File: MyNLP.hpp

package info (click to toggle)
coinor-ipopt 3.14.19-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 8,796 kB
  • sloc: cpp: 97,169; sh: 4,802; ansic: 2,537; java: 1,289; makefile: 821; fortran: 224; xml: 210
file content (165 lines) | stat: -rw-r--r-- 4,340 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
// Copyright (C) 2004, 2006 International Business Machines and others.
// All Rights Reserved.
// This code is published under the Eclipse Public License.
//
// Authors:  Carl Laird, Andreas Waechter     IBM    2004-11-05

#ifndef __MYNLP_HPP__
#define __MYNLP_HPP__

#include "IpTNLP.hpp"

using namespace Ipopt;

/** C++ Example NLP for interfacing a problem with IPOPT.
 *  MyNLP implements a C++ example showing how to interface with IPOPT
 *  through the TNLP interface. This example is designed to go along with
 *  the tutorial document (see Examples/CppTutorial/).
 *  This class implements the following NLP.
 *
 * min_x f(x) = -(x2-2)^2
 *  s.t.
 *       0 = x1^2 + x2 - 1
 *       -1 <= x1 <= 1
 *
 */
class MyNLP: public TNLP
{
public:
   /** default constructor */
   MyNLP();

   /** default destructor */
   virtual ~MyNLP();

   /**@name Overloaded from TNLP */
   //@{
   /** Method to return some info about the nlp */
   virtual bool get_nlp_info(
      Index&          n,
      Index&          m,
      Index&          nnz_jac_g,
      Index&          nnz_h_lag,
      IndexStyleEnum& index_style
   );

   /** Method to return the bounds for my problem */
   virtual bool get_bounds_info(
      Index   n,
      Number* x_l,
      Number* x_u,
      Index   m,
      Number* g_l,
      Number* g_u
   );

   /** Method to return the starting point for the algorithm */
   virtual bool get_starting_point(
      Index   n,
      bool    init_x,
      Number* x,
      bool    init_z,
      Number* z_L,
      Number* z_U,
      Index   m,
      bool    init_lambda,
      Number* lambda
   );

   /** Method to return the objective value */
   virtual bool eval_f(
      Index         n,
      const Number* x,
      bool          new_x,
      Number&       obj_value
   );

   /** Method to return the gradient of the objective */
   virtual bool eval_grad_f(
      Index         n,
      const Number* x,
      bool          new_x,
      Number*       grad_f
   );

   /** Method to return the constraint residuals */
   virtual bool eval_g(
      Index         n,
      const Number* x,
      bool          new_x,
      Index         m,
      Number*       g
   );

   /** Method to return:
    *   1) The structure of the Jacobian (if "values" is NULL)
    *   2) The values of the Jacobian (if "values" is not NULL)
    */
   virtual bool eval_jac_g(
      Index         n,
      const Number* x,
      bool          new_x,
      Index         m,
      Index         nele_jac,
      Index*        iRow,
      Index*        jCol,
      Number*       values
   );

   /** Method to return:
    *   1) The structure of the Hessian of the Lagrangian (if "values" is NULL)
    *   2) The values of the Hessian of the Lagrangian (if "values" is not NULL)
    */
   virtual bool eval_h(
      Index         n,
      const Number* x,
      bool          new_x,
      Number        obj_factor,
      Index         m,
      const Number* lambda,
      bool          new_lambda,
      Index         nele_hess,
      Index*        iRow,
      Index*        jCol,
      Number*       values
   );

   /** This method is called when the algorithm is complete so the TNLP can store/write the solution */
   virtual void finalize_solution(
      SolverReturn               status,
      Index                      n,
      const Number*              x,
      const Number*              z_L,
      const Number*              z_U,
      Index                      m,
      const Number*              g,
      const Number*              lambda,
      Number                     obj_value,
      const IpoptData*           ip_data,
      IpoptCalculatedQuantities* ip_cq
   );
   //@}

private:
   /**@name Methods to block default compiler methods.
    *
    * The compiler automatically generates the following three methods.
    *  Since the default compiler implementation is generally not what
    *  you want (for all but the most simple classes), we usually
    *  put the declarations of these methods in the private section
    *  and never implement them. This prevents the compiler from
    *  implementing an incorrect "default" behavior without us
    *  knowing. (See Scott Meyers book, "Effective C++")
    */
   //@{
   MyNLP(
      const MyNLP&
   );

   MyNLP& operator=(
      const MyNLP&
   );
   //@}
};

#endif