File: CbcHeuristicDiveGuided.cpp

package info (click to toggle)
coinor-cbc 2.9.9+repack1-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 7,848 kB
  • ctags: 5,787
  • sloc: cpp: 104,337; sh: 8,921; xml: 2,950; makefile: 520; ansic: 491; awk: 197
file content (139 lines) | stat: -rw-r--r-- 4,122 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
/* $Id: CbcHeuristicDiveGuided.cpp 2093 2014-11-06 16:17:38Z forrest $ */
// Copyright (C) 2008, International Business Machines
// Corporation and others.  All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).

#if defined(_MSC_VER)
// Turn off compiler warning about long names
#  pragma warning(disable:4786)
#endif

#include "CbcHeuristicDiveGuided.hpp"
#include "CbcStrategy.hpp"

// Default Constructor
CbcHeuristicDiveGuided::CbcHeuristicDiveGuided()
        : CbcHeuristicDive()
{
}

// Constructor from model
CbcHeuristicDiveGuided::CbcHeuristicDiveGuided(CbcModel & model)
        : CbcHeuristicDive(model)
{
}

// Destructor
CbcHeuristicDiveGuided::~CbcHeuristicDiveGuided ()
{
}

// Clone
CbcHeuristicDiveGuided *
CbcHeuristicDiveGuided::clone() const
{
    return new CbcHeuristicDiveGuided(*this);
}

// Create C++ lines to get to current state
void
CbcHeuristicDiveGuided::generateCpp( FILE * fp)
{
    CbcHeuristicDiveGuided other;
    fprintf(fp, "0#include \"CbcHeuristicDiveGuided.hpp\"\n");
    fprintf(fp, "3  CbcHeuristicDiveGuided heuristicDiveGuided(*cbcModel);\n");
    CbcHeuristic::generateCpp(fp, "heuristicDiveGuided");
    fprintf(fp, "3  cbcModel->addHeuristic(&heuristicDiveGuided);\n");
}

// Copy constructor
CbcHeuristicDiveGuided::CbcHeuristicDiveGuided(const CbcHeuristicDiveGuided & rhs)
        :
        CbcHeuristicDive(rhs)
{
}

// Assignment operator
CbcHeuristicDiveGuided &
CbcHeuristicDiveGuided::operator=( const CbcHeuristicDiveGuided & rhs)
{
    if (this != &rhs) {
        CbcHeuristicDive::operator=(rhs);
    }
    return *this;
}

bool
CbcHeuristicDiveGuided::canHeuristicRun()
{
    double* bestIntegerSolution = model_->bestSolution();
    if (bestIntegerSolution == NULL)
        return false; // no integer solution available. Switch off heuristic

    return CbcHeuristicDive::canHeuristicRun();
}

bool
CbcHeuristicDiveGuided::selectVariableToBranch(OsiSolverInterface* solver,
        const double* newSolution,
        int& bestColumn,
        int& bestRound)
{
    double* bestIntegerSolution = model_->bestSolution();

    int numberIntegers = model_->numberIntegers();
    const int * integerVariable = model_->integerVariable();
    double integerTolerance = model_->getDblParam(CbcModel::CbcIntegerTolerance);

    bestColumn = -1;
    bestRound = -1; // -1 rounds down, +1 rounds up
    double bestFraction = COIN_DBL_MAX;
    bool allTriviallyRoundableSoFar = true;
    int bestPriority = COIN_INT_MAX;
    for (int i = 0; i < numberIntegers; i++) {
        int iColumn = integerVariable[i];
        double value = newSolution[iColumn];
        double fraction = value - floor(value);
        int round = 0;
        if (fabs(floor(value + 0.5) - value) > integerTolerance) {
            if (allTriviallyRoundableSoFar || (downLocks_[i] > 0 && upLocks_[i] > 0)) {

                if (allTriviallyRoundableSoFar && downLocks_[i] > 0 && upLocks_[i] > 0) {
                    allTriviallyRoundableSoFar = false;
                    bestFraction = COIN_DBL_MAX;
                }

                if (value >= bestIntegerSolution[iColumn])
                    round = -1;
                else {
                    round = 1;
                    fraction = 1.0 - fraction;
                }

                // if variable is not binary, penalize it
                if (!solver->isBinary(iColumn))
                    fraction *= 1000.0;

		// if priorities then use
		if (priority_) {
		  int thisRound=static_cast<int>(priority_[i].direction);
		  if ((thisRound&1)!=0) 
		    round = ((thisRound&2)==0) ? -1 : +1;
		  if (priority_[i].priority>bestPriority) {
		    fraction=COIN_DBL_MAX;
		  } else if (priority_[i].priority<bestPriority) {
		    bestPriority=static_cast<int>(priority_[i].priority);
		    bestFraction=COIN_DBL_MAX;
		  }
		}
                if (fraction < bestFraction) {
                    bestColumn = iColumn;
                    bestFraction = fraction;
                    bestRound = round;
                }
            }
        }
    }
    return allTriviallyRoundableSoFar;
}