File: CbcHeuristicDiveLineSearch.cpp

package info (click to toggle)
coinor-cbc 2.9.9+repack1-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 7,848 kB
  • ctags: 5,787
  • sloc: cpp: 104,337; sh: 8,921; xml: 2,950; makefile: 520; ansic: 491; awk: 197
file content (136 lines) | stat: -rw-r--r-- 4,324 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
/* $Id: CbcHeuristicDiveLineSearch.cpp 2093 2014-11-06 16:17:38Z forrest $ */
// Copyright (C) 2008, International Business Machines
// Corporation and others.  All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).

#if defined(_MSC_VER)
// Turn off compiler warning about long names
#  pragma warning(disable:4786)
#endif

#include "CbcHeuristicDiveLineSearch.hpp"
#include "CbcStrategy.hpp"

// Default Constructor
CbcHeuristicDiveLineSearch::CbcHeuristicDiveLineSearch()
        : CbcHeuristicDive()
{
}

// Constructor from model
CbcHeuristicDiveLineSearch::CbcHeuristicDiveLineSearch(CbcModel & model)
        : CbcHeuristicDive(model)
{
}

// Destructor
CbcHeuristicDiveLineSearch::~CbcHeuristicDiveLineSearch ()
{
}

// Clone
CbcHeuristicDiveLineSearch *
CbcHeuristicDiveLineSearch::clone() const
{
    return new CbcHeuristicDiveLineSearch(*this);
}

// Create C++ lines to get to current state
void
CbcHeuristicDiveLineSearch::generateCpp( FILE * fp)
{
    CbcHeuristicDiveLineSearch other;
    fprintf(fp, "0#include \"CbcHeuristicDiveLineSearch.hpp\"\n");
    fprintf(fp, "3  CbcHeuristicDiveLineSearch heuristicDiveLineSearch(*cbcModel);\n");
    CbcHeuristic::generateCpp(fp, "heuristicDiveLineSearch");
    fprintf(fp, "3  cbcModel->addHeuristic(&heuristicDiveLineSearch);\n");
}

// Copy constructor
CbcHeuristicDiveLineSearch::CbcHeuristicDiveLineSearch(const CbcHeuristicDiveLineSearch & rhs)
        :
        CbcHeuristicDive(rhs)
{
}

// Assignment operator
CbcHeuristicDiveLineSearch &
CbcHeuristicDiveLineSearch::operator=( const CbcHeuristicDiveLineSearch & rhs)
{
    if (this != &rhs) {
        CbcHeuristicDive::operator=(rhs);
    }
    return *this;
}

bool
CbcHeuristicDiveLineSearch::selectVariableToBranch(OsiSolverInterface* solver,
        const double* newSolution,
        int& bestColumn,
        int& bestRound)
{
    int numberIntegers = model_->numberIntegers();
    const int * integerVariable = model_->integerVariable();
    double integerTolerance = model_->getDblParam(CbcModel::CbcIntegerTolerance);

    // get the LP relaxation solution at the root node
    double * rootNodeLPSol = model_->continuousSolution();

    bestColumn = -1;
    bestRound = -1; // -1 rounds down, +1 rounds up
    double bestRelDistance = COIN_DBL_MAX;
    bool allTriviallyRoundableSoFar = true;
    int bestPriority = COIN_INT_MAX;
    for (int i = 0; i < numberIntegers; i++) {
        int iColumn = integerVariable[i];
        double rootValue = rootNodeLPSol[iColumn];
        double value = newSolution[iColumn];
        double fraction = value - floor(value);
        int round = 0;
        if (fabs(floor(value + 0.5) - value) > integerTolerance) {
            if (allTriviallyRoundableSoFar || (downLocks_[i] > 0 && upLocks_[i] > 0)) {

                if (allTriviallyRoundableSoFar && downLocks_[i] > 0 && upLocks_[i] > 0) {
                    allTriviallyRoundableSoFar = false;
                    bestRelDistance = COIN_DBL_MAX;
                }

                double relDistance;
                if (value < rootValue) {
                    round = -1;
                    relDistance = fraction / (rootValue - value);
                } else if (value > rootValue) {
                    round = 1;
                    relDistance = (1.0 - fraction) / (value - rootValue);
                } else {
                    round = -1;
                    relDistance = COIN_DBL_MAX;
                }

                // if variable is not binary, penalize it
                if (!solver->isBinary(iColumn))
                    relDistance *= 1000.0;

		// if priorities then use
		if (priority_) {
		  int thisRound=static_cast<int>(priority_[i].direction);
		  if ((thisRound&1)!=0) 
		    round = ((thisRound&2)==0) ? -1 : +1;
		  if (priority_[i].priority>bestPriority) {
		    relDistance=COIN_DBL_MAX;
		  } else if (priority_[i].priority<bestPriority) {
		    bestPriority=static_cast<int>(priority_[i].priority);
		    bestRelDistance=COIN_DBL_MAX;
		  }
		}
                if (relDistance < bestRelDistance) {
                    bestColumn = iColumn;
                    bestRelDistance = relDistance;
                    bestRound = round;
                }
            }
        }
    }
    return allTriviallyRoundableSoFar;
}