1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
|
/* Copyright (C) 2009 International Business Machines.
* All Rights Reserved.
* This code is published under the Eclipse Public License.
*
* Author: Andreas Waechter IBM 2009-04-02
*/
/*
// This file is part of the Ipopt tutorial. It is a version with
// mistakes for the C implementation of the coding exercise problem (in
// AMPL formulation):
//
// param n := 4;
//
// var x {1..n} <= 0, >= -1.5, := -0.5;
//
// minimize obj:
// sum{i in 1..n} (x[i]-1)^2;
//
// subject to constr {i in 2..n-1}:
// (x[i]^2+1.5*x[i]-i/n)*cos(x[i+1]) - x[i-1] = 0;
//
// The constant term "i/n" in the constraint is supposed to be input data
*/
#include "IpStdCInterface.h"
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
#include <math.h>
/* Function Declarations */
Bool eval_f(
Index n,
Number* x,
Bool new_x,
Number* obj_value,
UserDataPtr user_data
);
Bool eval_grad_f(
Index n,
Number* x,
Bool new_x,
Number* grad_f,
UserDataPtr user_data
);
Bool eval_g(
Index n,
Number* x,
Bool new_x,
Index m,
Number* g,
UserDataPtr user_data
);
Bool eval_jac_g(
Index n,
Number* x,
Bool new_x,
Index m,
Index nele_jac,
Index* iRow,
Index* jCol,
Number* values,
UserDataPtr user_data
);
Bool eval_h(
Index n,
Number* x,
Bool new_x,
Number obj_factor,
Index m,
Number* lambda,
Bool new_lambda,
Index nele_hess,
Index* iRow,
Index* jCol,
Number* values,
UserDataPtr user_data
);
/* Structure to communicate problem data */
struct _ProblemData
{
int N;
double* a;
};
typedef struct _ProblemData* ProblemData;
/* Main Program */
int main()
{
Index n = -1; /* number of variables */
Index m = -1; /* number of constraints */
Index nele_jac; /* number of nonzeros in Jacobian */
Index nele_hess; /* number of nonzeros in Hessian */
Index index_style; /* indexing style for matrices */
Number* x_L = NULL; /* lower bounds on x */
Number* x_U = NULL; /* upper bounds on x */
Number* g_L = NULL; /* lower bounds on g */
Number* g_U = NULL; /* upper bounds on g */
IpoptProblem nlp = NULL; /* IpoptProblem */
enum ApplicationReturnStatus status; /* Solve return code */
Number* x = NULL; /* starting point and solution vector */
Number* mult_x_L = NULL; /* lower bound multipliers at the solution */
Number* mult_x_U = NULL; /* upper bound multipliers at the solution */
Number obj; /* objective value */
Index i; /* generic counter */
int size; /* Size of the problem */
ProblemData PD; /* Pointer to structure with problem data */
/* Specify size of the problem */
size = 5; /* 100; */
/* Set the problem data */
PD = (ProblemData) malloc(sizeof(struct _ProblemData));
PD->N = size;
PD->a = malloc(sizeof(double) * (size - 2));
for( i = 0; i < size - 2; i++ )
{
PD->a[i] = ((double) (i + 2)) / (double) size;
}
/* set the number of variables and allocate space for the bounds */
n = size;
x_L = (Number*) malloc(sizeof(Number) * n);
x_U = (Number*) malloc(sizeof(Number) * n);
/* set the values for the variable bounds */
for( i = 0; i < n; i++ )
{
x_L[i] = -1.5;
x_U[i] = 0.;
}
/* set the number of constraints and allocate space for the bounds */
m = size - 2;
g_L = (Number*) malloc(sizeof(Number) * m);
g_U = (Number*) malloc(sizeof(Number) * m);
/* set the values of the constraint bounds */
for( i = 0; i < m; i++ )
{
g_L[i] = 0.;
g_U[i] = 0.;
}
/* Number of nonzeros in the Jacobian of the constraints
* each constraint has three nonzeros
*/
nele_jac = 3 * m;
/* Number of nonzeros in the Hessian of the Lagrangian (lower or
* upper triangual part only)
* We have the full diagonal, and the first off-diagonal except for
* the first and last variable.
*/
nele_hess = n + (n - 2);
/* indexing style for matrices */
index_style = 0; /* C-style; start counting of rows and column indices at 0 */
/* create the IpoptProblem */
nlp = CreateIpoptProblem(n, x_L, x_U, m, g_L, g_U, nele_jac, nele_hess, index_style, &eval_f, &eval_g, &eval_grad_f,
&eval_jac_g, &eval_h);
/* We can free the memory now - the values for the bounds have been
* copied internally in CreateIpoptProblem.
*/
free(x_L);
free(x_U);
free(g_L);
free(g_U);
/* Set some options. Note the following ones are only examples,
* they might not be suitable for your problem.
*/
AddIpoptNumOption(nlp, "tol", 1e-7);
AddIpoptStrOption(nlp, "mu_strategy", "adaptive");
AddIpoptStrOption(nlp, "output_file", "ipopt.out");
/* allocate space for the initial point and set the values */
x = (Number*) malloc(sizeof(Number) * n);
for( i = 0; i < n; i++ )
{
x[i] = -0.5;
}
/*#define skip_me */
#ifdef skip_me
/* If checking derivatives, if is useful to choose different values */
for (i = 0; i < n; i++)
{
x[i] = -0.5 + 0.1 * i / n;
}
#endif
/* allocate space to store the bound multipliers at the solution */
mult_x_L = (Number*) malloc(sizeof(Number) * n);
mult_x_U = (Number*) malloc(sizeof(Number) * n);
/* solve the problem */
status = IpoptSolve(nlp, x, NULL, &obj, NULL, mult_x_L, mult_x_U, (void*) PD);
if( status == Solve_Succeeded )
{
printf("\n\nSolution of the primal variables, x\n");
for( i = 0; i < n; i++ )
{
printf("x[%d] = %e\n", (int)i, x[i]);
}
printf("\n\nSolution of the bound multipliers, z_L and z_U\n");
for( i = 0; i < n; i++ )
{
printf("z_L[%d] = %e\n", (int)i, mult_x_L[i]);
}
for( i = 0; i < n; i++ )
{
printf("z_U[%d] = %e\n", (int)i, mult_x_U[i]);
}
printf("\n\nObjective value\n");
printf("f(x*) = %e\n", obj);
}
/* free allocated memory */
FreeIpoptProblem(nlp);
free(x);
free(mult_x_L);
free(mult_x_U);
/* also for our user data */
free(PD->a);
free(PD);
return 0;
}
/* Function Implementations */
Bool eval_f(
Index n,
Number* x,
Bool new_x,
Number* obj_value,
UserDataPtr user_data
)
{
int i;
ProblemData PD = (ProblemData) user_data;
assert(n == PD->N);
*obj_value = 0.;
for( i = 0; i < n; i++ )
{
*obj_value += (x[i] - 1.) * (x[i] - 1.);
}
return TRUE;
}
Bool eval_grad_f(
Index n,
Number* x,
Bool new_x,
Number* grad_f,
UserDataPtr user_data
)
{
int i;
ProblemData PD = (ProblemData) user_data;
assert(n == PD->N);
for( i = 1; i < n; i++ )
{
grad_f[i] = 2. * (x[i] - 1.);
}
return TRUE;
}
Bool eval_g(
Index n,
Number* x,
Bool new_x,
Index m,
Number* g,
UserDataPtr user_data
)
{
int j;
ProblemData PD = (ProblemData) user_data;
double* a = PD->a;
assert(n == PD->N);
assert(m == PD->N - 2);
for( j = 0; j < m; j++ )
{
g[j] = (x[j + 1] * x[j + 1] + 1.5 * x[j + 1] - a[j]) * cos(x[j + 2]) - x[j];
}
return TRUE;
}
Bool eval_jac_g(
Index n,
Number* x,
Bool new_x,
Index m,
Index nele_jac,
Index* iRow,
Index* jCol,
Number* values,
UserDataPtr user_data
)
{
int j, inz;
ProblemData PD = (ProblemData) user_data;
double* a = PD->a;
if( values == NULL )
{
/* return the structure of the jacobian */
inz = 0;
for( j = 0; j < m; j++ )
{
iRow[inz] = j;
jCol[inz] = j;
inz++;
iRow[inz] = j;
jCol[inz] = j + 1;
inz++;
iRow[inz] = j;
jCol[inz] = j + 1;
inz++;
}
/* sanity check */
assert(inz == nele_jac);
}
else
{
/* return the values of the jacobian of the constraints */
inz = 0;
for( j = 0; j < m; j++ )
{
values[inz] = 1.;
inz++;
values[inz] = (2. * x[j + 1] + 1.5) * cos(x[j + 2]);
inz++;
values[inz] = -(x[j + 1] * x[j + 1] + 1.5 * x[j + 1] - a[j]) * sin(x[j + 2]);
inz++;
}
/* sanity check */
assert(inz == nele_jac);
}
return TRUE;
}
Bool eval_h(
Index n,
Number* x,
Bool new_x,
Number obj_factor,
Index m,
Number* lambda,
Bool new_lambda,
Index nele_hess,
Index* iRow,
Index* jCol,
Number* values,
UserDataPtr user_data
)
{
int i, inz;
ProblemData PD = (ProblemData) user_data;
double* a = PD->a;
if( values == NULL )
{
/* return the structure. This is a symmetric matrix, fill the
* upper right triangle only. */
inz = 0;
/* First variable has only a diagonal entry */
iRow[inz] = 0;
jCol[inz] = 0;
inz++;
/* Next ones have first off-diagonal and diagonal */
for( i = 1; i < n - 1; i++ )
{
iRow[inz] = i;
jCol[inz] = i;
inz++;
iRow[inz] = i;
jCol[inz] = i + 1;
inz++;
}
/* Last variable has only a diagonal entry */
iRow[inz] = n - 2;
jCol[inz] = n - 2;
inz++;
assert(inz == nele_hess);
}
else
{
/* return the values. This is a symmetric matrix, fill the upper
* right triangle only */
inz = 0;
/* Diagonal entry for first variable */
values[inz] = obj_factor * 2.;
inz++;
for( i = 1; i < n - 1; i++ )
{
values[inz] = obj_factor * 2. + lambda[i - 1] * 2. * cos(x[i + 1]);
if( i > 1 )
{
values[inz] -= lambda[i - 2] * (x[i - 1] * x[i - 1] + 1.5 * x[i - 1] - a[i - 2]) * cos(x[i]);
}
inz++;
values[inz] = -lambda[i - 1] * (2. * x[i] + 1.5) * sin(x[i + 1]);
inz++;
}
values[inz] = obj_factor * 2.;
values[inz] -= lambda[n - 3] * (x[n - 2] * x[n - 2] + 1.5 * x[n - 1] - a[n - 3]) * cos(x[n - 1]);
inz++;
assert(inz == nele_hess);
}
return TRUE;
}
|