}, "cbc", "matrix by row after assignment: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 6] == 2, {}, "cbc", "matrix by row after assignment: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 7] == 2, {}, "cbc", "matrix by row after assignment: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 8] == 5, {}, "cbc", "matrix by row after assignment: indices");
OSIUNITTEST_ASSERT_ERROR(ei[ 9] == 3, {}, "cbc", "matrix by row after assignment: indices");
OSIUNITTEST_ASSERT_ERROR(ei[10] == 6, {}, "cbc", "matrix by row after assignment: indices");
OSIUNITTEST_ASSERT_ERROR(ei[11] == 0, {}, "cbc", "matrix by row after assignment: indices");
OSIUNITTEST_ASSERT_ERROR(ei[12] == 4, {}, "cbc", "matrix by row after assignment: indices");
OSIUNITTEST_ASSERT_ERROR(ei[13] == 7, {}, "cbc", "matrix by row after assignment: indices");
#else // OSICBC_TEST_MTX_STRUCTURE
/*
This admittedly looks bogus, but it's the equivalent operation on the matrix
for inserting a cut of the form -Inf <= +Inf (i.e., a cut with no
coefficients).
*/
CoinPackedMatrix exmip1Mtx ;
exmip1Mtx.reverseOrderedCopyOf(BuildExmip1Mtx()) ;
CoinPackedVector freeRow ;
exmip1Mtx.appendRow(freeRow) ;
OSIUNITTEST_ASSERT_ERROR(exmip1Mtx.isEquivalent(*lhsmbr), {}, "cbc", "matrix by row after assignment");
#endif // OSICBC_TEST_MTX_STRUCTURE
}
}
// Test add/delete columns
{
OsiCbcSolverInterface m;
std::string fn = mpsDir+"p0033";
m.readMps(fn.c_str(),"mps");
double inf = m.getInfinity();
CoinPackedVector c0;
c0.insert(0, 4);
c0.insert(1, 1);
m.addCol(c0, 0, inf, 3);
m.initialSolve();
double objValue = m.getObjValue();
CoinRelFltEq eq(1.0e-2);
OSIUNITTEST_ASSERT_ERROR(eq(objValue,2520.57), {}, "cbc", "objvalue after adding col");
// Try deleting first column that's nonbasic at lower bound (0).
int * d = new int[1];
CoinWarmStartBasis *cwsb = dynamic_cast<CoinWarmStartBasis *>(m.getWarmStart()) ;
OSIUNITTEST_ASSERT_ERROR(cwsb != NULL, {}, "cbc", "get warmstart basis");
CoinWarmStartBasis::Status stati ;
int iCol ;
for (iCol = 0 ; iCol < cwsb->getNumStructural() ; iCol++)
{ stati = cwsb->getStructStatus(iCol) ;
if (stati == CoinWarmStartBasis::atLowerBound) break ; }
d[0]=iCol;
m.deleteCols(1,d);
delete [] d;
delete cwsb;
d=NULL;
m.resolve();
objValue = m.getObjValue();
OSIUNITTEST_ASSERT_ERROR(eq(objValue,2520.57), {}, "clp", "objvalue after deleting first col");
// Try deleting column we added. If basic, go to initialSolve as deleting
// basic variable trashes basis required for warm start.
iCol = m.getNumCols()-1;
cwsb = dynamic_cast<CoinWarmStartBasis *>(m.getWarmStart()) ;
stati = cwsb->getStructStatus(iCol) ;
delete cwsb;
m.deleteCols(1,&iCol);
if (stati == CoinWarmStartBasis::basic)
{ m.initialSolve() ; }
else
{ m.resolve(); }
objValue = m.getObjValue();
OSIUNITTEST_ASSERT_ERROR(eq(objValue,2520.57), {}, "clp", "objvalue after deleting added col");
}
// Build a model
{
OsiCbcSolverInterface model;
std::string fn = mpsDir+"p0033";
model.readMps(fn.c_str(),"mps");
// Point to data
int numberRows = model.getNumRows();
const double * rowLower = model.getRowLower();
const double * rowUpper = model.getRowUpper();
int numberColumns = model.getNumCols();
const double * columnLower = model.getColLower();
const double * columnUpper = model.getColUpper();
const double * columnObjective = model.getObjCoefficients();
// get row copy
CoinPackedMatrix rowCopy = *model.getMatrixByRow();
const int * column = rowCopy.getIndices();
const int * rowLength = rowCopy.getVectorLengths();
const CoinBigIndex * rowStart = rowCopy.getVectorStarts();
const double * element = rowCopy.getElements();
// solve
model.initialSolve();
// Now build new model
CoinModel build;
// Row bounds
int iRow;
for (iRow=0;iRow<numberRows;iRow++) {
build.setRowBounds(iRow,rowLower[iRow],rowUpper[iRow]);
}
// Column bounds and objective
int iColumn;
for (iColumn=0;iColumn<numberColumns;iColumn++) {
build.setColumnLower(iColumn,columnLower[iColumn]);
build.setColumnUpper(iColumn,columnUpper[iColumn]);
build.setObjective(iColumn,columnObjective[iColumn]);
}
// Adds elements one by one by row (backwards by row)
for (iRow=numberRows-1;iRow>=0;iRow--) {
int start = rowStart[iRow];
for (int j=start;j<start+rowLength[iRow];j++)
build(iRow,column[j],element[j]);
}
// Now create Model
OsiCbcSolverInterface model2;
model2.loadFromCoinModel(build);
model2.initialSolve();
// Save - should be continuous
model2.writeMps("continuous");
int * whichInteger = new int[numberColumns];
for (iColumn=0;iColumn<numberColumns;iColumn++)
whichInteger[iColumn]=iColumn;
// mark as integer
model2.setInteger(whichInteger,numberColumns);
delete [] whichInteger;
// save - should be integer
model2.writeMps("integer");
// Now do with strings attached
// Save build to show how to go over rows
CoinModel saveBuild = build;
build = CoinModel();
// Column bounds
for (iColumn=0;iColumn<numberColumns;iColumn++) {
build.setColumnLower(iColumn,columnLower[iColumn]);
build.setColumnUpper(iColumn,columnUpper[iColumn]);
}
// Objective - half the columns as is and half with multiplier of "1.0+multiplier"
// Pick up from saveBuild (for no reason at all)
for (iColumn=0;iColumn<numberColumns;iColumn++) {
double value = saveBuild.objective(iColumn);
if (iColumn*2<numberColumns) {
build.setObjective(iColumn,columnObjective[iColumn]);
} else {
// create as string
char temp[100];
sprintf(temp,"%g + abs(%g*multiplier)",value,value);
build.setObjective(iColumn,temp);
}
}
// It then adds rows one by one but for half the rows sets their values
// with multiplier of "1.0+1.5*multiplier"
for (iRow=0;iRow<numberRows;iRow++) {
if (iRow*2<numberRows) {
// add row in simple way
int start = rowStart[iRow];
build.addRow(rowLength[iRow],column+start,element+start,
rowLower[iRow],rowUpper[iRow]);
} else {
// As we have to add one by one let's get from saveBuild
CoinModelLink triple=saveBuild.firstInRow(iRow);
while (triple.column()>=0) {
int iColumn = triple.column();
if (iColumn*2<numberColumns) {
// just value as normal
build(iRow,triple.column(),triple.value());
} else {
// create as string
char temp[100];
sprintf(temp,"%g + (1.5*%g*multiplier)",triple.value(), triple.value());
build(iRow,iColumn,temp);
}
triple=saveBuild.next(triple);
}
// but remember to do rhs
build.setRowLower(iRow,rowLower[iRow]);
build.setRowUpper(iRow,rowUpper[iRow]);
}
}
// If small switch on error printing
if (numberColumns<50)
build.setLogLevel(1);
// should fail as we never set multiplier
OSIUNITTEST_ASSERT_ERROR(model2.loadFromCoinModel(build) != 0, {}, "cbc", "build model with missing multipliers");
build.associateElement("multiplier",0.0);
OSIUNITTEST_ASSERT_ERROR(model2.loadFromCoinModel(build) == 0, {}, "cbc", "build model");
model2.initialSolve();
// It then loops with multiplier going from 0.0 to 2.0 in increments of 0.1
for (double multiplier=0.0;multiplier<2.0;multiplier+= 0.1) {
build.associateElement("multiplier",multiplier);
OSIUNITTEST_ASSERT_ERROR(model2.loadFromCoinModel(build,true) == 0, {}, "cbc", "build model with increasing multiplier");
model2.resolve();
}
}
// branch and bound
{
OsiCbcSolverInterface m;
std::string fn = mpsDir+"p0033";
m.readMps(fn.c_str(),"mps");
m.initialSolve();
//m.messageHandler()->setLogLevel(0);
m.getModelPtr()->messageHandler()->setLogLevel(0);
m.branchAndBound();
}
// branch and bound using CbcModel!!!!!!!
{
OsiCbcSolverInterface mm;
OsiCbcSolverInterface m(&mm);
std::string fn = mpsDir+"p0033";
m.readMps(fn.c_str(),"mps");
m.initialSolve();
m.branchAndBound();
}
// Do common solverInterface testing
{
OsiCbcSolverInterface m;
OsiSolverInterfaceCommonUnitTest(&m, mpsDir,netlibDir);
}
{
OsiCbcSolverInterface mm;
OsiCbcSolverInterface m(&mm);
OsiSolverInterfaceCommonUnitTest(&m, mpsDir,netlibDir);
}
}
|