File: MittelmannDistCntrlDiri.cpp

package info (click to toggle)
coinor-ipopt 3.14.19-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 8,796 kB
  • sloc: cpp: 97,169; sh: 4,802; ansic: 2,537; java: 1,289; makefile: 821; fortran: 224; xml: 210
file content (559 lines) | stat: -rw-r--r-- 12,784 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
// Copyright (C) 2005, 2006 International Business Machines and others.
// All Rights Reserved.
// This code is published under the Eclipse Public License.
//
// Authors:  Carl Laird, Andreas Waechter     IBM    2004-11-05

#include "MittelmannDistCntrlDiri.hpp"

#include <cassert>

using namespace Ipopt;

/* Constructor. */
MittelmannDistCntrlDiriBase::MittelmannDistCntrlDiriBase()
   : y_d_(NULL)
{ }

MittelmannDistCntrlDiriBase::~MittelmannDistCntrlDiriBase()
{
   delete[] y_d_;
}

void MittelmannDistCntrlDiriBase::SetBaseParameters(
   Index  N,
   Number alpha,
   Number lb_y,
   Number ub_y,
   Number lb_u,
   Number ub_u,
   Number u_init
)
{
   N_ = N;
   h_ = 1. / (N + 1);
   hh_ = h_ * h_;
   lb_y_ = lb_y;
   ub_y_ = ub_y;
   lb_u_ = lb_u;
   ub_u_ = ub_u;
   u_init_ = u_init;
   alpha_ = alpha;

   // Initialize the target profile variables
   delete[] y_d_;
   y_d_ = new Number[(N_ + 2) * (N_ + 2)];
   for( Index j = 0; j <= N_ + 1; j++ )
   {
      for( Index i = 0; i <= N_ + 1; i++ )
      {
         y_d_[y_index(i, j)] = y_d_cont(x1_grid(i), x2_grid(j));
      }
   }
}

bool MittelmannDistCntrlDiriBase::get_nlp_info(
   Index&          n,
   Index&          m,
   Index&          nnz_jac_g,
   Index&          nnz_h_lag,
   IndexStyleEnum& index_style
)
{
   // We for each of the N_+2 times N_+2 mesh points we have the value
   // of the functions y, and for each N_ tiems N_ interior mesh points
   // we have values for u
   n = (N_ + 2) * (N_ + 2) + N_ * N_;

   // For each of the N_ times N_ interior mesh points we have the
   // discretized PDE.
   m = N_ * N_;

   // y(i,j), y(i-1,j), y(i+1,j), y(i,j-1), y(i,j+1), u(i,j) for each
   // of the N_*N_ discretized PDEs
   nnz_jac_g = 6 * N_ * N_;

   // diagonal entry for each y(i,j) in the interior
   nnz_h_lag = N_ * N_;
   if( alpha_ > 0. )
   {
      // and one entry for u(i,j) in the interior if alpha is not zero
      nnz_h_lag += N_ * N_;
   }

   // We use the C indexing style for row/col entries (corresponding to
   // the C notation, starting at 0)
   index_style = C_STYLE;

   return true;
}

bool MittelmannDistCntrlDiriBase::get_bounds_info(
   Index   /*n*/,
   Number* x_l,
   Number* x_u,
   Index   m,
   Number* g_l,
   Number* g_u
)
{
   // Set overall bounds on the variables
   for( Index i = 0; i <= N_ + 1; i++ )
   {
      for( Index j = 0; j <= N_ + 1; j++ )
      {
         Index iy = y_index(i, j);
         x_l[iy] = lb_y_;
         x_u[iy] = ub_y_;
      }
   }
   for( Index i = 1; i <= N_; i++ )
   {
      for( Index j = 1; j <= N_; j++ )
      {
         Index iu = u_index(i, j);
         x_l[iu] = lb_u_;
         x_u[iu] = ub_u_;
      }
   }

   // Define the boundary condition on y as bounds
   for( Index i = 0; i <= N_ + 1; i++ )
   {
      x_l[y_index(i, 0)] = 0.;
      x_u[y_index(i, 0)] = 0.;
   }
   for( Index i = 0; i <= N_ + 1; i++ )
   {
      x_l[y_index(0, i)] = 0.;
      x_u[y_index(0, i)] = 0.;
   }
   for( Index i = 0; i <= N_ + 1; i++ )
   {
      x_l[y_index(i, N_ + 1)] = 0.;
      x_u[y_index(i, N_ + 1)] = 0.;
   }
   for( Index i = 0; i <= N_ + 1; i++ )
   {
      x_l[y_index(N_ + 1, i)] = 0.;
      x_u[y_index(N_ + 1, i)] = 0.;
   }

   // all discretized PDE constraints have right hand side zero
   for( Index i = 0; i < m; i++ )
   {
      g_l[i] = 0.;
      g_u[i] = 0.;
   }

   return true;
}

bool MittelmannDistCntrlDiriBase::get_starting_point(
   Index   /*n*/,
   bool    init_x,
   Number* x,
   bool    init_z,
   Number* /*z_L*/,
   Number* /*z_U*/,
   Index   /*m*/,
   bool    init_lambda,
   Number* /*lambda*/
)
{
   // Here, we assume we only have starting values for x, if you code
   // your own NLP, you can provide starting values for the others if
   // you wish.
   assert(init_x == true);
   (void) init_x;
   assert(init_z == false);
   (void) init_z;
   assert(init_lambda == false);
   (void) init_lambda;

   // set all y's to the perfect match with y_d
   for( Index i = 0; i <= N_ + 1; i++ )
   {
      for( Index j = 0; j <= N_ + 1; j++ )
      {
         x[y_index(i, j)] = y_d_[y_index(i, j)];
         //      x[y_index(i,j)] += h_*x1_grid(i) + 2*h_*x2_grid(j);
      }
   }

   // Set the initial (constant) value for the u's
   for( Index i = 1; i <= N_; i++ )
   {
      for( Index j = 1; j <= N_; j++ )
      {
         x[u_index(i, j)] = u_init_;
         //      x[u_index(i,j)] -= h_*x1_grid(i) + 2*h_*x2_grid(j);
      }
   }

   return true;
}

bool MittelmannDistCntrlDiriBase::get_scaling_parameters(
   Number& obj_scaling,
   bool&   use_x_scaling,
   Index   /*n*/,
   Number* /*x_scaling*/,
   bool&   use_g_scaling,
   Index   /*m*/,
   Number* /*g_scaling*/
)
{
   obj_scaling = 1. / hh_;
   use_x_scaling = false;
   use_g_scaling = false;
   return true;
}

bool MittelmannDistCntrlDiriBase::eval_f(
   Index         /*n*/,
   const Number* x,
   bool          /*new_x*/,
   Number&       obj_value
)
{
   // return the value of the objective function
   obj_value = 0.;
   for( Index i = 1; i <= N_; i++ )
   {
      for( Index j = 1; j <= N_; j++ )
      {
         Index iy = y_index(i, j);
         Number tmp = x[iy] - y_d_[iy];
         obj_value += tmp * tmp;
      }
   }
   obj_value *= hh_ / 2.;

   if( alpha_ > 0. )
   {
      Number usum = 0.;
      for( Index i = 1; i <= N_; i++ )
      {
         for( Index j = 1; j <= N_; j++ )
         {
            Index iu = u_index(i, j);
            usum += x[iu] * x[iu];
         }
      }
      obj_value += alpha_ * hh_ / 2. * usum;
   }

   return true;
}

bool MittelmannDistCntrlDiriBase::eval_grad_f(
   Index         /*n*/,
   const Number* x,
   bool          /*new_x*/,
   Number*       grad_f
)
{
   // return the gradient of the objective function grad_{x} f(x)

   // The values are zero for variables on the boundary
   for( Index i = 0; i <= N_ + 1; i++ )
   {
      grad_f[y_index(i, 0)] = 0.;
   }
   for( Index i = 0; i <= N_ + 1; i++ )
   {
      grad_f[y_index(i, N_ + 1)] = 0.;
   }
   for( Index j = 1; j <= N_; j++ )
   {
      grad_f[y_index(0, j)] = 0.;
   }
   for( Index j = 1; j <= N_; j++ )
   {
      grad_f[y_index(N_ + 1, j)] = 0.;
   }

   // now let's take care of the nonzero values
   for( Index i = 1; i <= N_; i++ )
   {
      for( Index j = 1; j <= N_; j++ )
      {
         Index iy = y_index(i, j);
         grad_f[iy] = hh_ * (x[iy] - y_d_[iy]);
      }
   }

   if( alpha_ > 0. )
   {
      for( Index i = 1; i <= N_; i++ )
      {
         for( Index j = 1; j <= N_; j++ )
         {
            Index iu = u_index(i, j);
            grad_f[iu] = alpha_ * hh_ * x[iu];
         }
      }
   }
   else
   {
      for( Index i = 1; i <= N_; i++ )
      {
         for( Index j = 1; j <= N_; j++ )
         {
            Index iu = u_index(i, j);
            grad_f[iu] = 0.;
         }
      }
   }

   return true;
}

bool MittelmannDistCntrlDiriBase::eval_g(
   Index         /*n*/,
   const Number* x,
   bool          /*new_x*/,
   Index         /*m*/,
   Number*       g
)
{
   // return the value of the constraints: g(x)

   // compute the discretized PDE for each interior grid point
   for( Index i = 1; i <= N_; i++ )
   {
      for( Index j = 1; j <= N_; j++ )
      {
         Number val;

         // Start with the discretized Laplacian operator
         val = 4. * x[y_index(i, j)] - x[y_index(i - 1, j)] - x[y_index(i + 1, j)] - x[y_index(i, j - 1)]
               - x[y_index(i, j + 1)];

         // Add the forcing term (including the step size here)
         val += hh_ * d_cont(x1_grid(i), x2_grid(j), x[y_index(i, j)], x[u_index(i, j)]);
         g[pde_index(i, j)] = val;
      }
   }

   return true;
}

bool MittelmannDistCntrlDiriBase::eval_jac_g(
   Index         /*n*/,
   const Number* x,
   bool          /*new_x*/,
   Index         /*m*/,
   Index         nele_jac,
   Index*        iRow,
   Index*        jCol,
   Number*       values
)
{
   if( values == NULL )
   {
      // return the structure of the jacobian of the constraints

      Index ijac = 0;
      for( Index i = 1; i <= N_; i++ )
      {
         for( Index j = 1; j <= N_; j++ )
         {
            Index ig = pde_index(i, j);

            // y(i,j)
            iRow[ijac] = ig;
            jCol[ijac] = y_index(i, j);
            ijac++;

            // y(i-1,j)
            iRow[ijac] = ig;
            jCol[ijac] = y_index(i - 1, j);
            ijac++;

            // y(i+1,j)
            iRow[ijac] = ig;
            jCol[ijac] = y_index(i + 1, j);
            ijac++;

            // y(i,j-1)
            iRow[ijac] = ig;
            jCol[ijac] = y_index(i, j - 1);
            ijac++;

            // y(i,j+1)
            iRow[ijac] = ig;
            jCol[ijac] = y_index(i, j + 1);
            ijac++;

            // u(i,j)
            iRow[ijac] = ig;
            jCol[ijac] = u_index(i, j);
            ijac++;
         }
      }

      DBG_ASSERT(ijac == nele_jac);
      (void) nele_jac;
   }
   else
   {
      // return the values of the jacobian of the constraints
      Index ijac = 0;
      for( Index i = 1; i <= N_; i++ )
      {
         for( Index j = 1; j <= N_; j++ )
         {
            // y(i,j)
            values[ijac] = 4. + hh_ * d_cont_dy(x1_grid(i), x2_grid(j), x[y_index(i, j)], x[u_index(i, j)]);
            ijac++;

            // y(i-1,j)
            values[ijac] = -1.;
            ijac++;

            // y(i+1,j)
            values[ijac] = -1.;
            ijac++;

            // y(1,j-1)
            values[ijac] = -1.;
            ijac++;

            // y(1,j+1)
            values[ijac] = -1.;
            ijac++;

            // y(i,j)
            values[ijac] = hh_ * d_cont_du(x1_grid(i), x2_grid(j), x[y_index(i, j)], x[u_index(i, j)]);
            ijac++;
         }
      }

      DBG_ASSERT(ijac == nele_jac);
   }

   return true;
}

bool MittelmannDistCntrlDiriBase::eval_h(
   Index         /*n*/,
   const Number* x,
   bool          /*new_x*/,
   Number        obj_factor,
   Index         /*m*/,
   const Number* lambda,
   bool          /*new_lambda*/,
   Index         nele_hess,
   Index*        iRow,
   Index*        jCol,
   Number*       values
)
{
   if( values == NULL )
   {
      // return the structure. This is a symmetric matrix, fill the lower left
      // triangle only.

      Index ihes = 0;
      // First the diagonal entries for y(i,j)
      for( Index i = 1; i <= N_; i++ )
      {
         for( Index j = 1; j <= N_; j++ )
         {
            iRow[ihes] = y_index(i, j);
            jCol[ihes] = y_index(i, j);
            ihes++;
         }
      }

      if( alpha_ > 0. )
      {
         // Now the diagonal entries for u(i,j)
         for( Index i = 1; i <= N_; i++ )
         {
            for( Index j = 1; j <= N_; j++ )
            {
               iRow[ihes] = u_index(i, j);
               jCol[ihes] = u_index(i, j);
               ihes++;
            }
         }
      }

      DBG_ASSERT(ihes == nele_hess);
      (void) nele_hess;
   }
   else
   {
      // return the values

      Index ihes = 0;
      // First the diagonal entries for y(i,j)
      for( Index i = 1; i <= N_; i++ )
      {
         for( Index j = 1; j <= N_; j++ )
         {

            // Contribution from the objective function
            values[ihes] = obj_factor * hh_;

            // Contribution from the PDE constraint
            values[ihes] += lambda[pde_index(i, j)] * hh_
                            * d_cont_dydy(x1_grid(i), x2_grid(j), x[y_index(i, j)], x[u_index(i, j)]);

            ihes++;
         }
      }

      // Now the diagonal entries for u(i,j)
      if( alpha_ > 0. )
      {
         for( Index i = 1; i <= N_; i++ )
         {
            for( Index j = 1; j <= N_; j++ )
            {
               // Contribution from the objective function
               values[ihes] = obj_factor * hh_ * alpha_;
               ihes++;
            }
         }
      }

   }

   return true;
}

void MittelmannDistCntrlDiriBase::finalize_solution(
   SolverReturn               /*status*/,
   Index                      /*n*/,
   const Number*              /*x*/,
   const Number*              /*z_L*/,
   const Number*              /*z_U*/,
   Index                      /*m*/,
   const Number*              /*g*/,
   const Number*              /*lambda*/,
   Number                     /*obj_value*/,
   const IpoptData*           /*ip_data*/,
   IpoptCalculatedQuantities* /*ip_cq*/
)
{
   /*
    FILE* fp = fopen("solution.txt", "w+");

    for (Index i=0; i<=N_+1; i++) {
    for (Index j=0; j<=N_+1; j++) {
    fprintf(fp, "y[%6d,%6d] = %15.8e\n", i, j, x[y_index(i,j)]);
    }
    }
    for (Index i=1; i<=N_; i++) {
    for (Index j=1; j<=N_; j++) {
    fprintf(fp, "u[%6d,%6d] = %15.8e\n", i, j ,x[u_index(i,j)]);
    }
    }

    fclose(fp);
    */
}