File: LuksanVlcek2.cpp

package info (click to toggle)
coinor-ipopt 3.14.19-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 8,796 kB
  • sloc: cpp: 97,169; sh: 4,802; ansic: 2,537; java: 1,289; makefile: 821; fortran: 224; xml: 210
file content (328 lines) | stat: -rw-r--r-- 7,837 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
// Copyright (C) 2005, 2006 International Business Machines and others.
// All Rights Reserved.
// This code is published under the Eclipse Public License.
//
// Authors:  Andreas Waechter              IBM    2005-10-127

#include "LuksanVlcek2.hpp"

#include <cmath>
#include <cstdio>

using namespace Ipopt;

LuksanVlcek2::LuksanVlcek2(
   Number g_l,
   Number g_u
)
   : g_l_(g_l),
     g_u_(g_u)
{ }

bool LuksanVlcek2::InitializeProblem(
   Index N
)
{
   N_ = N;
   if( N_ <= 13 || 2 * (N_ / 2) != N_ )
   {
      printf("N needs to be at least 14 and even.\n");
      return false;
   }
   return true;
}

// returns the size of the problem
bool LuksanVlcek2::get_nlp_info(
   Index&          n,
   Index&          m,
   Index&          nnz_jac_g,
   Index&          nnz_h_lag,
   IndexStyleEnum& index_style
)
{
   // The problem described in LuksanVlcek2.hpp has 4 variables, x[0]
   // through x[3]
   n = N_ + 2;

   m = N_ - 7;

   nnz_jac_g = 25 + (m - 5) * 8;

   nnz_h_lag = n + N_ + 1;

   // use the C style numbering of matrix indices (starting at 0)
   index_style = TNLP::C_STYLE;

   return true;
}

// returns the variable bounds
bool LuksanVlcek2::get_bounds_info(
   Index   n,
   Number* x_l,
   Number* x_u,
   Index   m,
   Number* g_l,
   Number* g_u
)
{
   // none of the variables have bounds
   for( Index i = 0; i < n; i++ )
   {
      x_l[i] = -1e20;
      x_u[i] = 1e20;
   }

   // Set the bounds for the constraints
   for( Index i = 0; i < m; i++ )
   {
      g_l[i] = g_l_;
      g_u[i] = g_u_;
   }

   return true;
}

// returns the initial point for the problem
bool LuksanVlcek2::get_starting_point(
   Index   n,
   bool    init_x,
   Number* x,
   bool    init_z,
   Number* /*z_L*/,
   Number* /*z_U*/,
   Index   /*m*/,
   bool    init_lambda,
   Number* /*lambda*/
)
{
   if( !init_x || init_z || init_lambda )
   {
      return false;
   }

   // set the starting point
   for( Index i = 0; i < n / 2; i++ )
   {
      x[2 * i] = -2.;
      x[2 * i + 1] = 1.;
   }

   return true;
}

// returns the value of the objective function
bool LuksanVlcek2::eval_f(
   Index         /*n*/,
   const Number* x,
   bool          /*new_x*/,
   Number&       obj_value
)
{
   obj_value = 0.;
   for( Index i = 0; i < N_ / 2; i++ )
   {
      Number a1 = x[2 * i] * x[2 * i] - x[2 * i + 1];
      Number a2 = x[2 * i] - 1.;
      Number a3 = x[2 * i + 2] * x[2 * i + 2] - x[2 * i + 3];
      Number a4 = x[2 * i + 2] - 1.;
      Number a5 = x[2 * i + 1] + x[2 * i + 3] - 2.;
      Number a6 = x[2 * i + 1] - x[2 * i + 3];
      obj_value += 100. * a1 * a1 + a2 * a2 + 90. * a3 * a3 + a4 * a4 + 10. * a5 * a5 + .1 * a6 * a6;
   }

   return true;
}

// return the gradient of the objective function grad_{x} f(x)
bool LuksanVlcek2::eval_grad_f(
   Index         /*n*/,
   const Number* x,
   bool          /*new_x*/,
   Number*       grad_f
)
{
   grad_f[0] = 0.;
   grad_f[1] = 0.;
   for( Index i = 0; i < N_ / 2; i++ )
   {
      grad_f[2 * i] += 400. * x[2 * i] * (x[2 * i] * x[2 * i] - x[2 * i + 1]) + 2. * (x[2 * i] - 1.);
      grad_f[2 * i + 1] += -200. * (x[2 * i] * x[2 * i] - x[2 * i + 1]) + 20 * (x[2 * i + 1] + x[2 * i + 3] - 2.)
                           + 0.2 * (x[2 * i + 1] - x[2 * i + 3]);
      grad_f[2 * i + 2] = 360. * x[2 * i + 2] * (x[2 * i + 2] * x[2 * i + 2] - x[2 * i + 3]) + 2. * (x[2 * i + 2] - 1.);
      grad_f[2 * i + 3] = -180. * (x[2 * i + 2] * x[2 * i + 2] - x[2 * i + 3])
                          + 20. * (x[2 * i + 1] + x[2 * i + 3] - 2.) - 0.2 * (x[2 * i + 1] - x[2 * i + 3]);
   }

   return true;
}

// return the value of the constraints: g(x)
bool LuksanVlcek2::eval_g(
   Index         /*n*/,
   const Number* x,
   bool          /*new_x*/,
   Index         /*m*/,
   Number*       g
)
{
   for( Index i = 0; i < N_ - 7; i++ )
   {
      g[i] = (2. + 5. * x[i + 5] * x[i + 5]) * x[i + 5] + 1.;
      for( Index k = Max(Index(0), i - 5); k <= i + 1; k++ )
      {
         g[i] += x[k] * (x[k] + 1.);
      }
   }

   return true;
}

// return the structure or values of the Jacobian
bool LuksanVlcek2::eval_jac_g(
   Index         /*n*/,
   const Number* x,
   bool          /*new_x*/,
   Index         /*m*/,
   Index         nele_jac,
   Index*        iRow,
   Index*        jCol,
   Number*       values
)
{
   if( values == NULL )
   {
      // return the structure of the jacobian

      Index ijac = 0;
      for( Index i = 0; i < N_ - 7; i++ )
      {
         for( Index k = Max(Index(0), i - 5); k <= i + 1; k++ )
         {
            iRow[ijac] = i;
            jCol[ijac] = k;
            ijac++;
         }
         iRow[ijac] = i;
         jCol[ijac] = i + 5;
         ijac++;
      }
      DBG_ASSERT(ijac == nele_jac);
      (void) nele_jac;
   }
   else
   {
      // return the values of the jacobian of the constraints

      Index ijac = 0;
      for( Index i = 0; i < N_ - 7; i++ )
      {
         for( Index k = Max(Index(0), i - 5); k <= i + 1; k++ )
         {
            values[ijac] = 2. * x[k] + 1.;
            ijac++;
         }
         values[ijac] = 2. + 15. * x[i + 5] * x[i + 5];
         ijac++;
      }
   }

   return true;
}

//return the structure or values of the Hessian
bool LuksanVlcek2::eval_h(
   Index         n,
   const Number* x,
   bool          /*new_x*/,
   Number        obj_factor,
   Index         /*m*/,
   const Number* lambda,
   bool          /*new_lambda*/,
   Index         nele_hess,
   Index*        iRow,
   Index*        jCol,
   Number*       values
)
{
   if( values == NULL )
   {
      Index ihes = 0;
      // First the diagonal elements
      for( Index i = 0; i < n; i++ )
      {
         iRow[ihes] = i;
         jCol[ihes] = i;
         ihes++;
      }
      // And now the off-diagonal elements
      for( Index i = 0; i < N_ / 2; i++ )
      {
         iRow[ihes] = 2 * i;
         jCol[ihes] = 2 * i + 1;
         ihes++;
         iRow[ihes] = 2 * i + 1;
         jCol[ihes] = 2 * i + 3;
         ihes++;
      }
      iRow[ihes] = n - 2;
      jCol[ihes] = n - 1;
      DBG_DO(ihes++);
      DBG_ASSERT(ihes == nele_hess);
      (void) nele_hess;
   }
   else
   {
      // First we take care of the diagonal elements coming from the
      // objective function
      values[0] = 0.;
      values[1] = 0.;
      for( Index i = 0; i < N_ / 2; i++ )
      {
         values[2 * i] += obj_factor * (1200. * x[2 * i] * x[2 * i] - 400. * x[2 * i + 1] + 2.);
         values[2 * i + 1] += obj_factor * 220.2;
         values[2 * i + 2] = obj_factor * (1080. * x[2 * i + 2] * x[2 * i + 2] - 360 * x[2 * i + 3] + 2.);
         values[2 * i + 3] = obj_factor * 200.2;
      }
      // Now we take care of the off-diagonal elements coming from the
      // objective function
      Index ihes = n;
      values[ihes] = 0.;
      for( Index i = 0; i < N_ / 2; i++ )
      {
         values[ihes] += obj_factor * (-400. * x[2 * i]);
         ihes++;
         values[ihes] = obj_factor * 19.8;
         ihes++;
         values[ihes] = obj_factor * (-360. * x[2 * i + 2]);
      }

      // Ok, now the diagonal elements from the constraints
      for( Index i = 0; i < N_ - 7; i++ )
      {
         for( Index k = Max(Index(0), i - 5); k <= i + 1; k++ )
         {
            values[k] += lambda[i] * 2.;
         }
         values[i + 5] += lambda[i] * 30. * x[i + 5];
      }
   }

   return true;
}

void LuksanVlcek2::finalize_solution(
   SolverReturn               /*status*/,
   Index                      /*n*/,
   const Number*              /*x*/,
   const Number*              /*z_L*/,
   const Number*              /*z_U*/,
   Index                      /*m*/,
   const Number*              /*g*/,
   const Number*              /*lambda*/,
   Number                     /*obj_value*/,
   const IpoptData*           /*ip_data*/,
   IpoptCalculatedQuantities* /*ip_cq*/
)
{ }