1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
/* $Id: CbcHeuristicDivePseudoCost.cpp 2093 2014-11-06 16:17:38Z forrest $ */
// Copyright (C) 2008, International Business Machines
// Corporation and others. All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).
#if defined(_MSC_VER)
// Turn off compiler warning about long names
# pragma warning(disable:4786)
#endif
#include "CbcHeuristicDivePseudoCost.hpp"
#include "CbcStrategy.hpp"
#include "CbcBranchDynamic.hpp"
// Default Constructor
CbcHeuristicDivePseudoCost::CbcHeuristicDivePseudoCost()
: CbcHeuristicDive()
{
}
// Constructor from model
CbcHeuristicDivePseudoCost::CbcHeuristicDivePseudoCost(CbcModel & model)
: CbcHeuristicDive(model)
{
}
// Destructor
CbcHeuristicDivePseudoCost::~CbcHeuristicDivePseudoCost ()
{
}
// Clone
CbcHeuristicDivePseudoCost *
CbcHeuristicDivePseudoCost::clone() const
{
return new CbcHeuristicDivePseudoCost(*this);
}
// Create C++ lines to get to current state
void
CbcHeuristicDivePseudoCost::generateCpp( FILE * fp)
{
CbcHeuristicDivePseudoCost other;
fprintf(fp, "0#include \"CbcHeuristicDivePseudoCost.hpp\"\n");
fprintf(fp, "3 CbcHeuristicDivePseudoCost heuristicDivePseudoCost(*cbcModel);\n");
CbcHeuristic::generateCpp(fp, "heuristicDivePseudoCost");
fprintf(fp, "3 cbcModel->addHeuristic(&heuristicDivePseudoCost);\n");
}
// Copy constructor
CbcHeuristicDivePseudoCost::CbcHeuristicDivePseudoCost(const CbcHeuristicDivePseudoCost & rhs)
:
CbcHeuristicDive(rhs)
{
}
// Assignment operator
CbcHeuristicDivePseudoCost &
CbcHeuristicDivePseudoCost::operator=( const CbcHeuristicDivePseudoCost & rhs)
{
if (this != &rhs) {
CbcHeuristicDive::operator=(rhs);
}
return *this;
}
bool
CbcHeuristicDivePseudoCost::selectVariableToBranch(OsiSolverInterface* solver,
const double* newSolution,
int& bestColumn,
int& bestRound)
{
int numberIntegers = model_->numberIntegers();
const int * integerVariable = model_->integerVariable();
double integerTolerance = model_->getDblParam(CbcModel::CbcIntegerTolerance);
// get the LP relaxation solution at the root node
double * rootNodeLPSol = model_->continuousSolution();
// get pseudo costs
double * pseudoCostDown = downArray_;
double * pseudoCostUp = upArray_;
bestColumn = -1;
bestRound = -1; // -1 rounds down, +1 rounds up
double bestScore = -1.0;
bool allTriviallyRoundableSoFar = true;
int bestPriority = COIN_INT_MAX;
for (int i = 0; i < numberIntegers; i++) {
int iColumn = integerVariable[i];
double rootValue = rootNodeLPSol[iColumn];
double value = newSolution[iColumn];
double fraction = value - floor(value);
int round = 0;
if (fabs(floor(value + 0.5) - value) > integerTolerance) {
if (allTriviallyRoundableSoFar || (downLocks_[i] > 0 && upLocks_[i] > 0)) {
if (allTriviallyRoundableSoFar && downLocks_[i] > 0 && upLocks_[i] > 0) {
allTriviallyRoundableSoFar = false;
bestScore = -1.0;
}
double pCostDown = pseudoCostDown[i];
double pCostUp = pseudoCostUp[i];
assert(pCostDown >= 0.0 && pCostUp >= 0.0);
if (allTriviallyRoundableSoFar && downLocks_[i] == 0 && upLocks_[i] > 0)
round = 1;
else if (allTriviallyRoundableSoFar && downLocks_[i] > 0 && upLocks_[i] == 0)
round = -1;
else if (value - rootValue < -0.4)
round = -1;
else if (value - rootValue > 0.4)
round = 1;
else if (fraction < 0.3)
round = -1;
else if (fraction > 0.7)
round = 1;
else if (pCostDown < pCostUp)
round = -1;
else
round = 1;
// calculate score
double score;
if (round == 1)
score = fraction * (pCostDown + 1.0) / (pCostUp + 1.0);
else
score = (1.0 - fraction) * (pCostUp + 1.0) / (pCostDown + 1.0);
// if variable is binary, increase its chance of being selected
if (solver->isBinary(iColumn))
score *= 1000.0;
// if priorities then use
if (priority_) {
int thisRound=static_cast<int>(priority_[i].direction);
if ((thisRound&1)!=0)
round = ((thisRound&2)==0) ? -1 : +1;
if (priority_[i].priority>bestPriority) {
score=COIN_DBL_MAX;
} else if (priority_[i].priority<bestPriority) {
bestPriority=static_cast<int>(priority_[i].priority);
bestScore=COIN_DBL_MAX;
}
}
if (score > bestScore) {
bestColumn = iColumn;
bestScore = score;
bestRound = round;
}
}
}
}
return allTriviallyRoundableSoFar;
}
void
CbcHeuristicDivePseudoCost::initializeData()
{
int numberIntegers = model_->numberIntegers();
if (!downArray_) {
downArray_ = new double [numberIntegers];
upArray_ = new double [numberIntegers];
}
// get pseudo costs
model_->fillPseudoCosts(downArray_, upArray_);
// allow for -999 -> force to run
int diveOptions = (when_>0) ? when_ / 100 : 0;
if (diveOptions) {
// pseudo shadow prices
int k = diveOptions % 100;
if (diveOptions >= 100)
k += 32;
model_->pseudoShadow(k - 1);
int numberInts = CoinMin(model_->numberObjects(), numberIntegers);
OsiObject ** objects = model_->objects();
for (int i = 0; i < numberInts; i++) {
CbcSimpleIntegerDynamicPseudoCost * obj1 =
dynamic_cast <CbcSimpleIntegerDynamicPseudoCost *>(objects[i]) ;
if (obj1) {
//int iColumn = obj1->columnNumber();
double downPseudoCost = 1.0e-2 * obj1->downDynamicPseudoCost();
double downShadow = obj1->downShadowPrice();
double upPseudoCost = 1.0e-2 * obj1->upDynamicPseudoCost();
double upShadow = obj1->upShadowPrice();
downPseudoCost = CoinMax(downPseudoCost, downShadow);
downPseudoCost = CoinMax(downPseudoCost, 0.001 * upShadow);
downArray_[i] = downPseudoCost;
upPseudoCost = CoinMax(upPseudoCost, upShadow);
upPseudoCost = CoinMax(upPseudoCost, 0.001 * downShadow);
upArray_[i] = upPseudoCost;
}
}
}
}
// Fix other variables at bounds
int
CbcHeuristicDivePseudoCost::fixOtherVariables(OsiSolverInterface * solver,
const double * solution,
PseudoReducedCost * candidate,
const double * random)
{
const double * lower = solver->getColLower();
const double * upper = solver->getColUpper();
double integerTolerance = model_->getDblParam(CbcModel::CbcIntegerTolerance);
double primalTolerance;
solver->getDblParam(OsiPrimalTolerance, primalTolerance);
int numberIntegers = model_->numberIntegers();
const int * integerVariable = model_->integerVariable();
const double* reducedCost = solver->getReducedCost();
bool fixGeneralIntegers = (switches_&65536)!=0;
// fix other integer variables that are at their bounds
int cnt = 0;
int numberFree = 0;
int numberFixedAlready = 0;
for (int i = 0; i < numberIntegers; i++) {
int iColumn = integerVariable[i];
if (upper[iColumn] > lower[iColumn]) {
numberFree++;
double value = solution[iColumn];
if (value - lower[iColumn] <= integerTolerance) {
candidate[cnt].var = iColumn;
candidate[cnt++].pseudoRedCost = CoinMax(1.0e-2 * reducedCost[iColumn],
downArray_[i]) * random[i];
} else if (upper[iColumn] - value <= integerTolerance) {
candidate[cnt].var = iColumn;
candidate[cnt++].pseudoRedCost = CoinMax(-1.0e-2 * reducedCost[iColumn],
downArray_[i]) * random[i];
} else if (fixGeneralIntegers &&
fabs(floor(value + 0.5) - value) <= integerTolerance) {
candidate[cnt].var = iColumn;
candidate[cnt++].pseudoRedCost = CoinMax(-1.0e-6 * reducedCost[iColumn],
1.0e-4*downArray_[i]) * random[i];
}
} else {
numberFixedAlready++;
}
}
#ifdef CLP_INVESTIGATE
printf("cutoff %g obj %g - %d free, %d fixed\n",
model_->getCutoff(), solver->getObjValue(), numberFree,
numberFixedAlready);
#endif
return cnt;
//return CbcHeuristicDive::fixOtherVariables(solver, solution,
// candidate, random);
}
|