1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
// Copyright (C) 2004, 2006 International Business Machines and others.
// All Rights Reserved.
// This code is published under the Eclipse Public License.
//
// Authors: Carl Laird, Andreas Waechter IBM 2004-11-05
#ifndef __MYNLP_HPP__
#define __MYNLP_HPP__
#include "IpTNLP.hpp"
using namespace Ipopt;
/** C++ Example NLP for interfacing a problem with IPOPT.
* MyNLP implements a C++ example showing how to interface with IPOPT
* through the TNLP interface. This example is designed to go along with
* the tutorial document (see Examples/CppTutorial/).
* This class implements the following NLP.
*
* min_x f(x) = -(x2-2)^2
* s.t.
* 0 = x1^2 + x2 - 1
* -1 <= x1 <= 1
*
*/
class MyNLP: public TNLP
{
public:
/** default constructor */
MyNLP();
/** default destructor */
virtual ~MyNLP();
/**@name Overloaded from TNLP */
//@{
/** Method to return some info about the nlp */
virtual bool get_nlp_info(
Index& n,
Index& m,
Index& nnz_jac_g,
Index& nnz_h_lag,
IndexStyleEnum& index_style
);
/** Method to return the bounds for my problem */
virtual bool get_bounds_info(
Index n,
Number* x_l,
Number* x_u,
Index m,
Number* g_l,
Number* g_u
);
/** Method to return the starting point for the algorithm */
virtual bool get_starting_point(
Index n,
bool init_x,
Number* x,
bool init_z,
Number* z_L,
Number* z_U,
Index m,
bool init_lambda,
Number* lambda
);
/** Method to return the objective value */
virtual bool eval_f(
Index n,
const Number* x,
bool new_x,
Number& obj_value
);
/** Method to return the gradient of the objective */
virtual bool eval_grad_f(
Index n,
const Number* x,
bool new_x,
Number* grad_f
);
/** Method to return the constraint residuals */
virtual bool eval_g(
Index n,
const Number* x,
bool new_x,
Index m,
Number* g
);
/** Method to return:
* 1) The structure of the Jacobian (if "values" is NULL)
* 2) The values of the Jacobian (if "values" is not NULL)
*/
virtual bool eval_jac_g(
Index n,
const Number* x,
bool new_x,
Index m,
Index nele_jac,
Index* iRow,
Index* jCol,
Number* values
);
/** Method to return:
* 1) The structure of the Hessian of the Lagrangian (if "values" is NULL)
* 2) The values of the Hessian of the Lagrangian (if "values" is not NULL)
*/
virtual bool eval_h(
Index n,
const Number* x,
bool new_x,
Number obj_factor,
Index m,
const Number* lambda,
bool new_lambda,
Index nele_hess,
Index* iRow,
Index* jCol,
Number* values
);
/** This method is called when the algorithm is complete so the TNLP can store/write the solution */
virtual void finalize_solution(
SolverReturn status,
Index n,
const Number* x,
const Number* z_L,
const Number* z_U,
Index m,
const Number* g,
const Number* lambda,
Number obj_value,
const IpoptData* ip_data,
IpoptCalculatedQuantities* ip_cq
);
//@}
private:
/**@name Methods to block default compiler methods.
*
* The compiler automatically generates the following three methods.
* Since the default compiler implementation is generally not what
* you want (for all but the most simple classes), we usually
* put the declarations of these methods in the private section
* and never implement them. This prevents the compiler from
* implementing an incorrect "default" behavior without us
* knowing. (See Scott Meyers book, "Effective C++")
*/
//@{
MyNLP(
const MyNLP&
);
MyNLP& operator=(
const MyNLP&
);
//@}
};
#endif
|