File: CbcHeuristicLocal.cpp

package info (click to toggle)
coinor-cbc 2.9.9+repack1-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 7,848 kB
  • ctags: 5,787
  • sloc: cpp: 104,337; sh: 8,921; xml: 2,950; makefile: 520; ansic: 491; awk: 197
file content (1687 lines) | stat: -rw-r--r-- 60,616 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
/* $Id: CbcHeuristicLocal.cpp 2105 2015-01-05 13:11:11Z forrest $ */
// Copyright (C) 2002, International Business Machines
// Corporation and others.  All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).

#if defined(_MSC_VER)
// Turn off compiler warning about long names
#  pragma warning(disable:4786)
#endif
#include <cassert>
#include <cstdlib>
#include <cmath>
#include <cfloat>

#include "OsiSolverInterface.hpp"
#include "CbcModel.hpp"
#include "CbcMessage.hpp"
#include "CbcHeuristicLocal.hpp"
#include "CbcHeuristicFPump.hpp"
#include "CbcBranchActual.hpp"
#include "CbcStrategy.hpp"
#include "CglPreProcess.hpp"

// Default Constructor
CbcHeuristicLocal::CbcHeuristicLocal()
        : CbcHeuristic()
{
    numberSolutions_ = 0;
    swap_ = 0;
    used_ = NULL;
    lastRunDeep_ = -1000000;
    switches_ |= 16; // needs a new solution
}

// Constructor with model - assumed before cuts

CbcHeuristicLocal::CbcHeuristicLocal(CbcModel & model)
        : CbcHeuristic(model)
{
    numberSolutions_ = 0;
    swap_ = 0;
    lastRunDeep_ = -1000000;
    switches_ |= 16; // needs a new solution
    // Get a copy of original matrix
    assert(model.solver());
    if (model.solver()->getNumRows()) {
        matrix_ = *model.solver()->getMatrixByCol();
    }
    int numberColumns = model.solver()->getNumCols();
    used_ = new int[numberColumns];
    memset(used_, 0, numberColumns*sizeof(int));
}

// Destructor
CbcHeuristicLocal::~CbcHeuristicLocal ()
{
    delete [] used_;
}

// Clone
CbcHeuristic *
CbcHeuristicLocal::clone() const
{
    return new CbcHeuristicLocal(*this);
}
// Create C++ lines to get to current state
void
CbcHeuristicLocal::generateCpp( FILE * fp)
{
    CbcHeuristicLocal other;
    fprintf(fp, "0#include \"CbcHeuristicLocal.hpp\"\n");
    fprintf(fp, "3  CbcHeuristicLocal heuristicLocal(*cbcModel);\n");
    CbcHeuristic::generateCpp(fp, "heuristicLocal");
    if (swap_ != other.swap_)
        fprintf(fp, "3  heuristicLocal.setSearchType(%d);\n", swap_);
    else
        fprintf(fp, "4  heuristicLocal.setSearchType(%d);\n", swap_);
    fprintf(fp, "3  cbcModel->addHeuristic(&heuristicLocal);\n");
}

// Copy constructor
CbcHeuristicLocal::CbcHeuristicLocal(const CbcHeuristicLocal & rhs)
        :
        CbcHeuristic(rhs),
        matrix_(rhs.matrix_),
        numberSolutions_(rhs.numberSolutions_),
        swap_(rhs.swap_)
{
    if (model_ && rhs.used_) {
        int numberColumns = model_->solver()->getNumCols();
        used_ = CoinCopyOfArray(rhs.used_, numberColumns);
    } else {
        used_ = NULL;
    }
}

// Assignment operator
CbcHeuristicLocal &
CbcHeuristicLocal::operator=( const CbcHeuristicLocal & rhs)
{
    if (this != &rhs) {
        CbcHeuristic::operator=(rhs);
        matrix_ = rhs.matrix_;
        numberSolutions_ = rhs.numberSolutions_;
        swap_ = rhs.swap_;
        delete [] used_;
        if (model_ && rhs.used_) {
            int numberColumns = model_->solver()->getNumCols();
            used_ = CoinCopyOfArray(rhs.used_, numberColumns);
        } else {
            used_ = NULL;
        }
    }
    return *this;
}

// Resets stuff if model changes
void
CbcHeuristicLocal::resetModel(CbcModel * /*model*/)
{
    //CbcHeuristic::resetModel(model);
    delete [] used_;
    if (model_ && used_) {
        int numberColumns = model_->solver()->getNumCols();
        used_ = new int[numberColumns];
        memset(used_, 0, numberColumns*sizeof(int));
    } else {
        used_ = NULL;
    }
}
/*
  Run a mini-BaB search after fixing all variables not marked as used by
  solution(). (See comments there for semantics.)

  Return values are:
    1: smallBranchAndBound found a solution
    0: everything else

  The degree of overload as return codes from smallBranchAndBound are folded
  into 0 is such that it's impossible to distinguish return codes that really
  require attention from a simple `nothing of interest'.
*/
// This version fixes stuff and does IP
int
CbcHeuristicLocal::solutionFix(double & objectiveValue,
                               double * newSolution,
                               const int * /*keep*/)
{
/*
  If when is set to off (0), or set to root (1) and we're not at the root,
  return. If this heuristic discovered the current solution, don't continue.
*/

    numCouldRun_++;
    // See if to do
    if (!when() || (when() == 1 && model_->phase() != 1))
        return 0; // switched off
    // Don't do if it was this heuristic which found solution!
    if (this == model_->lastHeuristic())
        return 0;
/*
  Load up a new solver with the solution.

  Why continuousSolver(), as opposed to solver()?
*/
    OsiSolverInterface * newSolver = model_->continuousSolver()->clone();
    const double * colLower = newSolver->getColLower();
    //const double * colUpper = newSolver->getColUpper();

    int numberIntegers = model_->numberIntegers();
    const int * integerVariable = model_->integerVariable();
/*
  The net effect here is that anything that hasn't moved from its lower bound
  will be fixed at lower bound.

  See comments in solution() w.r.t. asymmetric treatment of upper and lower
  bounds.
*/

    int i;
    int nFix = 0;
    for (i = 0; i < numberIntegers; i++) {
        int iColumn = integerVariable[i];
        const OsiObject * object = model_->object(i);
        // get original bounds
        double originalLower;
        double originalUpper;
        getIntegerInformation( object, originalLower, originalUpper);
        newSolver->setColLower(iColumn, CoinMax(colLower[iColumn], originalLower));
        if (!used_[iColumn]) {
            newSolver->setColUpper(iColumn, colLower[iColumn]);
            nFix++;
        }
    }
/*
  Try a `small' branch-and-bound search. The notion here is that we've fixed a
  lot of variables and reduced the amount of `free' problem to a point where a
  small BaB search will suffice to fully explore the remaining problem. This
  routine will execute integer presolve, then call branchAndBound to do the
  actual search.
*/
    int returnCode = 0;
#ifdef CLP_INVESTIGATE2
    printf("Fixing %d out of %d (%d continuous)\n",
           nFix, numberIntegers, newSolver->getNumCols() - numberIntegers);
#endif
    if (nFix*10 <= numberIntegers) {
        // see if we can fix more
        int * which = new int [2*(numberIntegers-nFix)];
        int * sort = which + (numberIntegers - nFix);
        int n = 0;
        for (i = 0; i < numberIntegers; i++) {
            int iColumn = integerVariable[i];
            if (used_[iColumn]) {
                which[n] = iColumn;
                sort[n++] = used_[iColumn];
            }
        }
        CoinSort_2(sort, sort + n, which);
        // only half fixed in total
        n = CoinMin(n, numberIntegers / 2 - nFix);
        int allow = CoinMax(numberSolutions_ - 2, sort[0]);
        int nFix2 = 0;
        for (i = 0; i < n; i++) {
            int iColumn = integerVariable[i];
            if (used_[iColumn] <= allow) {
                newSolver->setColUpper(iColumn, colLower[iColumn]);
                nFix2++;
            } else {
                break;
            }
        }
        delete [] which;
        nFix += nFix2;
#ifdef CLP_INVESTIGATE2
        printf("Number fixed increased from %d to %d\n",
               nFix - nFix2, nFix);
#endif
    }
    if (nFix*10 > numberIntegers) {
        returnCode = smallBranchAndBound(newSolver, numberNodes_, newSolution, objectiveValue,
                                         objectiveValue, "CbcHeuristicLocal");
 /*
  -2 is return due to user event, and -1 is overloaded with what look to be
  two contradictory meanings.
*/
       if (returnCode < 0) {
            returnCode = 0; // returned on size
            int numberColumns = newSolver->getNumCols();
            int numberContinuous = numberColumns - numberIntegers;
            if (numberContinuous > 2*numberIntegers &&
                    nFix*10 < numberColumns) {
#define LOCAL_FIX_CONTINUOUS
#ifdef LOCAL_FIX_CONTINUOUS
                //const double * colUpper = newSolver->getColUpper();
                const double * colLower = newSolver->getColLower();
                int nAtLb = 0;
                //double sumDj=0.0;
                const double * dj = newSolver->getReducedCost();
                double direction = newSolver->getObjSense();
                for (int iColumn = 0; iColumn < numberColumns; iColumn++) {
                    if (!newSolver->isInteger(iColumn)) {
                        if (!used_[iColumn]) {
                            //double djValue = dj[iColumn]*direction;
                            nAtLb++;
                            //sumDj += djValue;
                        }
                    }
                }
                if (nAtLb) {
                    // fix some continuous
                    double * sort = new double[nAtLb];
                    int * which = new int [nAtLb];
                    //double threshold = CoinMax((0.01*sumDj)/static_cast<double>(nAtLb),1.0e-6);
                    int nFix2 = 0;
                    for (int iColumn = 0; iColumn < numberColumns; iColumn++) {
                        if (!newSolver->isInteger(iColumn)) {
                            if (!used_[iColumn]) {
                                double djValue = dj[iColumn] * direction;
                                if (djValue > 1.0e-6) {
                                    sort[nFix2] = -djValue;
                                    which[nFix2++] = iColumn;
                                }
                            }
                        }
                    }
                    CoinSort_2(sort, sort + nFix2, which);
                    int divisor = 2;
                    nFix2 = CoinMin(nFix2, (numberColumns - nFix) / divisor);
                    for (int i = 0; i < nFix2; i++) {
                        int iColumn = which[i];
                        newSolver->setColUpper(iColumn, colLower[iColumn]);
                    }
                    delete [] sort;
                    delete [] which;
#ifdef CLP_INVESTIGATE2
                    printf("%d integers have zero value, and %d continuous fixed at lb\n",
                           nFix, nFix2);
#endif
                    returnCode = smallBranchAndBound(newSolver,
                                                     numberNodes_, newSolution,
                                                     objectiveValue,
                                                     objectiveValue, "CbcHeuristicLocal");
                    if (returnCode < 0)
                        returnCode = 0; // returned on size
                }
#endif
            }
        }
    }
/*
  If the result is complete exploration with a solution (3) or proven
  infeasibility (2), we could generate a cut (the AI folks would call it a
  nogood) to prevent us from going down this route in the future.
*/
    if ((returnCode&2) != 0) {
        // could add cut
        returnCode &= ~2;
    }

    delete newSolver;
    return returnCode;
}
/*
  First tries setting a variable to better value.  If feasible then
  tries setting others.  If not feasible then tries swaps
  Returns 1 if solution, 0 if not 
  The main body of this routine implements an O((q^2)/2) brute force search
  around the current solution, for q = number of integer variables. Call this
  the inc/dec heuristic.  For each integer variable x<i>, first decrement the
  value. Then, for integer variables x<i+1>, ..., x<q-1>, try increment and
  decrement. If one of these permutations produces a better solution,
  remember it.  Then repeat, with x<i> incremented. If we find a better
  solution, update our notion of current solution and continue.

  The net effect is a greedy walk: As each improving pair is found, the
  current solution is updated and the search continues from this updated
  solution.

  Way down at the end, we call solutionFix, which will create a drastically
  restricted problem based on variables marked as used, then do mini-BaC on
  the restricted problem. This can occur even if we don't try the inc/dec
  heuristic. This would be more obvious if the inc/dec heuristic were broken
  out as a separate routine and solutionFix had a name that reflected where
  it was headed.

  The return code of 0 is grossly overloaded, because it maps to a return
  code of 0 from solutionFix, which is itself grossly overloaded. See
  comments in solutionFix and in CbcHeuristic::smallBranchAndBound.
  */
int
CbcHeuristicLocal::solution(double & solutionValue,
                            double * betterSolution)
{
/*
  Execute only if a new solution has been discovered since the last time we
  were called.
*/

    numCouldRun_++;
    // See if frequency kills off idea
    int swap = swap_%100;
    int skip = swap_/100;
    int nodeCount = model_->getNodeCount();
    if (nodeCount<lastRunDeep_+skip && nodeCount != lastRunDeep_+1) 
      return 0;
    if (numberSolutions_ == model_->getSolutionCount() &&
	(numberSolutions_ == howOftenShallow_ ||
	 nodeCount < lastRunDeep_+2*skip))
        return 0;
    howOftenShallow_ = numberSolutions_;
    numberSolutions_ = model_->getSolutionCount();
    if (nodeCount<lastRunDeep_+skip ) 
      return 0;
#ifdef HEURISTIC_INFORM
    printf("Entering heuristic %s - nRuns %d numCould %d when %d\n",
	   heuristicName(),numRuns_,numCouldRun_,when_);
#endif
    lastRunDeep_ = nodeCount;
    howOftenShallow_ = numberSolutions_;

    if ((swap%10) == 2) {
        // try merge
        return solutionFix( solutionValue, betterSolution, NULL);
    }
/*
  Exclude long (column), thin (row) systems.

  Given the n^2 nature of the search, more than 100,000 columns could get
  expensive. But I don't yet see the rationale for the second part of the
  condition (cols > 10*rows). And cost is proportional to number of integer
  variables --- shouldn't we use that?

  Why wait until we have more than one solution?
*/
    if ((model_->getNumCols() > 100000 && model_->getNumCols() >
            10*model_->getNumRows()) || numberSolutions_ <= 1)
        return 0; // probably not worth it
    // worth trying

    OsiSolverInterface * solver = model_->solver();
    const double * rowLower = solver->getRowLower();
    const double * rowUpper = solver->getRowUpper();
    const double * solution = model_->bestSolution();
/*
  Shouldn't this test be redundant if we've already checked that
  numberSolutions_ > 1? Stronger: shouldn't this be an assertion?
*/
    if (!solution)
        return 0; // No solution found yet
    const double * objective = solver->getObjCoefficients();
    double primalTolerance;
    solver->getDblParam(OsiPrimalTolerance, primalTolerance);

    int numberRows = matrix_.getNumRows();

    int numberIntegers = model_->numberIntegers();
    const int * integerVariable = model_->integerVariable();

    int i;
    double direction = solver->getObjSense();
    double newSolutionValue = model_->getObjValue() * direction;
    int returnCode = 0;
    numRuns_++;
    // Column copy
    const double * element = matrix_.getElements();
    const int * row = matrix_.getIndices();
    const CoinBigIndex * columnStart = matrix_.getVectorStarts();
    const int * columnLength = matrix_.getVectorLengths();

    // Get solution array for heuristic solution
    int numberColumns = solver->getNumCols();
    double * newSolution = new double [numberColumns];
    memcpy(newSolution, solution, numberColumns*sizeof(double));
#ifdef LOCAL_FIX_CONTINUOUS
    // mark continuous used
    const double * columnLower = solver->getColLower();
    for (int iColumn = 0; iColumn < numberColumns; iColumn++) {
        if (!solver->isInteger(iColumn)) {
            if (solution[iColumn] > columnLower[iColumn] + 1.0e-8)
                used_[iColumn] = numberSolutions_;
        }
    }
#endif

    // way is 1 if down possible, 2 if up possible, 3 if both possible
    char * way = new char[numberIntegers];
    // corrected costs
    double * cost = new double[numberIntegers];
    // for array to mark infeasible rows after iColumn branch
    char * mark = new char[numberRows];
    memset(mark, 0, numberRows);
    // space to save values so we don't introduce rounding errors
    double * save = new double[numberRows];
/*
  Force variables within their original bounds, then to the nearest integer.
  Overall, we seem to be prepared to cope with noninteger bounds. Is this
  necessary? Seems like we'd be better off to force the bounds to integrality
  as part of preprocessing.  More generally, why do we need to do this? This
  solution should have been cleaned and checked when it was accepted as a
  solution!

  Once the value is set, decide whether we can move up or down.

  The only place that used_ is used is in solutionFix; if a variable is not
  flagged as used, it will be fixed (at lower bound). Why the asymmetric
  treatment? This makes some sense for binary variables (for which there are
  only two options). But for general integer variables, why not make a similar
  test against the original upper bound?
*/

    // clean solution
    for (i = 0; i < numberIntegers; i++) {
        int iColumn = integerVariable[i];
        const OsiObject * object = model_->object(i);
        // get original bounds
        double originalLower;
        double originalUpper;
        getIntegerInformation( object, originalLower, originalUpper);
        double value = newSolution[iColumn];
        if (value < originalLower) {
            value = originalLower;
            newSolution[iColumn] = value;
        } else if (value > originalUpper) {
            value = originalUpper;
            newSolution[iColumn] = value;
        }
        double nearest = floor(value + 0.5);
        //assert(fabs(value-nearest)<10.0*primalTolerance);
        value = nearest;
        newSolution[iColumn] = nearest;
        // if away from lower bound mark that fact
        if (nearest > originalLower) {
            used_[iColumn] = numberSolutions_;
        }
        cost[i] = direction * objective[iColumn];
/*
  Given previous computation we're checking that value is at least 1 away
  from the original bounds.
*/
        int iway = 0;

        if (value > originalLower + 0.5)
            iway = 1;
        if (value < originalUpper - 0.5)
            iway |= 2;
        way[i] = static_cast<char>(iway);
    }
/*
  Calculate lhs of each constraint for groomed solution.
*/
    // get row activities
    double * rowActivity = new double[numberRows];
    memset(rowActivity, 0, numberRows*sizeof(double));

    for (i = 0; i < numberColumns; i++) {
        int j;
        double value = newSolution[i];
        if (value) {
            for (j = columnStart[i];
                    j < columnStart[i] + columnLength[i]; j++) {
                int iRow = row[j];
                rowActivity[iRow] += value * element[j];
            }
        }
    }
/*
  Check that constraints are satisfied. For small infeasibility, force the
  activity within bound. Again, why is this necessary if the current solution
  was accepted as a valid solution?

  Why are we scanning past the first unacceptable constraint?
*/
    // check was feasible - if not adjust (cleaning may move)
    // if very infeasible then give up
    bool tryHeuristic = true;
    for (i = 0; i < numberRows; i++) {
        if (rowActivity[i] < rowLower[i]) {
            if (rowActivity[i] < rowLower[i] - 10.0*primalTolerance)
                tryHeuristic = false;
            rowActivity[i] = rowLower[i];
        } else if (rowActivity[i] > rowUpper[i]) {
            if (rowActivity[i] < rowUpper[i] + 10.0*primalTolerance)
                tryHeuristic = false;
            rowActivity[i] = rowUpper[i];
        }
    }
/*
  This bit of code is not quite totally redundant: it'll bail at 10,000
  instead of 100,000. Potentially we can do a lot of work to get here, only
  to abandon it.
*/
    // Switch off if may take too long
    if (model_->getNumCols() > 10000 && model_->getNumCols() >
            10*model_->getNumRows()&&swap<10)
        tryHeuristic = false;
/*
  Try the inc/dec heuristic?
*/
    if (tryHeuristic) {

        // total change in objective
        double totalChange = 0.0;
        // local best change in objective
        double bestChange = 0.0;
	// maybe just do 1000
	int maxIntegers = numberIntegers;
	// stop if too many goes
	int maxTries=COIN_INT_MAX;
	// integerVariable may be randomized copy!
	int * integerVariable = 
	  CoinCopyOfArray(model_->integerVariable(),numberIntegers);
	if (swap>9 && numberIntegers>500) {
	  int type=swap/10;
	  if (type==1) {
	    // reduce
	    maxIntegers = CoinMin(1000,numberIntegers);
	  } else if (type==2) {
	    // reduce even more
	    maxTries=100000;
	    maxIntegers = CoinMin(500,numberIntegers);
	  } else if (type>2) {
	    assert (type<10);
	    int totals[7]={1000,500,100,50,50,50,50};
	    maxIntegers=CoinMin(totals[type-3],numberIntegers);
	    double * weight = new double[numberIntegers];
	    for (int i=0;i<numberIntegers;i++) {
	      weight[i]=model_->randomNumberGenerator()->randomDouble();
	    }
	    CoinSort_2(weight,weight+numberIntegers,integerVariable);
	  }
	}
/*
  Outer loop to walk integer variables. Call the current variable x<i>. At the
  end of this loop, bestChange will contain the best (negative) change in the
  objective for any single pair.

  The trouble is, we're limited to monotonically increasing improvement.
  Suppose we discover an improvement of 10 for some pair. If, later in the
  search, we discover an improvement of 9 for some other pair, we will not use
  it. That seems wasteful.
*/

        for (i = 0; i < numberIntegers; i++) {
            int iColumn = integerVariable[i];
	    bestChange = 0.0;
	    int endInner = CoinMin(numberIntegers,i+maxIntegers);

            double objectiveCoefficient = cost[i];
            int k;
            int j;
            int goodK = -1;
            int wayK = -1, wayI = -1;
/*
  Try decrementing x<i>.
*/
            if ((way[i]&1) != 0) {
                int numberInfeasible = 0;
/*
  Adjust row activities where x<i> has a nonzero coefficient. Save the old
  values for restoration. Mark any rows that become infeasible as a result
  of the decrement.
*/
                // save row activities and adjust
                for (j = columnStart[iColumn];
                        j < columnStart[iColumn] + columnLength[iColumn]; j++) {
                    int iRow = row[j];
                    save[iRow] = rowActivity[iRow];
                    rowActivity[iRow] -= element[j];
                    if (rowActivity[iRow] < rowLower[iRow] - primalTolerance ||
                            rowActivity[iRow] > rowUpper[iRow] + primalTolerance) {
                        // mark row
                        mark[iRow] = 1;
                        numberInfeasible++;
                    }
                }
  /*
  Run through the remaining integer variables. Try increment and decrement on
  each one. If the potential objective change is better than anything we've
  seen so far, do a full evaluation of x<k> in that direction.  If we can
  repair all infeasibilities introduced by pushing x<i> down, we have a
  winner. Remember the best variable, and the direction for x<i> and x<k>.
*/
              // try down
                for (k = i + 1; k < endInner; k++) {
		    if (!maxTries)
		      break;
		    maxTries--;
                    if ((way[k]&1) != 0) {
                        // try down
                        if (-objectiveCoefficient - cost[k] < bestChange) {
                            // see if feasible down
                            bool good = true;
                            int numberMarked = 0;
                            int kColumn = integerVariable[k];
                            for (j = columnStart[kColumn];
                                    j < columnStart[kColumn] + columnLength[kColumn]; j++) {
                                int iRow = row[j];
                                double newValue = rowActivity[iRow] - element[j];
                                if (newValue < rowLower[iRow] - primalTolerance ||
                                        newValue > rowUpper[iRow] + primalTolerance) {
                                    good = false;
                                    break;
                                } else if (mark[iRow]) {
                                    // made feasible
                                    numberMarked++;
                                }
                            }
                            if (good && numberMarked == numberInfeasible) {
                                // better solution
                                goodK = k;
                                wayK = -1;
                                wayI = -1;
                                bestChange = -objectiveCoefficient - cost[k];
                            }
                        }
                    }
                    if ((way[k]&2) != 0) {
                        // try up
                        if (-objectiveCoefficient + cost[k] < bestChange) {
                            // see if feasible up
                            bool good = true;
                            int numberMarked = 0;
                            int kColumn = integerVariable[k];
                            for (j = columnStart[kColumn];
                                    j < columnStart[kColumn] + columnLength[kColumn]; j++) {
                                int iRow = row[j];
                                double newValue = rowActivity[iRow] + element[j];
                                if (newValue < rowLower[iRow] - primalTolerance ||
                                        newValue > rowUpper[iRow] + primalTolerance) {
                                    good = false;
                                    break;
                                } else if (mark[iRow]) {
                                    // made feasible
                                    numberMarked++;
                                }
                            }
                            if (good && numberMarked == numberInfeasible) {
                                // better solution
                                goodK = k;
                                wayK = 1;
                                wayI = -1;
                                bestChange = -objectiveCoefficient + cost[k];
                            }
                        }
                    }
                }
/*
  Remove effect of decrementing x<i> by restoring original lhs values.
*/
                // restore row activities
                for (j = columnStart[iColumn];
                        j < columnStart[iColumn] + columnLength[iColumn]; j++) {
                    int iRow = row[j];
                    rowActivity[iRow] = save[iRow];
                    mark[iRow] = 0;
                }
            }
/*
  Try to increment x<i>. Actions as for decrement.
*/
            if ((way[i]&2) != 0) {
                int numberInfeasible = 0;
                // save row activities and adjust
                for (j = columnStart[iColumn];
                        j < columnStart[iColumn] + columnLength[iColumn]; j++) {
                    int iRow = row[j];
                    save[iRow] = rowActivity[iRow];
                    rowActivity[iRow] += element[j];
                    if (rowActivity[iRow] < rowLower[iRow] - primalTolerance ||
                            rowActivity[iRow] > rowUpper[iRow] + primalTolerance) {
                        // mark row
                        mark[iRow] = 1;
                        numberInfeasible++;
                    }
                }
                // try up
                for (k = i + 1; k < endInner; k++) {
		    if (!maxTries)
		      break;
                    if ((way[k]&1) != 0) {
                        // try down
                        if (objectiveCoefficient - cost[k] < bestChange) {
                            // see if feasible down
                            bool good = true;
                            int numberMarked = 0;
                            int kColumn = integerVariable[k];
                            for (j = columnStart[kColumn];
                                    j < columnStart[kColumn] + columnLength[kColumn]; j++) {
                                int iRow = row[j];
                                double newValue = rowActivity[iRow] - element[j];
                                if (newValue < rowLower[iRow] - primalTolerance ||
                                        newValue > rowUpper[iRow] + primalTolerance) {
                                    good = false;
                                    break;
                                } else if (mark[iRow]) {
                                    // made feasible
                                    numberMarked++;
                                }
                            }
                            if (good && numberMarked == numberInfeasible) {
                                // better solution
                                goodK = k;
                                wayK = -1;
                                wayI = 1;
                                bestChange = objectiveCoefficient - cost[k];
                            }
                        }
                    }
                    if ((way[k]&2) != 0) {
                        // try up
                        if (objectiveCoefficient + cost[k] < bestChange) {
                            // see if feasible up
                            bool good = true;
                            int numberMarked = 0;
                            int kColumn = integerVariable[k];
                            for (j = columnStart[kColumn];
                                    j < columnStart[kColumn] + columnLength[kColumn]; j++) {
                                int iRow = row[j];
                                double newValue = rowActivity[iRow] + element[j];
                                if (newValue < rowLower[iRow] - primalTolerance ||
                                        newValue > rowUpper[iRow] + primalTolerance) {
                                    good = false;
                                    break;
                                } else if (mark[iRow]) {
                                    // made feasible
                                    numberMarked++;
                                }
                            }
                            if (good && numberMarked == numberInfeasible) {
                                // better solution
                                goodK = k;
                                wayK = 1;
                                wayI = 1;
                                bestChange = objectiveCoefficient + cost[k];
                            }
                        }
                    }
                }
                // restore row activities
                for (j = columnStart[iColumn];
                        j < columnStart[iColumn] + columnLength[iColumn]; j++) {
                    int iRow = row[j];
                    rowActivity[iRow] = save[iRow];
                    mark[iRow] = 0;
                }
            }
/*
  We've found a pair x<i> and x<k> which produce a better solution. Update our
  notion of current solution to match.

  Why does this not update newSolutionValue?
*/
            if (goodK >= 0) {
                // we found something - update solution
                for (j = columnStart[iColumn];
                        j < columnStart[iColumn] + columnLength[iColumn]; j++) {
                    int iRow = row[j];
                    rowActivity[iRow]  += wayI * element[j];
                }
                newSolution[iColumn] += wayI;
                int kColumn = integerVariable[goodK];
                for (j = columnStart[kColumn];
                        j < columnStart[kColumn] + columnLength[kColumn]; j++) {
                    int iRow = row[j];
                    rowActivity[iRow]  += wayK * element[j];
                }
                newSolution[kColumn] += wayK;
/*
  Adjust motion range for x<k>. We may have banged up against a bound with that
  last move.
*/
               // See if k can go further ?
                const OsiObject * object = model_->object(goodK);
                // get original bounds
                double originalLower;
                double originalUpper;
                getIntegerInformation( object, originalLower, originalUpper);

                double value = newSolution[kColumn];
                int iway = 0;

                if (value > originalLower + 0.5)
                    iway = 1;
                if (value < originalUpper - 0.5)
                    iway |= 2;
                way[goodK] = static_cast<char>(iway);
		totalChange += bestChange;
            }
        }
/*
  End of loop to try increment/decrement of integer variables.

  newSolutionValue does not necessarily match the current newSolution, and
  bestChange simply reflects the best single change. Still, that's sufficient
  to indicate that there's been at least one change. Check that we really do
  have a valid solution.
*/
        if (totalChange + newSolutionValue < solutionValue) {
            // paranoid check
            memset(rowActivity, 0, numberRows*sizeof(double));

            for (i = 0; i < numberColumns; i++) {
                int j;
                double value = newSolution[i];
                if (value) {
                    for (j = columnStart[i];
                            j < columnStart[i] + columnLength[i]; j++) {
                        int iRow = row[j];
                        rowActivity[iRow] += value * element[j];
                    }
                }
            }
            int numberBad = 0;
            double sumBad = 0.0;
            // check was approximately feasible
            for (i = 0; i < numberRows; i++) {
                if (rowActivity[i] < rowLower[i]) {
                    sumBad += rowLower[i] - rowActivity[i];
                    if (rowActivity[i] < rowLower[i] - 10.0*primalTolerance)
                        numberBad++;
                } else if (rowActivity[i] > rowUpper[i]) {
                    sumBad += rowUpper[i] - rowActivity[i];
                    if (rowActivity[i] > rowUpper[i] + 10.0*primalTolerance)
                        numberBad++;
                }
            }
            if (!numberBad) {
                for (i = 0; i < numberIntegers; i++) {
                    int iColumn = integerVariable[i];
                    const OsiObject * object = model_->object(i);
                    // get original bounds
                    double originalLower;
                    double originalUpper;
                    getIntegerInformation( object, originalLower, originalUpper);

                    double value = newSolution[iColumn];
                    // if away from lower bound mark that fact
                    if (value > originalLower) {
                        used_[iColumn] = numberSolutions_;
                    }
                }
/*
  Copy the solution to the array returned to the client. Grab a basis from
  the solver (which, if it exists, is almost certainly infeasible, but it
  should be ok for a dual start). The value returned as solutionValue is
  conservative because of handling of newSolutionValue and bestChange, as
  described above.
*/
                // new solution
                memcpy(betterSolution, newSolution, numberColumns*sizeof(double));
                CoinWarmStartBasis * basis =
                    dynamic_cast<CoinWarmStartBasis *>(solver->getWarmStart()) ;
                if (basis) {
                    model_->setBestSolutionBasis(* basis);
                    delete basis;
                }
                returnCode = 1;
                solutionValue = newSolutionValue + bestChange;
            } else {
                // bad solution - should not happen so debug if see message
                COIN_DETAIL_PRINT(printf("Local search got bad solution with %d infeasibilities summing to %g\n",
					 numberBad, sumBad));
            }
        }
	// This is just a copy!
	delete [] integerVariable;
    }
/*
  We're done. Clean up.
*/
    delete [] newSolution;
    delete [] rowActivity;
    delete [] way;
    delete [] cost;
    delete [] save;
    delete [] mark;
/*
  Do we want to try swapping values between solutions?
  swap_ is set elsewhere; it's not adjusted during heuristic execution.

  Again, redundant test. We shouldn't be here if numberSolutions_ = 1.
*/
    if (numberSolutions_ > 1 && (swap%10) == 1) {
        // try merge
        int returnCode2 = solutionFix( solutionValue, betterSolution, NULL);
        if (returnCode2)
            returnCode = 1;
    }
    return returnCode;
}
// update model
void CbcHeuristicLocal::setModel(CbcModel * model)
{
    model_ = model;
    // Get a copy of original matrix
    assert(model_->solver());
    if (model_->solver()->getNumRows()) {
        matrix_ = *model_->solver()->getMatrixByCol();
    }
    delete [] used_;
    int numberColumns = model->solver()->getNumCols();
    used_ = new int[numberColumns];
    memset(used_, 0, numberColumns*sizeof(int));
}

// Default Constructor
CbcHeuristicProximity::CbcHeuristicProximity()
        : CbcHeuristic()
{
    increment_ = 0.01;
    feasibilityPump_ = NULL;
    numberSolutions_ = 0;
    used_ = NULL;
    lastRunDeep_ = -1000000;
    switches_ |= 16; // needs a new solution
}

// Constructor with model - assumed before cuts

CbcHeuristicProximity::CbcHeuristicProximity(CbcModel & model)
        : CbcHeuristic(model)
{
    increment_ = 0.01;
    feasibilityPump_ = NULL;
    numberSolutions_ = 0;
    lastRunDeep_ = -1000000;
    switches_ |= 16; // needs a new solution
    int numberColumns = model.solver()->getNumCols();
    used_ = new int[numberColumns];
    memset(used_, 0, numberColumns*sizeof(int));
}

// Destructor
CbcHeuristicProximity::~CbcHeuristicProximity ()
{
    delete feasibilityPump_;
    delete [] used_;
}

// Clone
CbcHeuristic *
CbcHeuristicProximity::clone() const
{
    return new CbcHeuristicProximity(*this);
}
// Create C++ lines to get to current state
void
CbcHeuristicProximity::generateCpp( FILE * fp)
{
    CbcHeuristicProximity other;
    fprintf(fp, "0#include \"CbcHeuristicProximity.hpp\"\n");
    fprintf(fp, "3  CbcHeuristicProximity heuristicProximity(*cbcModel);\n");
    CbcHeuristic::generateCpp(fp, "heuristicProximity");
    fprintf(fp, "3  cbcModel->addHeuristic(&heuristicProximity);\n");
}

// Copy constructor
CbcHeuristicProximity::CbcHeuristicProximity(const CbcHeuristicProximity & rhs)
  :
  CbcHeuristic(rhs),
  numberSolutions_(rhs.numberSolutions_)
{
    increment_ = rhs.increment_;
    feasibilityPump_ = NULL;
    if (model_ && rhs.used_) {
        int numberColumns = model_->solver()->getNumCols();
        used_ = CoinCopyOfArray(rhs.used_, numberColumns);
	if (rhs.feasibilityPump_)
	  feasibilityPump_ = new CbcHeuristicFPump(*rhs.feasibilityPump_);
    } else {
        used_ = NULL;
    }
}

// Assignment operator
CbcHeuristicProximity &
CbcHeuristicProximity::operator=( const CbcHeuristicProximity & rhs)
{
    if (this != &rhs) {
        CbcHeuristic::operator=(rhs);
	increment_ = rhs.increment_;
        numberSolutions_ = rhs.numberSolutions_;
        delete [] used_;
        delete feasibilityPump_;
	feasibilityPump_ = NULL;
	if (model_ && rhs.used_) {
            int numberColumns = model_->solver()->getNumCols();
            used_ = CoinCopyOfArray(rhs.used_, numberColumns);
	    if (rhs.feasibilityPump_)
	      feasibilityPump_ = new CbcHeuristicFPump(*rhs.feasibilityPump_);
        } else {
            used_ = NULL;
        }
    }
    return *this;
}

// Resets stuff if model changes
void
CbcHeuristicProximity::resetModel(CbcModel * /*model*/)
{
    //CbcHeuristic::resetModel(model);
    delete [] used_;
    if (model_ && used_) {
        int numberColumns = model_->solver()->getNumCols();
        used_ = new int[numberColumns];
        memset(used_, 0, numberColumns*sizeof(int));
    } else {
        used_ = NULL;
    }
}
/*
  Run a mini-BaB search after changing objective

  Return values are:
    1: smallBranchAndBound found a solution
    0: everything else

  The degree of overload as return codes from smallBranchAndBound are folded
  into 0 is such that it's impossible to distinguish return codes that really
  require attention from a simple `nothing of interest'.
*/
int
CbcHeuristicProximity::solution(double & solutionValue,
                            double * betterSolution)
{
  if (feasibilityPumpOptions_ == -3 && numCouldRun_==0 &&
      !feasibilityPump_ ) {
    // clone feasibility pump
    for (int i = 0; i < model_->numberHeuristics(); i++) {
      const CbcHeuristicFPump* pump =
	dynamic_cast<const CbcHeuristicFPump*>(model_->heuristic(i));
      if (pump) {
	feasibilityPump_ = new CbcHeuristicFPump(*pump);
	break;
      }
    }
  }
/*
  Execute only if a new solution has been discovered since the last time we
  were called.
*/

  numCouldRun_++;
  int nodeCount = model_->getNodeCount();
  if (numberSolutions_ == model_->getSolutionCount())
    return 0;
  if (!model_->bestSolution())
    return 0; // odd - because in parallel mode
  numberSolutions_ = model_->getSolutionCount();
  lastRunDeep_ = nodeCount;
  numRuns_++;
  //howOftenShallow_ = numberSolutions_;
  
/*
  Load up a new solver with the solution.

  Why continuousSolver(), as opposed to solver()?
*/
  OsiSolverInterface * newSolver = model_->continuousSolver()->clone();
  int numberColumns=newSolver->getNumCols();
  double * obj = CoinCopyOfArray(newSolver->getObjCoefficients(),numberColumns);
  int * indices = new int [numberColumns];
  int n=0;
  for (int i=0;i<numberColumns;i++) {
    if (obj[i]) {
      indices[n]=i;
      obj[n++]=obj[i];
    }
  }
  double cutoff=model_->getCutoff();
  assert (cutoff<1.0e20);
  if (model_->getCutoffIncrement()<1.0e-4) {
    cutoff -= increment_;
  }
  double offset;
  newSolver->getDblParam(OsiObjOffset, offset);
  newSolver->setDblParam(OsiObjOffset, 0.0);
  newSolver->addRow(n,indices,obj,-COIN_DBL_MAX,cutoff+offset);
  delete [] indices;
  memset(obj,0,numberColumns*sizeof(double));
  newSolver->setDblParam(OsiDualObjectiveLimit, 1.0e20);
  int numberIntegers = model_->numberIntegers();
  const int * integerVariable = model_->integerVariable();
  const double * solutionIn = model_->bestSolution();
  for (int i = 0; i < numberIntegers; i++) {
    int iColumn = integerVariable[i];
    if (fabs(solutionIn[iColumn])<1.0e-5) 
      obj[iColumn]=1.0;
    else if (fabs(solutionIn[iColumn]-1.0)<1.0e-5) 
      obj[iColumn]=-1.0;
  }
  newSolver->setObjective(obj);
  delete [] obj;
  //newSolver->writeMps("xxxx");
  int maxSolutions = model_->getMaximumSolutions();
  model_->setMaximumSolutions(1); 
  bool pumpAdded = false;
  if (feasibilityPumpOptions_ == -3 && feasibilityPump_) {
    // add back feasibility pump
    pumpAdded = true;
    for (int i = 0; i < model_->numberHeuristics(); i++) {
      const CbcHeuristicFPump* pump =
	dynamic_cast<const CbcHeuristicFPump*>(model_->heuristic(i));
      if (pump) {
	pumpAdded = false;
	break;
      }
    }
    if (pumpAdded) 
      model_->addHeuristic(feasibilityPump_);
  }
  int returnCode = 
    smallBranchAndBound(newSolver, numberNodes_, betterSolution, solutionValue,
			1.0e20, "CbcHeuristicProximity");
  if (pumpAdded) {
    // take off feasibility pump
    int lastHeuristic = model_->numberHeuristics()-1;
    model_->setNumberHeuristics(lastHeuristic);
    delete model_->heuristic(lastHeuristic);
  }
  model_->setMaximumSolutions(maxSolutions); 
 /*
  -2 is return due to user event, and -1 is overloaded with what look to be
  two contradictory meanings.
*/
  if (returnCode < 0) {
    returnCode = 0; 
  }
/*
  If the result is complete exploration with a solution (3) or proven
  infeasibility (2), we could generate a cut (the AI folks would call it a
  nogood) to prevent us from going down this route in the future.
*/
  if ((returnCode&2) != 0) {
    // could add cut
    returnCode &= ~2;
  }
  char proxPrint[200];
  if ((returnCode&1) != 0) {
    // redo objective
    const double * obj = model_->continuousSolver()->getObjCoefficients();
    solutionValue = - offset;
    int sumIncrease=0.0;
    int sumDecrease=0.0;
    int numberIncrease=0;
    int numberDecrease=0;
    for (int i=0;i<numberColumns;i++) {
      solutionValue += obj[i]*betterSolution[i];
      if (model_->isInteger(i)) {
	int change=static_cast<int>(floor(solutionIn[i]-betterSolution[i]+0.5));
	if (change>0) {
	  numberIncrease++;
	  sumIncrease+=change;
	} else if (change<0) {
	  numberDecrease++;
	  sumDecrease-=change;
	}
      }
    }
    sprintf(proxPrint,"Proximity search ran %d nodes (out of %d) - in new solution %d increased (%d), %d decreased (%d)",
	    numberNodesDone_,numberNodes_,
	    numberIncrease,sumIncrease,numberDecrease,sumDecrease);
    if (!numberIncrease&&!numberDecrease) {
      // somehow tolerances are such that we can slip through
      // change for next time
      increment_ += CoinMax(increment_,fabs(solutionValue+offset)*1.0e-10);
    }
  } else {
    sprintf(proxPrint,"Proximity search ran %d nodes - no new solution",
	    numberNodesDone_);
  }
  model_->messageHandler()->message(CBC_FPUMP1, model_->messages())
    << proxPrint
    << CoinMessageEol;
  
  delete newSolver;
  return returnCode;
}
// update model
void CbcHeuristicProximity::setModel(CbcModel * model)
{
    model_ = model;
    // Get a copy of original matrix
    assert(model_->solver());
    delete [] used_;
    int numberColumns = model->solver()->getNumCols();
    used_ = new int[numberColumns];
    memset(used_, 0, numberColumns*sizeof(int));
}

// Default Constructor
CbcHeuristicNaive::CbcHeuristicNaive()
        : CbcHeuristic()
{
    large_ = 1.0e6;
}

// Constructor with model - assumed before cuts

CbcHeuristicNaive::CbcHeuristicNaive(CbcModel & model)
        : CbcHeuristic(model)
{
    large_ = 1.0e6;
}

// Destructor
CbcHeuristicNaive::~CbcHeuristicNaive ()
{
}

// Clone
CbcHeuristic *
CbcHeuristicNaive::clone() const
{
    return new CbcHeuristicNaive(*this);
}
// Create C++ lines to get to current state
void
CbcHeuristicNaive::generateCpp( FILE * fp)
{
    CbcHeuristicNaive other;
    fprintf(fp, "0#include \"CbcHeuristicProximity.hpp\"\n");
    fprintf(fp, "3  CbcHeuristicNaive naive(*cbcModel);\n");
    CbcHeuristic::generateCpp(fp, "naive");
    if (large_ != other.large_)
        fprintf(fp, "3  naive.setLarge(%g);\n", large_);
    else
        fprintf(fp, "4  naive.setLarge(%g);\n", large_);
    fprintf(fp, "3  cbcModel->addHeuristic(&naive);\n");
}

// Copy constructor
CbcHeuristicNaive::CbcHeuristicNaive(const CbcHeuristicNaive & rhs)
        :
        CbcHeuristic(rhs),
        large_(rhs.large_)
{
}

// Assignment operator
CbcHeuristicNaive &
CbcHeuristicNaive::operator=( const CbcHeuristicNaive & rhs)
{
    if (this != &rhs) {
        CbcHeuristic::operator=(rhs);
        large_ = rhs.large_;
    }
    return *this;
}

// Resets stuff if model changes
void
CbcHeuristicNaive::resetModel(CbcModel * model)
{
    CbcHeuristic::resetModel(model);
}
int
CbcHeuristicNaive::solution(double & solutionValue,
                            double * betterSolution)
{
    numCouldRun_++;
    // See if to do
    bool atRoot = model_->getNodeCount() == 0;
    int passNumber = model_->getCurrentPassNumber();
    if (!when() || (when() == 1 && model_->phase() != 1) || !atRoot || passNumber > 1)
        return 0; // switched off
    // Don't do if it was this heuristic which found solution!
    if (this == model_->lastHeuristic())
        return 0;
    numRuns_++;
    double cutoff;
    model_->solver()->getDblParam(OsiDualObjectiveLimit, cutoff);
    double direction = model_->solver()->getObjSense();
    cutoff *= direction;
    cutoff = CoinMin(cutoff, solutionValue);
    OsiSolverInterface * solver = model_->continuousSolver();
    if (!solver)
        solver = model_->solver();
    const double * colLower = solver->getColLower();
    const double * colUpper = solver->getColUpper();
    const double * objective = solver->getObjCoefficients();

    int numberColumns = model_->getNumCols();
    int numberIntegers = model_->numberIntegers();
    const int * integerVariable = model_->integerVariable();

    int i;
    bool solutionFound = false;
    CoinWarmStartBasis saveBasis;
    CoinWarmStartBasis * basis =
        dynamic_cast<CoinWarmStartBasis *>(solver->getWarmStart()) ;
    if (basis) {
        saveBasis = * basis;
        delete basis;
    }
    // First just fix all integers as close to zero as possible
    OsiSolverInterface * newSolver = cloneBut(7); // wassolver->clone();
    for (i = 0; i < numberIntegers; i++) {
        int iColumn = integerVariable[i];
        double lower = colLower[iColumn];
        double upper = colUpper[iColumn];
        double value;
        if (lower > 0.0)
            value = lower;
        else if (upper < 0.0)
            value = upper;
        else
            value = 0.0;
        newSolver->setColLower(iColumn, value);
        newSolver->setColUpper(iColumn, value);
    }
    newSolver->initialSolve();
    if (newSolver->isProvenOptimal()) {
        double solValue = newSolver->getObjValue() * direction ;
        if (solValue < cutoff) {
            // we have a solution
            solutionFound = true;
            solutionValue = solValue;
            memcpy(betterSolution, newSolver->getColSolution(),
                   numberColumns*sizeof(double));
            COIN_DETAIL_PRINT(printf("Naive fixing close to zero gave solution of %g\n", solutionValue));
            cutoff = solValue - model_->getCutoffIncrement();
        }
    }
    // Now fix all integers as close to zero if not zero or large cost
    int nFix = 0;
    for (i = 0; i < numberIntegers; i++) {
        int iColumn = integerVariable[i];
        double lower = colLower[iColumn];
        double upper = colUpper[iColumn];
        double value;
        if (fabs(objective[i]) > 0.0 && fabs(objective[i]) < large_) {
            nFix++;
            if (lower > 0.0)
                value = lower;
            else if (upper < 0.0)
                value = upper;
            else
                value = 0.0;
            newSolver->setColLower(iColumn, value);
            newSolver->setColUpper(iColumn, value);
        } else {
            // set back to original
            newSolver->setColLower(iColumn, lower);
            newSolver->setColUpper(iColumn, upper);
        }
    }
    const double * solution = solver->getColSolution();
    if (nFix) {
        newSolver->setWarmStart(&saveBasis);
        newSolver->setColSolution(solution);
        newSolver->initialSolve();
        if (newSolver->isProvenOptimal()) {
            double solValue = newSolver->getObjValue() * direction ;
            if (solValue < cutoff) {
                // try branch and bound
                double * newSolution = new double [numberColumns];
                COIN_DETAIL_PRINT(printf("%d fixed after fixing costs\n", nFix));
                int returnCode = smallBranchAndBound(newSolver,
                                                     numberNodes_, newSolution,
                                                     solutionValue,
                                                     solutionValue, "CbcHeuristicNaive1");
                if (returnCode < 0)
                    returnCode = 0; // returned on size
                if ((returnCode&2) != 0) {
                    // could add cut
                    returnCode &= ~2;
                }
                if (returnCode == 1) {
                    // solution
                    solutionFound = true;
                    memcpy(betterSolution, newSolution,
                           numberColumns*sizeof(double));
                    COIN_DETAIL_PRINT(printf("Naive fixing zeros gave solution of %g\n", solutionValue));
                    cutoff = solutionValue - model_->getCutoffIncrement();
                }
                delete [] newSolution;
            }
        }
    }
#if 1
    newSolver->setObjSense(-direction); // maximize
    newSolver->setWarmStart(&saveBasis);
    newSolver->setColSolution(solution);
    for (int iColumn = 0; iColumn < numberColumns; iColumn++) {
        double value = solution[iColumn];
        double lower = colLower[iColumn];
        double upper = colUpper[iColumn];
        double newLower;
        double newUpper;
        if (newSolver->isInteger(iColumn)) {
            newLower = CoinMax(lower, floor(value) - 2.0);
            newUpper = CoinMin(upper, ceil(value) + 2.0);
        } else {
            newLower = CoinMax(lower, value - 1.0e5);
            newUpper = CoinMin(upper, value + 1.0e-5);
        }
        newSolver->setColLower(iColumn, newLower);
        newSolver->setColUpper(iColumn, newUpper);
    }
    newSolver->initialSolve();
    if (newSolver->isProvenOptimal()) {
        double solValue = newSolver->getObjValue() * direction ;
        if (solValue < cutoff) {
            nFix = 0;
            newSolver->setObjSense(direction); // correct direction
            //const double * thisSolution = newSolver->getColSolution();
            for (int iColumn = 0; iColumn < numberColumns; iColumn++) {
                double value = solution[iColumn];
                double lower = colLower[iColumn];
                double upper = colUpper[iColumn];
                double newLower = lower;
                double newUpper = upper;
                if (newSolver->isInteger(iColumn)) {
                    if (value < lower + 1.0e-6) {
                        nFix++;
                        newUpper = lower;
                    } else if (value > upper - 1.0e-6) {
                        nFix++;
                        newLower = upper;
                    } else {
                        newLower = CoinMax(lower, floor(value) - 2.0);
                        newUpper = CoinMin(upper, ceil(value) + 2.0);
                    }
                }
                newSolver->setColLower(iColumn, newLower);
                newSolver->setColUpper(iColumn, newUpper);
            }
            // try branch and bound
            double * newSolution = new double [numberColumns];
            COIN_DETAIL_PRINT(printf("%d fixed after maximizing\n", nFix));
            int returnCode = smallBranchAndBound(newSolver,
                                                 numberNodes_, newSolution,
                                                 solutionValue,
                                                 solutionValue, "CbcHeuristicNaive1");
            if (returnCode < 0)
                returnCode = 0; // returned on size
            if ((returnCode&2) != 0) {
                // could add cut
                returnCode &= ~2;
            }
            if (returnCode == 1) {
                // solution
                solutionFound = true;
                memcpy(betterSolution, newSolution,
                       numberColumns*sizeof(double));
                COIN_DETAIL_PRINT(printf("Naive maximizing gave solution of %g\n", solutionValue));
                cutoff = solutionValue - model_->getCutoffIncrement();
            }
            delete [] newSolution;
        }
    }
#endif
    delete newSolver;
    return solutionFound ? 1 : 0;
}
// update model
void CbcHeuristicNaive::setModel(CbcModel * model)
{
    model_ = model;
}
// Default Constructor
CbcHeuristicCrossover::CbcHeuristicCrossover()
        : CbcHeuristic(),
        numberSolutions_(0),
        useNumber_(3)
{
    setWhen(1);
}

// Constructor with model - assumed before cuts

CbcHeuristicCrossover::CbcHeuristicCrossover(CbcModel & model)
        : CbcHeuristic(model),
        numberSolutions_(0),
        useNumber_(3)
{
    setWhen(1);
    for (int i = 0; i < 10; i++)
        random_[i] = model.randomNumberGenerator()->randomDouble();
}

// Destructor
CbcHeuristicCrossover::~CbcHeuristicCrossover ()
{
}

// Clone
CbcHeuristic *
CbcHeuristicCrossover::clone() const
{
    return new CbcHeuristicCrossover(*this);
}
// Create C++ lines to get to current state
void
CbcHeuristicCrossover::generateCpp( FILE * fp)
{
    CbcHeuristicCrossover other;
    fprintf(fp, "0#include \"CbcHeuristicProximity.hpp\"\n");
    fprintf(fp, "3  CbcHeuristicCrossover crossover(*cbcModel);\n");
    CbcHeuristic::generateCpp(fp, "crossover");
    if (useNumber_ != other.useNumber_)
        fprintf(fp, "3  crossover.setNumberSolutions(%d);\n", useNumber_);
    else
        fprintf(fp, "4  crossover.setNumberSolutions(%d);\n", useNumber_);
    fprintf(fp, "3  cbcModel->addHeuristic(&crossover);\n");
}

// Copy constructor
CbcHeuristicCrossover::CbcHeuristicCrossover(const CbcHeuristicCrossover & rhs)
        :
        CbcHeuristic(rhs),
        attempts_(rhs.attempts_),
        numberSolutions_(rhs.numberSolutions_),
        useNumber_(rhs.useNumber_)
{
    memcpy(random_, rhs.random_, 10*sizeof(double));
}

// Assignment operator
CbcHeuristicCrossover &
CbcHeuristicCrossover::operator=( const CbcHeuristicCrossover & rhs)
{
    if (this != &rhs) {
        CbcHeuristic::operator=(rhs);
        useNumber_ = rhs.useNumber_;
        attempts_ = rhs.attempts_;
        numberSolutions_ = rhs.numberSolutions_;
        memcpy(random_, rhs.random_, 10*sizeof(double));
    }
    return *this;
}

// Resets stuff if model changes
void
CbcHeuristicCrossover::resetModel(CbcModel * model)
{
    CbcHeuristic::resetModel(model);
}
int
CbcHeuristicCrossover::solution(double & solutionValue,
                                double * betterSolution)
{
    if (when_ == 0)
        return 0;
    numCouldRun_++;
    bool useBest = (numberSolutions_ != model_->getSolutionCount());
    if (!useBest && (when_ % 10) == 1)
        return 0;
    numberSolutions_ = model_->getSolutionCount();
    OsiSolverInterface * continuousSolver = model_->continuousSolver();
    int useNumber = CoinMin(model_->numberSavedSolutions(), useNumber_);
    if (useNumber < 2 || !continuousSolver)
        return 0;
    // Fix later
    if (!useBest)
        abort();
    numRuns_++;
    double cutoff;
    model_->solver()->getDblParam(OsiDualObjectiveLimit, cutoff);
    double direction = model_->solver()->getObjSense();
    cutoff *= direction;
    cutoff = CoinMin(cutoff, solutionValue);
    OsiSolverInterface * solver = cloneBut(2);
    // But reset bounds
    solver->setColLower(continuousSolver->getColLower());
    solver->setColUpper(continuousSolver->getColUpper());
    int numberColumns = solver->getNumCols();
    // Fixed
    double * fixed = new double [numberColumns];
    for (int i = 0; i < numberColumns; i++)
        fixed[i] = -COIN_DBL_MAX;
    int whichSolution[10];
    for (int i = 0; i < useNumber; i++)
        whichSolution[i] = i;
    for (int i = 0; i < useNumber; i++) {
        int k = whichSolution[i];
        const double * solution = model_->savedSolution(k);
        for (int j = 0; j < numberColumns; j++) {
            if (solver->isInteger(j)) {
                if (fixed[j] == -COIN_DBL_MAX)
                    fixed[j] = floor(solution[j] + 0.5);
                else if (fabs(fixed[j] - solution[j]) > 1.0e-7)
                    fixed[j] = COIN_DBL_MAX;
            }
        }
    }
    const double * colLower = solver->getColLower();
    for (int i = 0; i < numberColumns; i++) {
        if (solver->isInteger(i)) {
            double value = fixed[i];
            if (value != COIN_DBL_MAX) {
                if (when_ < 10) {
                    solver->setColLower(i, value);
                    solver->setColUpper(i, value);
                } else if (value == colLower[i]) {
                    solver->setColUpper(i, value);
                }
            }
        }
    }
    int returnCode = smallBranchAndBound(solver, numberNodes_, betterSolution,
                                         solutionValue,
                                         solutionValue, "CbcHeuristicCrossover");
    if (returnCode < 0)
        returnCode = 0; // returned on size
    if ((returnCode&2) != 0) {
        // could add cut
        returnCode &= ~2;
    }

    delete solver;
    return returnCode;
}
// update model
void CbcHeuristicCrossover::setModel(CbcModel * model)
{
    model_ = model;
    if (model) {
        for (int i = 0; i < 10; i++)
            random_[i] = model->randomNumberGenerator()->randomDouble();
    }
}