File: hs071_nlp.cpp

package info (click to toggle)
coinor-ipopt 3.14.19-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 8,796 kB
  • sloc: cpp: 97,169; sh: 4,802; ansic: 2,537; java: 1,289; makefile: 821; fortran: 224; xml: 210
file content (459 lines) | stat: -rw-r--r-- 11,458 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
// Copyright (C) 2005, 2006 International Business Machines and others.
// All Rights Reserved.
// This code is published under the Eclipse Public License.
//
// Authors:  Carl Laird, Andreas Waechter     IBM    2005-08-16

#include "hs071_nlp.hpp"

#include <cassert>
#include <iostream>

using namespace Ipopt;

#ifdef __GNUC__
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif

// constructor
HS071_NLP::HS071_NLP(
   bool printiterate
) : printiterate_(printiterate)
{ }

// destructor
HS071_NLP::~HS071_NLP()
{ }

// [TNLP_get_nlp_info]
// returns the size of the problem
bool HS071_NLP::get_nlp_info(
   Index&          n,
   Index&          m,
   Index&          nnz_jac_g,
   Index&          nnz_h_lag,
   IndexStyleEnum& index_style
)
{
   // The problem described in HS071_NLP.hpp has 4 variables, x[0] through x[3]
   n = 4;

   // one equality constraint and one inequality constraint
   m = 2;

   // in this example the jacobian is dense and contains 8 nonzeros
   nnz_jac_g = 8;

   // the Hessian is also dense and has 16 total nonzeros, but we
   // only need the lower left corner (since it is symmetric)
   nnz_h_lag = 10;

   // use the C style indexing (0-based)
   index_style = TNLP::C_STYLE;

   return true;
}
// [TNLP_get_nlp_info]

// [TNLP_get_bounds_info]
// returns the variable bounds
bool HS071_NLP::get_bounds_info(
   Index   n,
   Number* x_l,
   Number* x_u,
   Index   m,
   Number* g_l,
   Number* g_u
)
{
   // here, the n and m we gave IPOPT in get_nlp_info are passed back to us.
   // If desired, we could assert to make sure they are what we think they are.
   assert(n == 4);
   assert(m == 2);

   // the variables have lower bounds of 1
   for( Index i = 0; i < 4; i++ )
   {
      x_l[i] = 1.0;
   }

   // the variables have upper bounds of 5
   for( Index i = 0; i < 4; i++ )
   {
      x_u[i] = 5.0;
   }

   // the first constraint g1 has a lower bound of 25
   g_l[0] = 25;
   // the first constraint g1 has NO upper bound, here we set it to 2e19.
   // Ipopt interprets any number greater than nlp_upper_bound_inf as
   // infinity. The default value of nlp_upper_bound_inf and nlp_lower_bound_inf
   // is 1e19 and can be changed through ipopt options.
   g_u[0] = 2e19;

   // the second constraint g2 is an equality constraint, so we set the
   // upper and lower bound to the same value
   g_l[1] = g_u[1] = 40.0;

   return true;
}
// [TNLP_get_bounds_info]

// [TNLP_get_starting_point]
// returns the initial point for the problem
bool HS071_NLP::get_starting_point(
   Index   n,
   bool    init_x,
   Number* x,
   bool    init_z,
   Number* z_L,
   Number* z_U,
   Index   m,
   bool    init_lambda,
   Number* lambda
)
{
   // Here, we assume we only have starting values for x, if you code
   // your own NLP, you can provide starting values for the dual variables
   // if you wish
   assert(init_x == true);
   assert(init_z == false);
   assert(init_lambda == false);

   // initialize to the given starting point
   x[0] = 1.0;
   x[1] = 5.0;
   x[2] = 5.0;
   x[3] = 1.0;

   return true;
}
// [TNLP_get_starting_point]

// [TNLP_eval_f]
// returns the value of the objective function
bool HS071_NLP::eval_f(
   Index         n,
   const Number* x,
   bool          new_x,
   Number&       obj_value
)
{
   assert(n == 4);

   obj_value = x[0] * x[3] * (x[0] + x[1] + x[2]) + x[2];

   return true;
}
// [TNLP_eval_f]

// [TNLP_eval_grad_f]
// return the gradient of the objective function grad_{x} f(x)
bool HS071_NLP::eval_grad_f(
   Index         n,
   const Number* x,
   bool          new_x,
   Number*       grad_f
)
{
   assert(n == 4);

   grad_f[0] = x[0] * x[3] + x[3] * (x[0] + x[1] + x[2]);
   grad_f[1] = x[0] * x[3];
   grad_f[2] = x[0] * x[3] + 1;
   grad_f[3] = x[0] * (x[0] + x[1] + x[2]);

   return true;
}
// [TNLP_eval_grad_f]

// [TNLP_eval_g]
// return the value of the constraints: g(x)
bool HS071_NLP::eval_g(
   Index         n,
   const Number* x,
   bool          new_x,
   Index         m,
   Number*       g
)
{
   assert(n == 4);
   assert(m == 2);

   g[0] = x[0] * x[1] * x[2] * x[3];
   g[1] = x[0] * x[0] + x[1] * x[1] + x[2] * x[2] + x[3] * x[3];

   return true;
}
// [TNLP_eval_g]

// [TNLP_eval_jac_g]
// return the structure or values of the Jacobian
bool HS071_NLP::eval_jac_g(
   Index         n,
   const Number* x,
   bool          new_x,
   Index         m,
   Index         nele_jac,
   Index*        iRow,
   Index*        jCol,
   Number*       values
)
{
   assert(n == 4);
   assert(m == 2);

   if( values == NULL )
   {
      // return the structure of the Jacobian

      // this particular Jacobian is dense
      iRow[0] = 0;
      jCol[0] = 0;
      iRow[1] = 0;
      jCol[1] = 1;
      iRow[2] = 0;
      jCol[2] = 2;
      iRow[3] = 0;
      jCol[3] = 3;
      iRow[4] = 1;
      jCol[4] = 0;
      iRow[5] = 1;
      jCol[5] = 1;
      iRow[6] = 1;
      jCol[6] = 2;
      iRow[7] = 1;
      jCol[7] = 3;
   }
   else
   {
      // return the values of the Jacobian of the constraints

      values[0] = x[1] * x[2] * x[3]; // 0,0
      values[1] = x[0] * x[2] * x[3]; // 0,1
      values[2] = x[0] * x[1] * x[3]; // 0,2
      values[3] = x[0] * x[1] * x[2]; // 0,3

      values[4] = 2 * x[0]; // 1,0
      values[5] = 2 * x[1]; // 1,1
      values[6] = 2 * x[2]; // 1,2
      values[7] = 2 * x[3]; // 1,3
   }

   return true;
}
// [TNLP_eval_jac_g]

// [TNLP_eval_h]
//return the structure or values of the Hessian
bool HS071_NLP::eval_h(
   Index         n,
   const Number* x,
   bool          new_x,
   Number        obj_factor,
   Index         m,
   const Number* lambda,
   bool          new_lambda,
   Index         nele_hess,
   Index*        iRow,
   Index*        jCol,
   Number*       values
)
{
   assert(n == 4);
   assert(m == 2);

   if( values == NULL )
   {
      // return the structure. This is a symmetric matrix, fill the lower left
      // triangle only.

      // the hessian for this problem is actually dense
      Index idx = 0;
      for( Index row = 0; row < 4; row++ )
      {
         for( Index col = 0; col <= row; col++ )
         {
            iRow[idx] = row;
            jCol[idx] = col;
            idx++;
         }
      }

      assert(idx == nele_hess);
   }
   else
   {
      // return the values. This is a symmetric matrix, fill the lower left
      // triangle only

      // fill the objective portion
      values[0] = obj_factor * (2 * x[3]); // 0,0

      values[1] = obj_factor * (x[3]);     // 1,0
      values[2] = 0.;                      // 1,1

      values[3] = obj_factor * (x[3]);     // 2,0
      values[4] = 0.;                      // 2,1
      values[5] = 0.;                      // 2,2

      values[6] = obj_factor * (2 * x[0] + x[1] + x[2]); // 3,0
      values[7] = obj_factor * (x[0]);                   // 3,1
      values[8] = obj_factor * (x[0]);                   // 3,2
      values[9] = 0.;                                    // 3,3

      // add the portion for the first constraint
      values[1] += lambda[0] * (x[2] * x[3]); // 1,0

      values[3] += lambda[0] * (x[1] * x[3]); // 2,0
      values[4] += lambda[0] * (x[0] * x[3]); // 2,1

      values[6] += lambda[0] * (x[1] * x[2]); // 3,0
      values[7] += lambda[0] * (x[0] * x[2]); // 3,1
      values[8] += lambda[0] * (x[0] * x[1]); // 3,2

      // add the portion for the second constraint
      values[0] += lambda[1] * 2; // 0,0

      values[2] += lambda[1] * 2; // 1,1

      values[5] += lambda[1] * 2; // 2,2

      values[9] += lambda[1] * 2; // 3,3
   }

   return true;
}
// [TNLP_eval_h]

// [TNLP_finalize_solution]
void HS071_NLP::finalize_solution(
   SolverReturn               status,
   Index                      n,
   const Number*              x,
   const Number*              z_L,
   const Number*              z_U,
   Index                      m,
   const Number*              g,
   const Number*              lambda,
   Number                     obj_value,
   const IpoptData*           ip_data,
   IpoptCalculatedQuantities* ip_cq
)
{
   // here is where we would store the solution to variables, or write to a file, etc
   // so we could use the solution.

   // For this example, we write the solution to the console
   std::cout << std::endl << std::endl << "Solution of the primal variables, x" << std::endl;
   for( Index i = 0; i < n; i++ )
   {
      std::cout << "x[" << i << "] = " << x[i] << std::endl;
   }

   std::cout << std::endl << std::endl << "Solution of the bound multipliers, z_L and z_U" << std::endl;
   for( Index i = 0; i < n; i++ )
   {
      std::cout << "z_L[" << i << "] = " << z_L[i] << std::endl;
   }
   for( Index i = 0; i < n; i++ )
   {
      std::cout << "z_U[" << i << "] = " << z_U[i] << std::endl;
   }

   std::cout << std::endl << std::endl << "Objective value" << std::endl;
   std::cout << "f(x*) = " << obj_value << std::endl;

   std::cout << std::endl << "Final value of the constraints:" << std::endl;
   for( Index i = 0; i < m; i++ )
   {
      std::cout << "g(" << i << ") = " << g[i] << std::endl;
   }
}
// [TNLP_finalize_solution]

// [TNLP_intermediate_callback]
bool HS071_NLP::intermediate_callback(
   AlgorithmMode              mode,
   Index                      iter,
   Number                     obj_value,
   Number                     inf_pr,
   Number                     inf_du,
   Number                     mu,
   Number                     d_norm,
   Number                     regularization_size,
   Number                     alpha_du,
   Number                     alpha_pr,
   Index                      ls_trials,
   const IpoptData*           ip_data,
   IpoptCalculatedQuantities* ip_cq
)
{
   if( !printiterate_ )
   {
      return true;
   }

   Number x[4];
   Number x_L_viol[4];
   Number x_U_viol[4];
   Number z_L[4];
   Number z_U[4];
   Number compl_x_L[4];
   Number compl_x_U[4];
   Number grad_lag_x[4];

   Number g[2];
   Number lambda[2];
   Number constraint_violation[2];
   Number compl_g[2];

   bool have_iter = get_curr_iterate(ip_data, ip_cq, false, 4, x, z_L, z_U, 2, g, lambda);
   bool have_viol = get_curr_violations(ip_data, ip_cq, false, 4, x_L_viol, x_U_viol, compl_x_L, compl_x_U, grad_lag_x, 2, constraint_violation, compl_g);

   printf("Current iterate:\n");
   printf("  %-12s %-12s %-12s %-12s %-12s %-12s %-12s\n", "x", "z_L", "z_U", "bound_viol", "compl_x_L", "compl_x_U", "grad_lag_x");
   for( int i = 0; i < 4; ++i )
   {
      if( have_iter )
      {
         printf("  %-12g %-12g %-12g", x[i], z_L[i], z_U[i]);
      }
      else
      {
         printf("  %-12s %-12s %-12s", "n/a", "n/a", "n/a");
      }
      if( have_viol )
      {
         printf(" %-12g %-12g %-12g %-12g\n", x_L_viol[i] > x_U_viol[i] ? x_L_viol[i] : x_U_viol[i], compl_x_L[i], compl_x_U[i], grad_lag_x[i]);
      }
      else
      {
         printf(" %-12s %-12s %-12s %-12s\n", "n/a", "n/a", "n/a", "n/a");
      }
   }

   printf("  %-12s %-12s %-12s %-12s\n", "g(x)", "lambda", "constr_viol", "compl_g");
   for( int i = 0; i < 2; ++i )
   {
      if( have_iter )
      {
         printf("  %-12g %-12g", g[i], lambda[i]);
      }
      else
      {
         printf("  %-12s %-12s", "n/a", "n/a");
      }
      if( have_viol )
      {
         printf(" %-12g %-12g\n", constraint_violation[i], compl_g[i]);
      }
      else
      {
         printf(" %-12s %-12s\n", "n/a", "n/a");
      }
   }

   return true;
}
// [TNLP_intermediate_callback]